blob: 4463bfb93c2aadca55176f831768713b044689f0 [file] [log] [blame]
;
; jidctred.asm - reduced-size IDCT (non-SIMD)
;
; x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains inverse-DCT routines that produce reduced-size output:
; either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
; The following code is based directly on the IJG's original jidctred.c;
; see the jidctred.c for more details.
;
; Last Modified : October 17, 2004
;
; [TAB8]
%include "jsimdext.inc"
%include "jdct.inc"
%ifdef IDCT_SCALING_SUPPORTED
; This module is specialized to the case DCTSIZE = 8.
;
%if DCTSIZE != 8
%error "Sorry, this code only copes with 8x8 DCTs."
%endif
; --------------------------------------------------------------------------
; Descale and correctly round a DWORD value that's scaled by N bits.
;
%macro descale 2
%if (%2)<=7
add %1, byte (1<<((%2)-1)) ; add reg32,imm8
%else
add %1, (1<<((%2)-1)) ; add reg32,imm32
%endif
sar %1,%2
%endmacro
; --------------------------------------------------------------------------
%define CONST_BITS 13
%define PASS1_BITS 2
%if CONST_BITS == 13
F_0_211 equ 1730 ; FIX(0.211164243)
F_0_509 equ 4176 ; FIX(0.509795579)
F_0_601 equ 4926 ; FIX(0.601344887)
F_0_720 equ 5906 ; FIX(0.720959822)
F_0_765 equ 6270 ; FIX(0.765366865)
F_0_850 equ 6967 ; FIX(0.850430095)
F_0_899 equ 7373 ; FIX(0.899976223)
F_1_061 equ 8697 ; FIX(1.061594337)
F_1_272 equ 10426 ; FIX(1.272758580)
F_1_451 equ 11893 ; FIX(1.451774981)
F_1_847 equ 15137 ; FIX(1.847759065)
F_2_172 equ 17799 ; FIX(2.172734803)
F_2_562 equ 20995 ; FIX(2.562915447)
F_3_624 equ 29692 ; FIX(3.624509785)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
F_0_211 equ DESCALE( 226735879,30-CONST_BITS) ; FIX(0.211164243)
F_0_509 equ DESCALE( 547388834,30-CONST_BITS) ; FIX(0.509795579)
F_0_601 equ DESCALE( 645689155,30-CONST_BITS) ; FIX(0.601344887)
F_0_720 equ DESCALE( 774124714,30-CONST_BITS) ; FIX(0.720959822)
F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865)
F_0_850 equ DESCALE( 913142361,30-CONST_BITS) ; FIX(0.850430095)
F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223)
F_1_061 equ DESCALE(1139878239,30-CONST_BITS) ; FIX(1.061594337)
F_1_272 equ DESCALE(1366614119,30-CONST_BITS) ; FIX(1.272758580)
F_1_451 equ DESCALE(1558831516,30-CONST_BITS) ; FIX(1.451774981)
F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065)
F_2_172 equ DESCALE(2332956230,30-CONST_BITS) ; FIX(2.172734803)
F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447)
F_3_624 equ DESCALE(3891787747,30-CONST_BITS) ; FIX(3.624509785)
%endif
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform dequantization and inverse DCT on one block of coefficients,
; producing a reduced-size 4x4 output block.
;
; GLOBAL(void)
; jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
; JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define cinfo(b) (b)+8 ; j_decompress_ptr cinfo
%define compptr(b) (b)+12 ; jpeg_component_info * compptr
%define coef_block(b) (b)+16 ; JCOEFPTR coef_block
%define output_buf(b) (b)+20 ; JSAMPARRAY output_buf
%define output_col(b) (b)+24 ; JDIMENSION output_col
%define range_limit ebp-SIZEOF_POINTER ; JSAMPLE * range_limit
%define workspace range_limit-(DCTSIZE*4)*SIZEOF_INT
; int workspace[DCTSIZE*4]
align 16
global EXTN(jpeg_idct_4x4)
EXTN(jpeg_idct_4x4):
push ebp
mov ebp,esp
lea esp, [workspace]
push ebx
; push ecx ; need not be preserved
; push edx ; need not be preserved
push esi
push edi
; ---- Pass 1: process columns from input, store into work array.
