blob: 59f02775c68724223c3bc6c7f9d330fcc6b64f5b [file] [log] [blame]
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
| | |__ | | | | | | version 3.6.0
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
SPDX-License-Identifier: MIT
Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef INCLUDE_NLOHMANN_JSON_HPP_
#define INCLUDE_NLOHMANN_JSON_HPP_
#define NLOHMANN_JSON_VERSION_MAJOR 3
#define NLOHMANN_JSON_VERSION_MINOR 6
#define NLOHMANN_JSON_VERSION_PATCH 0
#include <algorithm> // all_of, find, for_each
#include <cassert> // assert
#include <ciso646> // and, not, or
#include <cstddef> // nullptr_t, ptrdiff_t, size_t
#include <functional> // hash, less
#include <initializer_list> // initializer_list
#include <iosfwd> // istream, ostream
#include <iterator> // random_access_iterator_tag
#include <memory> // unique_ptr
#include <numeric> // accumulate
#include <string> // string, stoi, to_string
#include <utility> // declval, forward, move, pair, swap
#include <vector> // vector
// #include <nlohmann/adl_serializer.hpp>
#include <utility>
// #include <nlohmann/detail/conversions/from_json.hpp>
#include <algorithm> // transform
#include <array> // array
#include <ciso646> // and, not
#include <forward_list> // forward_list
#include <iterator> // inserter, front_inserter, end
#include <map> // map
#include <string> // string
#include <tuple> // tuple, make_tuple
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
#include <unordered_map> // unordered_map
#include <utility> // pair, declval
#include <valarray> // valarray
// #include <nlohmann/detail/exceptions.hpp>
#include <exception> // exception
#include <stdexcept> // runtime_error
#include <string> // to_string
// #include <nlohmann/detail/input/position_t.hpp>
#include <cstddef> // size_t
namespace nlohmann
{
namespace detail
{
/// struct to capture the start position of the current token
struct position_t
{
/// the total number of characters read
std::size_t chars_read_total = 0;
/// the number of characters read in the current line
std::size_t chars_read_current_line = 0;
/// the number of lines read
std::size_t lines_read = 0;
/// conversion to size_t to preserve SAX interface
constexpr operator size_t() const
{
return chars_read_total;
}
};
} // namespace detail
} // namespace nlohmann
namespace nlohmann
{
namespace detail
{
////////////////
// exceptions //
////////////////
/*!
@brief general exception of the @ref basic_json class
This class is an extension of `std::exception` objects with a member @a id for
exception ids. It is used as the base class for all exceptions thrown by the
@ref basic_json class. This class can hence be used as "wildcard" to catch
exceptions.
Subclasses:
- @ref parse_error for exceptions indicating a parse error
- @ref invalid_iterator for exceptions indicating errors with iterators
- @ref type_error for exceptions indicating executing a member function with
a wrong type
- @ref out_of_range for exceptions indicating access out of the defined range
- @ref other_error for exceptions indicating other library errors
@internal
@note To have nothrow-copy-constructible exceptions, we internally use
`std::runtime_error` which can cope with arbitrary-length error messages.
Intermediate strings are built with static functions and then passed to
the actual constructor.
@endinternal
@liveexample{The following code shows how arbitrary library exceptions can be
caught.,exception}
@since version 3.0.0
*/
class exception : public std::exception
{
public:
/// returns the explanatory string
const char* what() const noexcept override
{
return m.what();
}
/// the id of the exception
const int id;
protected:
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
static std::string name(const std::string& ename, int id_)
{
return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
}
private:
/// an exception object as storage for error messages
std::runtime_error m;
};
/*!
@brief exception indicating a parse error
This exception is thrown by the library when a parse error occurs. Parse errors
can occur during the deserialization of JSON text, CBOR, MessagePack, as well
as when using JSON Patch.
Member @a byte holds the byte index of the last read character in the input
file.
Exceptions have ids 1xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`.
json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet).
@note For an input with n bytes, 1 is the index of the first character and n+1
is the index of the terminating null byte or the end of file. This also
holds true when reading a byte vector (CBOR or MessagePack).
@liveexample{The following code shows how a `parse_error` exception can be
caught.,parse_error}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class parse_error : public exception
{
public:
/*!
@brief create a parse error exception
@param[in] id_ the id of the exception
@param[in] pos the position where the error occurred (or with
chars_read_total=0 if the position cannot be
determined)
@param[in] what_arg the explanatory string
@return parse_error object
*/
static parse_error create(int id_, const position_t& pos, const std::string& what_arg)
{
std::string w = exception::name("parse_error", id_) + "parse error" +
position_string(pos) + ": " + what_arg;
return parse_error(id_, pos.chars_read_total, w.c_str());
}
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
{
std::string w = exception::name("parse_error", id_) + "parse error" +
(byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") +
": " + what_arg;
return parse_error(id_, byte_, w.c_str());
}
/*!
@brief byte index of the parse error
The byte index of the last read character in the input file.
@note For an input with n bytes, 1 is the index of the first character and
n+1 is the index of the terminating null byte or the end of file.
This also holds true when reading a byte vector (CBOR or MessagePack).
*/
const std::size_t byte;
private:
parse_error(int id_, std::size_t byte_, const char* what_arg)
: exception(id_, what_arg), byte(byte_) {}
static std::string position_string(const position_t& pos)
{
return " at line " + std::to_string(pos.lines_read + 1) +
", column " + std::to_string(pos.chars_read_current_line);
}
};
/*!
@brief exception indicating errors with iterators
This exception is thrown if iterators passed to a library function do not match
the expected semantics.
Exceptions have ids 2xx.
name / id | example message | description
----------------------------------- | --------------- | -------------------------
json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
@liveexample{The following code shows how an `invalid_iterator` exception can be
caught.,invalid_iterator}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class invalid_iterator : public exception
{
public:
static invalid_iterator create(int id_, const std::string& what_arg)
{
std::string w = exception::name("invalid_iterator", id_) + what_arg;
return invalid_iterator(id_, w.c_str());
}
private:
invalid_iterator(int id_, const char* what_arg)
: exception(id_, what_arg) {}
};
/*!
@brief exception indicating executing a member function with a wrong type
This exception is thrown in case of a type error; that is, a library function is
executed on a JSON value whose type does not match the expected semantics.
Exceptions have ids 3xx.
name / id | example message | description
----------------------------- | --------------- | -------------------------
json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t &.
json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. |
json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) |
@liveexample{The following code shows how a `type_error` exception can be
caught.,type_error}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class type_error : public exception
{
public:
static type_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("type_error", id_) + what_arg;
return type_error(id_, w.c_str());
}
private:
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating access out of the defined range
This exception is thrown in case a library function is called on an input
parameter that exceeds the expected range, for instance in case of array
indices or nonexisting object keys.
Exceptions have ids 4xx.
name / id | example message | description
------------------------------- | --------------- | -------------------------
json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. |
json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. |
json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string |
@liveexample{The following code shows how an `out_of_range` exception can be
caught.,out_of_range}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class out_of_range : public exception
{
public:
static out_of_range create(int id_, const std::string& what_arg)
{
std::string w = exception::name("out_of_range", id_) + what_arg;
return out_of_range(id_, w.c_str());
}
private:
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating other library errors
This exception is thrown in case of errors that cannot be classified with the
other exception types.