mov edx, POINTER [compptr(ebp)]
mov edx, POINTER [jcompinfo_dct_table(edx)] ; quantptr
mov esi, JCOEFPTR [coef_block(ebp)] ; inptr
lea edi, [workspace] ; int * wsptr
mov ecx, DCTSIZE ; ctr
alignx 16,7
.columnloop:
; Don't bother to process column 4, because second pass won't use it
cmp ecx, byte DCTSIZE-4
je near .nextcolumn
mov ax, JCOEF [COL(1,esi,SIZEOF_JCOEF)]
or ax, JCOEF [COL(2,esi,SIZEOF_JCOEF)]
jnz short .columnDCT
mov ax, JCOEF [COL(3,esi,SIZEOF_JCOEF)]
mov bx, JCOEF [COL(5,esi,SIZEOF_JCOEF)]
or ax, JCOEF [COL(6,esi,SIZEOF_JCOEF)]
or bx, JCOEF [COL(7,esi,SIZEOF_JCOEF)]
or ax,bx
jnz short .columnDCT
; -- AC terms all zero; we need not examine term 4 for 4x4 output
mov ax, JCOEF [COL(0,esi,SIZEOF_JCOEF)]
imul ax, ISLOW_MULT_TYPE [COL(0,edx,SIZEOF_ISLOW_MULT_TYPE)]
cwde
sal eax, PASS1_BITS
mov INT [COL(0,edi,SIZEOF_INT)], eax
mov INT [COL(1,edi,SIZEOF_INT)], eax
mov INT [COL(2,edi,SIZEOF_INT)], eax
mov INT [COL(3,edi,SIZEOF_INT)], eax
jmp near .nextcolumn
alignx 16,7
.columnDCT:
push ecx ; ctr
push esi ; coef_block
push edx ; quantptr
push edi ; wsptr
; -- Even part
movsx ebx, JCOEF [COL(2,esi,SIZEOF_JCOEF)]
movsx ecx, JCOEF [COL(6,esi,SIZEOF_JCOEF)]
movsx eax, JCOEF [COL(0,esi,SIZEOF_JCOEF)]
imul bx, ISLOW_MULT_TYPE [COL(2,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul cx, ISLOW_MULT_TYPE [COL(6,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul ax, ISLOW_MULT_TYPE [COL(0,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul ebx,(F_1_847) ; ebx=MULTIPLY(z2,FIX_1_847759065)
imul ecx,(-F_0_765) ; ecx=MULTIPLY(z3,-FIX_0_765366865)
sal eax,(CONST_BITS+1) ; eax=tmp0
add ecx,ebx ; ecx=tmp2
lea edi,[eax+ecx] ; edi=tmp10
sub eax,ecx ; eax=tmp12
push eax ; tmp12
push edi ; tmp10
; -- Odd part
movsx edi, JCOEF [COL(7,esi,SIZEOF_JCOEF)]
movsx ecx, JCOEF [COL(5,esi,SIZEOF_JCOEF)]
imul di, ISLOW_MULT_TYPE [COL(7,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul cx, ISLOW_MULT_TYPE [COL(5,edx,SIZEOF_ISLOW_MULT_TYPE)]
movsx ebx, JCOEF [COL(3,esi,SIZEOF_JCOEF)]
movsx eax, JCOEF [COL(1,esi,SIZEOF_JCOEF)]
imul bx, ISLOW_MULT_TYPE [COL(3,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul ax, ISLOW_MULT_TYPE [COL(1,edx,SIZEOF_ISLOW_MULT_TYPE)]
mov esi,edi ; esi=edi=z1
mov edx,ecx ; edx=ecx=z2
imul edi,(-F_0_211) ; edi=MULTIPLY(z1,-FIX_0_211164243)
imul ecx,(F_1_451) ; ecx=MULTIPLY(z2,FIX_1_451774981)
imul esi,(-F_0_509) ; esi=MULTIPLY(z1,-FIX_0_509795579)
imul edx,(-F_0_601) ; edx=MULTIPLY(z2,-FIX_0_601344887)