Exceptions have ids 5xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@liveexample{The following code shows how an `other_error` exception can be
caught.,other_error}
@since version 3.0.0
*/
class other_error : public exception
{
public:
static other_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("other_error", id_) + what_arg;
return other_error(id_, w.c_str());
}
private:
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
#include <utility> // pair
// This file contains all internal macro definitions
// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
// exclude unsupported compilers
#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
#if defined(__clang__)
#if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#endif
#endif
// disable float-equal warnings on GCC/clang
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
// disable documentation warnings on clang
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdocumentation"
#endif
// allow for portable deprecation warnings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#define JSON_DEPRECATED __attribute__((deprecated))
#elif defined(_MSC_VER)
#define JSON_DEPRECATED __declspec(deprecated)
#else
#define JSON_DEPRECATED
#endif
// allow for portable nodiscard warnings
#if defined(__has_cpp_attribute)
#if __has_cpp_attribute(nodiscard)
#define JSON_NODISCARD [[nodiscard]]
#elif __has_cpp_attribute(gnu::warn_unused_result)
#define JSON_NODISCARD [[gnu::warn_unused_result]]
#else
#define JSON_NODISCARD
#endif
#else
#define JSON_NODISCARD
#endif
// allow to disable exceptions
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
#define JSON_THROW(exception) throw exception
#define JSON_TRY try
#define JSON_CATCH(exception) catch(exception)
#define JSON_INTERNAL_CATCH(exception) catch(exception)
#else
#include <cstdlib>
#define JSON_THROW(exception) std::abort()
#define JSON_TRY if(true)
#define JSON_CATCH(exception) if(false)
#define JSON_INTERNAL_CATCH(exception) if(false)
#endif
// override exception macros
#if defined(JSON_THROW_USER)
#undef JSON_THROW
#define JSON_THROW JSON_THROW_USER
#endif
#if defined(JSON_TRY_USER)
#undef JSON_TRY
#define JSON_TRY JSON_TRY_USER
#endif
#if defined(JSON_CATCH_USER)
#undef JSON_CATCH
#define JSON_CATCH JSON_CATCH_USER
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_CATCH_USER
#endif
#if defined(JSON_INTERNAL_CATCH_USER)
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
#endif
// manual branch prediction
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#define JSON_LIKELY(x) __builtin_expect(x, 1)
#define JSON_UNLIKELY(x) __builtin_expect(x, 0)
#else
#define JSON_LIKELY(x) x
#define JSON_UNLIKELY(x) x
#endif
// C++ language standard detection
#if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
#define JSON_HAS_CPP_17
#define JSON_HAS_CPP_14
#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
#define JSON_HAS_CPP_14
#endif
/*!
@brief macro to briefly define a mapping between an enum and JSON
@def NLOHMANN_JSON_SERIALIZE_ENUM
@since version 3.4.0
*/
#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
template<typename BasicJsonType> \
inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.first == e; \
}); \
j = ((it != std::end(m)) ? it : std::begin(m))->second; \
} \
template<typename BasicJsonType> \
inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.second == j; \
}); \
e = ((it != std::end(m)) ? it : std::begin(m))->first; \
}
// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
// may be removed in the future once the class is split.
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
template<template<typename, typename, typename...> class ObjectType, \
template<typename, typename...> class ArrayType, \
class StringType, class BooleanType, class NumberIntegerType, \
class NumberUnsignedType, class NumberFloatType, \
template<typename> class AllocatorType, \
template<typename, typename = void> class JSONSerializer>
#define NLOHMANN_BASIC_JSON_TPL \
basic_json<ObjectType, ArrayType, StringType, BooleanType, \
NumberIntegerType, NumberUnsignedType, NumberFloatType, \
AllocatorType, JSONSerializer>
// #include <nlohmann/detail/meta/cpp_future.hpp>
#include <ciso646> // not
#include <cstddef> // size_t
#include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
namespace nlohmann
{
namespace detail
{
// alias templates to reduce boilerplate
template<bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T>
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// implementation of C++14 index_sequence and affiliates
// source: https://stackoverflow.com/a/32223343
template<std::size_t... Ints>
struct index_sequence
{