add edi,ecx ; edi=(tmp0)
add esi,edx ; esi=(tmp2)
mov ecx,ebx ; ecx=ebx=z3
mov edx,eax ; edx=eax=z4
imul ebx,(-F_2_172) ; ebx=MULTIPLY(z3,-FIX_2_172734803)
imul eax,(F_1_061) ; eax=MULTIPLY(z4,FIX_1_061594337)
imul ecx,(F_0_899) ; ecx=MULTIPLY(z3,FIX_0_899976223)
imul edx,(F_2_562) ; edx=MULTIPLY(z4,FIX_2_562915447)
add edi,ebx
add esi,ecx
add edi,eax ; edi=tmp0
add esi,edx ; esi=tmp2
; -- Final output stage
pop ebx ; ebx=tmp10
pop ecx ; ecx=tmp12
lea eax,[ebx+esi] ; eax=data0(=tmp10+tmp2)
sub ebx,esi ; ebx=data3(=tmp10-tmp2)
lea edx,[ecx+edi] ; edx=data1(=tmp12+tmp0)
sub ecx,edi ; ecx=data2(=tmp12-tmp0)
pop edi ; wsptr
descale eax,(CONST_BITS-PASS1_BITS+1)
descale ebx,(CONST_BITS-PASS1_BITS+1)
descale edx,(CONST_BITS-PASS1_BITS+1)
descale ecx,(CONST_BITS-PASS1_BITS+1)
mov INT [COL(0,edi,SIZEOF_INT)], eax
mov INT [COL(3,edi,SIZEOF_INT)], ebx
mov INT [COL(1,edi,SIZEOF_INT)], edx
mov INT [COL(2,edi,SIZEOF_INT)], ecx
pop edx ; quantptr
pop esi ; coef_block
pop ecx ; ctr
.nextcolumn:
add esi, byte SIZEOF_JCOEF ; advance pointers to next column
add edx, byte SIZEOF_ISLOW_MULT_TYPE
add edi, byte SIZEOF_INT
dec ecx
jnz near .columnloop
; ---- Pass 2: process 4 rows from work array, store into output array.
mov eax, POINTER [cinfo(ebp)]
mov eax, POINTER [jdstruct_sample_range_limit(eax)]
sub eax, byte -CENTERJSAMPLE*SIZEOF_JSAMPLE ; JSAMPLE * range_limit
mov POINTER [range_limit], eax
lea esi, [workspace] ; int * wsptr
mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *)
mov ecx, DCTSIZE/2 ; ctr
alignx 16,7
.rowloop:
push edi
mov edi, JSAMPROW [edi] ; (JSAMPLE *)
add edi, JDIMENSION [output_col(ebp)] ; edi=outptr
%ifndef NO_ZERO_ROW_TEST
mov eax, INT [ROW(1,esi,SIZEOF_INT)]
or eax, INT [ROW(2,esi,SIZEOF_INT)]
jnz short .rowDCT
mov eax, INT [ROW(3,esi,SIZEOF_INT)]
mov ebx, INT [ROW(5,esi,SIZEOF_INT)]
or eax, INT [ROW(6,esi,SIZEOF_INT)]
or ebx, INT [ROW(7,esi,SIZEOF_INT)]
or eax,ebx
jnz short .rowDCT
; -- AC terms all zero
mov eax, INT [ROW(0,esi,SIZEOF_INT)]
mov edx, POINTER [range_limit] ; (JSAMPLE *)
descale eax,(PASS1_BITS+3)
and eax,RANGE_MASK
mov al, JSAMPLE [edx+eax*SIZEOF_JSAMPLE]
mov JSAMPLE [edi+0*SIZEOF_JSAMPLE], al
mov JSAMPLE [edi+1*SIZEOF_JSAMPLE], al
mov JSAMPLE [edi+2*SIZEOF_JSAMPLE], al
mov JSAMPLE [edi+3*SIZEOF_JSAMPLE], al
jmp near .nextrow
alignx 16,7
%endif
.rowDCT:
push esi ; wsptr
push ecx ; ctr
push edi ; outptr
; -- Even part
mov eax, INT [ROW(0,esi,SIZEOF_INT)]
mov ebx, INT [ROW(2,esi,SIZEOF_INT)]
mov ecx, INT [ROW(6,esi,SIZEOF_INT)]
imul ebx,(F_1_847) ; ebx=MULTIPLY(z2,FIX_1_847759065)
imul ecx,(-F_0_765) ; ecx=MULTIPLY(z3,-FIX_0_765366865)
sal eax,(CONST_BITS+1) ; eax=tmp0
add ecx,ebx ; ecx=tmp2
lea edi,[eax+ecx] ; edi=tmp10
sub eax,ecx ; eax=tmp12
push eax ; tmp12
push edi ; tmp10
; -- Odd part
mov eax, INT [ROW(1,esi,SIZEOF_INT)]
mov ebx, INT [ROW(3,esi,SIZEOF_INT)]
mov ecx, INT [ROW(5,esi,SIZEOF_INT)]
mov edi, INT [ROW(7,esi,SIZEOF_INT)]
mov esi,edi ; esi=edi=z1
mov edx,ecx ; edx=ecx=z2
imul edi,(-F_0_211) ; edi=MULTIPLY(z1,-FIX_0_211164243)
imul ecx,(F_1_451) ; ecx=MULTIPLY(z2,FIX_1_451774981)
imul esi,(-F_0_509) ; esi=MULTIPLY(z1,-FIX_0_509795579)
imul edx,(-F_0_601) ; edx=MULTIPLY(z2,-FIX_0_601344887)
add edi,ecx ; edi=(tmp0)
add esi,edx ; esi=(tmp2)
mov ecx,ebx ; ecx=ebx=z3
mov edx,eax ; edx=eax=z4
imul ebx,(-F_2_172) ; ebx=MULTIPLY(z3,-FIX_2_172734803)
imul eax,(F_1_061) ; eax=MULTIPLY(z4,FIX_1_061594337)
imul ecx,(F_0_899) ; ecx=MULTIPLY(z3,FIX_0_899976223)
imul edx,(F_2_562) ; edx=MULTIPLY(z4,FIX_2_562915447)
add edi,ebx
add esi,ecx
add edi,eax ; edi=tmp0
add esi,edx ; esi=tmp2
; -- Final output stage
pop ebx ; ebx=tmp10
pop ecx ; ecx=tmp12
lea eax,[ebx+esi] ; eax=data0(=tmp10+tmp2)
sub ebx,esi ; ebx=data3(=tmp10-tmp2)
lea edx,[ecx+edi] ; edx=data1(=tmp12+tmp0)
sub ecx,edi ; ecx=data2(=tmp12-tmp0)
mov esi, POINTER [range_limit] ; (JSAMPLE *)
descale eax,(CONST_BITS+PASS1_BITS+3+1)
descale ebx,(CONST_BITS+PASS1_BITS+3+1)
descale edx,(CONST_BITS+PASS1_BITS+3+1)
descale ecx,(CONST_BITS+PASS1_BITS+3+1)
pop edi ; outptr
and eax,RANGE_MASK
and ebx,RANGE_MASK
and edx,RANGE_MASK
and ecx,RANGE_MASK
mov al, JSAMPLE [esi+eax*SIZEOF_JSAMPLE]
mov bl, JSAMPLE [esi+ebx*SIZEOF_JSAMPLE]
mov dl, JSAMPLE [esi+edx*SIZEOF_JSAMPLE]
mov cl, JSAMPLE [esi+ecx*SIZEOF_JSAMPLE]
mov JSAMPLE [edi+0*SIZEOF_JSAMPLE], al
mov JSAMPLE [edi+3*SIZEOF_JSAMPLE], bl
mov JSAMPLE [edi+1*SIZEOF_JSAMPLE], dl
mov JSAMPLE [edi+2*SIZEOF_JSAMPLE], cl
pop ecx ; ctr
pop esi ; wsptr
.nextrow:
pop edi
add esi, byte DCTSIZE*SIZEOF_INT ; advance pointer to next row
add edi, byte SIZEOF_JSAMPROW
dec ecx
jnz near .rowloop
pop edi
pop esi
; pop edx ; need not be preserved
; pop ecx ; need not be preserved
pop ebx
mov esp,ebp
pop ebp
ret
; --------------------------------------------------------------------------
;
; Perform dequantization and inverse DCT on one block of coefficients,
; producing a reduced-size 2x2 output block.