using type = index_sequence;
using value_type = std::size_t;
static constexpr std::size_t size() noexcept
{
return sizeof...(Ints);
}
};
template<class Sequence1, class Sequence2>
struct merge_and_renumber;
template<std::size_t... I1, std::size_t... I2>
struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence < I1..., (sizeof...(I1) + I2)... > {};
template<std::size_t N>
struct make_index_sequence
: merge_and_renumber < typename make_index_sequence < N / 2 >::type,
typename make_index_sequence < N - N / 2 >::type > {};
template<> struct make_index_sequence<0> : index_sequence<> {};
template<> struct make_index_sequence<1> : index_sequence<0> {};
template<typename... Ts>
using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
// dispatch utility (taken from ranges-v3)
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
template<> struct priority_tag<0> {};
// taken from ranges-v3
template<typename T>
struct static_const
{
static constexpr T value{};
};
template<typename T>
constexpr T static_const<T>::value;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/meta/type_traits.hpp>
#include <ciso646> // not
#include <limits> // numeric_limits
#include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
#include <utility> // declval
// #include <nlohmann/detail/iterators/iterator_traits.hpp>
#include <iterator> // random_access_iterator_tag
// #include <nlohmann/detail/meta/void_t.hpp>
namespace nlohmann
{
namespace detail
{
template <typename ...Ts> struct make_void
{
using type = void;
};
template <typename ...Ts> using void_t = typename make_void<Ts...>::type;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/meta/cpp_future.hpp>
namespace nlohmann
{
namespace detail
{
template <typename It, typename = void>
struct iterator_types {};
template <typename It>
struct iterator_types <
It,
void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
typename It::reference, typename It::iterator_category >>
{
using difference_type = typename It::difference_type;
using value_type = typename It::value_type;
using pointer = typename It::pointer;
using reference = typename It::reference;
using iterator_category = typename It::iterator_category;
};
// This is required as some compilers implement std::iterator_traits in a way that
// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
template <typename T, typename = void>
struct iterator_traits
{
};
template <typename T>
struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
: iterator_types<T>
{
};
template <typename T>
struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
{
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/detected.hpp>
#include <type_traits>
// #include <nlohmann/detail/meta/void_t.hpp>
// http://en.cppreference.com/w/cpp/experimental/is_detected
namespace nlohmann
{
namespace detail
{
struct nonesuch
{
nonesuch() = delete;
~nonesuch() = delete;
nonesuch(nonesuch const&) = delete;
nonesuch(nonesuch const&&) = delete;
void operator=(nonesuch const&) = delete;
void operator=(nonesuch&&) = delete;
};
template <class Default,
class AlwaysVoid,
template <class...> class Op,
class... Args>
struct detector
{
using value_t = std::false_type;
using type = Default;
};
template <class Default, template <class...> class Op, class... Args>
struct detector<Default, void_t<Op<Args...>>, Op, Args...>
{
using value_t = std::true_type;
using type = Op<Args...>;
};
template <template <class...> class Op, class... Args>
using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
template <template <class...> class Op, class... Args>
using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
template <class Default, template <class...> class Op, class... Args>
using detected_or = detector<Default, void, Op, Args...>;
template <class Default, template <class...> class Op, class... Args>
using detected_or_t = typename detected_or<Default, Op, Args...>::type;
template <class Expected, template <class...> class Op, class... Args>
using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
template <class To, template <class...> class Op, class... Args>
using is_detected_convertible =
std::is_convertible<detected_t<Op, Args...>, To>;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/json_fwd.hpp>
#ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
#define INCLUDE_NLOHMANN_JSON_FWD_HPP_
#include <cstdint> // int64_t, uint64_t
#include <map> // map
#include <memory> // allocator
#include <string> // string
#include <vector> // vector
/*!
@brief namespace for Niels Lohmann
@see https://github.com/nlohmann
@since version 1.0.0
*/
namespace nlohmann
{
/*!
@brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
for serialization.