;
; GLOBAL(void)
; jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
; JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define cinfo(b) (b)+8 ; j_decompress_ptr cinfo
%define compptr(b) (b)+12 ; jpeg_component_info * compptr
%define coef_block(b) (b)+16 ; JCOEFPTR coef_block
%define output_buf(b) (b)+20 ; JSAMPARRAY output_buf
%define output_col(b) (b)+24 ; JDIMENSION output_col
%define range_limit ebp-SIZEOF_POINTER ; JSAMPLE * range_limit
%define workspace range_limit-(DCTSIZE*2)*SIZEOF_INT
; int workspace[DCTSIZE*2]
align 16
global EXTN(jpeg_idct_2x2)
EXTN(jpeg_idct_2x2):
push ebp
mov ebp,esp
lea esp, [workspace]
push ebx
; push ecx ; need not be preserved
; push edx ; need not be preserved
push esi
push edi
; ---- Pass 1: process columns from input, store into work array.
mov edx, POINTER [compptr(ebp)]
mov edx, POINTER [jcompinfo_dct_table(edx)] ; quantptr
mov esi, JCOEFPTR [coef_block(ebp)] ; inptr
lea edi, [workspace] ; int * wsptr
mov ecx, DCTSIZE ; ctr
alignx 16,7
.columnloop:
; Don't bother to process columns 2,4,6
test ecx, 0x09
jz near .nextcolumn
mov ax, JCOEF [COL(1,esi,SIZEOF_JCOEF)]
or ax, JCOEF [COL(3,esi,SIZEOF_JCOEF)]
jnz short .columnDCT
mov ax, JCOEF [COL(5,esi,SIZEOF_JCOEF)]
or ax, JCOEF [COL(7,esi,SIZEOF_JCOEF)]
jnz short .columnDCT
; -- AC terms all zero; we need not examine terms 2,4,6 for 2x2 output
mov ax, JCOEF [COL(0,esi,SIZEOF_JCOEF)]
imul ax, ISLOW_MULT_TYPE [COL(0,edx,SIZEOF_ISLOW_MULT_TYPE)]
cwde
sal eax, PASS1_BITS
mov INT [COL(0,edi,SIZEOF_INT)], eax
mov INT [COL(1,edi,SIZEOF_INT)], eax
jmp short .nextcolumn
alignx 16,7
.columnDCT:
push ecx ; ctr
push edi ; wsptr
; -- Odd part
movsx eax, JCOEF [COL(1,esi,SIZEOF_JCOEF)]
movsx ebx, JCOEF [COL(3,esi,SIZEOF_JCOEF)]
imul ax, ISLOW_MULT_TYPE [COL(1,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul bx, ISLOW_MULT_TYPE [COL(3,edx,SIZEOF_ISLOW_MULT_TYPE)]
movsx ecx, JCOEF [COL(5,esi,SIZEOF_JCOEF)]
movsx edi, JCOEF [COL(7,esi,SIZEOF_JCOEF)]
imul cx, ISLOW_MULT_TYPE [COL(5,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul di, ISLOW_MULT_TYPE [COL(7,edx,SIZEOF_ISLOW_MULT_TYPE)]
imul eax,(F_3_624) ; eax=MULTIPLY(data1,FIX_3_624509785)
imul ebx,(-F_1_272) ; ebx=MULTIPLY(data3,-FIX_1_272758580)
imul ecx,(F_0_850) ; ecx=MULTIPLY(data5,FIX_0_850430095)
imul edi,(-F_0_720) ; edi=MULTIPLY(data7,-FIX_0_720959822)
add eax,ebx
add ecx,edi
add ecx,eax ; ecx=tmp0
; -- Even part
mov ax, JCOEF [COL(0,esi,SIZEOF_JCOEF)]
imul ax, ISLOW_MULT_TYPE [COL(0,edx,SIZEOF_ISLOW_MULT_TYPE)]
cwde
sal eax,(CONST_BITS+2) ; eax=tmp10
; -- Final output stage
pop edi ; wsptr
lea ebx,[eax+ecx] ; ebx=data0(=tmp10+tmp0)
sub eax,ecx ; eax=data1(=tmp10-tmp0)
pop ecx ; ctr
descale ebx,(CONST_BITS-PASS1_BITS+2)
descale eax,(CONST_BITS-PASS1_BITS+2)
mov INT [COL(0,edi,SIZEOF_INT)], ebx
mov INT [COL(1,edi,SIZEOF_INT)], eax
.nextcolumn:
add esi, byte SIZEOF_JCOEF ; advance pointers to next column
add edx, byte SIZEOF_ISLOW_MULT_TYPE
add edi, byte SIZEOF_INT
dec ecx
jnz near .columnloop
; ---- Pass 2: process 2 rows from work array, store into output array.
mov eax, POINTER [cinfo(ebp)]
mov eax, POINTER [jdstruct_sample_range_limit(eax)]
sub eax, byte -CENTERJSAMPLE*SIZEOF_JSAMPLE ; JSAMPLE * range_limit
mov POINTER [range_limit], eax
lea esi, [workspace] ; int * wsptr
mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *)
mov ecx, DCTSIZE/4 ; ctr
alignx 16,7
.rowloop:
push edi
mov edi, JSAMPROW [edi] ; (JSAMPLE *)
add edi, JDIMENSION [output_col(ebp)] ; edi=outptr
%ifndef NO_ZERO_ROW_TEST
mov eax, INT [ROW(1,esi,SIZEOF_INT)]
or eax, INT [ROW(3,esi,SIZEOF_INT)]
jnz short .rowDCT
mov eax, INT [ROW(5,esi,SIZEOF_INT)]
or eax, INT [ROW(7,esi,SIZEOF_INT)]
jnz short .rowDCT
; -- AC terms all zero
mov eax, INT [ROW(0,esi,SIZEOF_INT)]
mov edx, POINTER [range_limit] ; (JSAMPLE *)
descale eax,(PASS1_BITS+3)
and eax,RANGE_MASK
mov al, JSAMPLE [edx+eax*SIZEOF_JSAMPLE]
mov JSAMPLE [edi+0*SIZEOF_JSAMPLE], al
mov JSAMPLE [edi+1*SIZEOF_JSAMPLE], al
jmp short .nextrow
alignx 16,7
%endif
.rowDCT:
push ecx ; ctr
; -- Odd part
mov eax, INT [ROW(1,esi,SIZEOF_INT)]
mov ebx, INT [ROW(3,esi,SIZEOF_INT)]
mov ecx, INT [ROW(5,esi,SIZEOF_INT)]
mov edx, INT [ROW(7,esi,SIZEOF_INT)]
imul eax,(F_3_624) ; eax=MULTIPLY(data1,FIX_3_624509785)
imul ebx,(-F_1_272) ; ebx=MULTIPLY(data3,-FIX_1_272758580)
imul ecx,(F_0_850) ; ecx=MULTIPLY(data5,FIX_0_850430095)
imul edx,(-F_0_720) ; edx=MULTIPLY(data7,-FIX_0_720959822)
add eax,ebx
add ecx,edx
add ecx,eax ; ecx=tmp0
; -- Even part
mov eax, INT [ROW(0,esi,SIZEOF_INT)]
sal eax,(CONST_BITS+2) ; eax=tmp10
; -- Final output stage
mov edx, POINTER [range_limit] ; (JSAMPLE *)