*/
template<typename T = void, typename SFINAE = void>
struct adl_serializer;
template<template<typename U, typename V, typename... Args> class ObjectType =
std::map,
template<typename U, typename... Args> class ArrayType = std::vector,
class StringType = std::string, class BooleanType = bool,
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator,
template<typename T, typename SFINAE = void> class JSONSerializer =
adl_serializer>
class basic_json;
/*!
@brief JSON Pointer
A JSON pointer defines a string syntax for identifying a specific value
within a JSON document. It can be used with functions `at` and
`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
template<typename BasicJsonType>
class json_pointer;
/*!
@brief default JSON class
This type is the default specialization of the @ref basic_json class which
uses the standard template types.
@since version 1.0.0
*/
using json = basic_json<>;
} // namespace nlohmann
#endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
namespace nlohmann
{
/*!
@brief detail namespace with internal helper functions
This namespace collects functions that should not be exposed,
implementations of some @ref basic_json methods, and meta-programming helpers.
@since version 2.1.0
*/
namespace detail
{
/////////////
// helpers //
/////////////
// Note to maintainers:
//
// Every trait in this file expects a non CV-qualified type.
// The only exceptions are in the 'aliases for detected' section
// (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
//
// In this case, T has to be properly CV-qualified to constraint the function arguments
// (e.g. to_json(BasicJsonType&, const T&))
template<typename> struct is_basic_json : std::false_type {};
NLOHMANN_BASIC_JSON_TPL_DECLARATION
struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
//////////////////////////
// aliases for detected //
//////////////////////////
template <typename T>
using mapped_type_t = typename T::mapped_type;
template <typename T>
using key_type_t = typename T::key_type;
template <typename T>
using value_type_t = typename T::value_type;
template <typename T>
using difference_type_t = typename T::difference_type;
template <typename T>
using pointer_t = typename T::pointer;
template <typename T>
using reference_t = typename T::reference;
template <typename T>
using iterator_category_t = typename T::iterator_category;
template <typename T>
using iterator_t = typename T::iterator;
template <typename T, typename... Args>
using to_json_function = decltype(T::to_json(std::declval<Args>()...));
template <typename T, typename... Args>
using from_json_function = decltype(T::from_json(std::declval<Args>()...));
template <typename T, typename U>
using get_template_function = decltype(std::declval<T>().template get<U>());
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template <typename BasicJsonType, typename T, typename = void>
struct has_from_json : std::false_type {};
template <typename BasicJsonType, typename T>
struct has_from_json<BasicJsonType, T,
enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<void, from_json_function, serializer,
const BasicJsonType&, T&>::value;
};
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template <typename BasicJsonType, typename T, typename = void>
struct has_non_default_from_json : std::false_type {};
template<typename BasicJsonType, typename T>
struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<T, from_json_function, serializer,
const BasicJsonType&>::value;
};
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
// Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
template <typename BasicJsonType, typename T, typename = void>
struct has_to_json : std::false_type {};
template <typename BasicJsonType, typename T>
struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
T>::value;
};
///////////////////
// is_ functions //
///////////////////
template <typename T, typename = void>
struct is_iterator_traits : std::false_type {};
template <typename T>
struct is_iterator_traits<iterator_traits<T>>
{
private:
using traits = iterator_traits<T>;
public:
static constexpr auto value =
is_detected<value_type_t, traits>::value &&
is_detected<difference_type_t, traits>::value &&
is_detected<pointer_t, traits>::value &&
is_detected<iterator_category_t, traits>::value &&
is_detected<reference_t, traits>::value;
};
// source: https://stackoverflow.com/a/37193089/4116453
template <typename T, typename = void>
struct is_complete_type : std::false_type {};
template <typename T>
struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
template <typename BasicJsonType, typename CompatibleObjectType,
typename = void>
struct is_compatible_object_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleObjectType>
struct is_compatible_object_type_impl <
BasicJsonType, CompatibleObjectType,
enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and
is_detected<key_type_t, CompatibleObjectType>::value >>
{
using object_t = typename BasicJsonType::object_t;
// macOS's is_constructible does not play well with nonesuch...