lea ebx,[eax+ecx] ; ebx=data0(=tmp10+tmp0)
sub eax,ecx ; eax=data1(=tmp10-tmp0)
pop ecx ; ctr
descale ebx,(CONST_BITS+PASS1_BITS+3+2)
descale eax,(CONST_BITS+PASS1_BITS+3+2)
and ebx,RANGE_MASK
and eax,RANGE_MASK
mov bl, JSAMPLE [edx+ebx*SIZEOF_JSAMPLE]
mov al, JSAMPLE [edx+eax*SIZEOF_JSAMPLE]
mov JSAMPLE [edi+0*SIZEOF_JSAMPLE], bl
mov JSAMPLE [edi+1*SIZEOF_JSAMPLE], al
.nextrow:
pop edi
add esi, byte DCTSIZE*SIZEOF_INT ; advance pointer to next row
add edi, byte SIZEOF_JSAMPROW
dec ecx
jnz near .rowloop
pop edi
pop esi
; pop edx ; need not be preserved
; pop ecx ; need not be preserved
pop ebx
mov esp,ebp
pop ebp
ret
; --------------------------------------------------------------------------
;
; Perform dequantization and inverse DCT on one block of coefficients,
; producing a reduced-size 1x1 output block.
;
; GLOBAL(void)
; jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
; JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define cinfo(b) (b)+8 ; j_decompress_ptr cinfo
%define compptr(b) (b)+12 ; jpeg_component_info * compptr
%define coef_block(b) (b)+16 ; JCOEFPTR coef_block
%define output_buf(b) (b)+20 ; JSAMPARRAY output_buf
%define output_col(b) (b)+24 ; JDIMENSION output_col
%define ebp esp-4 ; use esp instead of ebp
align 16
global EXTN(jpeg_idct_1x1)
EXTN(jpeg_idct_1x1):
; push ebp
; mov ebp,esp
; push ebx ; unused
; push ecx ; need not be preserved
; push edx ; need not be preserved
; push esi ; unused
; push edi ; unused
; We hardly need an inverse DCT routine for this: just take the
; average pixel value, which is one-eighth of the DC coefficient.
mov edx, POINTER [compptr(ebp)]
mov ecx, JCOEFPTR [coef_block(ebp)] ; inptr
mov edx, POINTER [jcompinfo_dct_table(edx)] ; quantptr
mov ax, JCOEF [COL(0,ecx,SIZEOF_JCOEF)]
imul ax, ISLOW_MULT_TYPE [COL(0,edx,SIZEOF_ISLOW_MULT_TYPE)]
mov ecx, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *)
mov edx, JDIMENSION [output_col(ebp)]
mov ecx, JSAMPROW [ecx] ; (JSAMPLE *)
add ax, (1 << (3-1)) + (CENTERJSAMPLE << 3)
sar ax,3 ; descale
test ah,ah ; unsigned saturation
jz short .output
not ax
sar ax,15
alignx 16,3
.output:
mov JSAMPLE [ecx+edx*SIZEOF_JSAMPLE], al
; pop edi ; unused
; pop esi ; unused
; pop edx ; need not be preserved
; pop ecx ; need not be preserved
; pop ebx ; unused
; pop ebp
ret
%endif ; IDCT_SCALING_SUPPORTED