static constexpr bool value =
std::is_constructible<typename object_t::key_type,
typename CompatibleObjectType::key_type>::value and
std::is_constructible<typename object_t::mapped_type,
typename CompatibleObjectType::mapped_type>::value;
};
template <typename BasicJsonType, typename CompatibleObjectType>
struct is_compatible_object_type
: is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
template <typename BasicJsonType, typename ConstructibleObjectType,
typename = void>
struct is_constructible_object_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleObjectType>
struct is_constructible_object_type_impl <
BasicJsonType, ConstructibleObjectType,
enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and
is_detected<key_type_t, ConstructibleObjectType>::value >>
{
using object_t = typename BasicJsonType::object_t;
static constexpr bool value =
(std::is_constructible<typename ConstructibleObjectType::key_type, typename object_t::key_type>::value and
std::is_same<typename object_t::mapped_type, typename ConstructibleObjectType::mapped_type>::value) or
(has_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type>::value or
has_non_default_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type >::value);
};
template <typename BasicJsonType, typename ConstructibleObjectType>
struct is_constructible_object_type
: is_constructible_object_type_impl<BasicJsonType,
ConstructibleObjectType> {};
template <typename BasicJsonType, typename CompatibleStringType,
typename = void>
struct is_compatible_string_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleStringType>
struct is_compatible_string_type_impl <
BasicJsonType, CompatibleStringType,
enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
value_type_t, CompatibleStringType>::value >>
{
static constexpr auto value =
std::is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_compatible_string_type
: is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
template <typename BasicJsonType, typename ConstructibleStringType,
typename = void>
struct is_constructible_string_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_constructible_string_type_impl <
BasicJsonType, ConstructibleStringType,
enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
value_type_t, ConstructibleStringType>::value >>
{
static constexpr auto value =
std::is_constructible<ConstructibleStringType,
typename BasicJsonType::string_t>::value;
};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_constructible_string_type
: is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
template <typename BasicJsonType, typename CompatibleArrayType, typename = void>
struct is_compatible_array_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleArrayType>
struct is_compatible_array_type_impl <
BasicJsonType, CompatibleArrayType,
enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and
is_detected<iterator_t, CompatibleArrayType>::value and
// This is needed because json_reverse_iterator has a ::iterator type...
// Therefore it is detected as a CompatibleArrayType.
// The real fix would be to have an Iterable concept.
not is_iterator_traits<
iterator_traits<CompatibleArrayType>>::value >>
{
static constexpr bool value =
std::is_constructible<BasicJsonType,
typename CompatibleArrayType::value_type>::value;
};
template <typename BasicJsonType, typename CompatibleArrayType>
struct is_compatible_array_type
: is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
template <typename BasicJsonType, typename ConstructibleArrayType, typename = void>
struct is_constructible_array_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type_impl <
BasicJsonType, ConstructibleArrayType,
enable_if_t<std::is_same<ConstructibleArrayType,
typename BasicJsonType::value_type>::value >>
: std::true_type {};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type_impl <
BasicJsonType, ConstructibleArrayType,
enable_if_t<not std::is_same<ConstructibleArrayType,
typename BasicJsonType::value_type>::value and
is_detected<value_type_t, ConstructibleArrayType>::value and
is_detected<iterator_t, ConstructibleArrayType>::value and
is_complete_type<
detected_t<value_type_t, ConstructibleArrayType>>::value >>
{
static constexpr bool value =
// This is needed because json_reverse_iterator has a ::iterator type,
// furthermore, std::back_insert_iterator (and other iterators) have a base class `iterator`...
// Therefore it is detected as a ConstructibleArrayType.
// The real fix would be to have an Iterable concept.
not is_iterator_traits <
iterator_traits<ConstructibleArrayType >>::value and
(std::is_same<typename ConstructibleArrayType::value_type, typename BasicJsonType::array_t::value_type>::value or
has_from_json<BasicJsonType,
typename ConstructibleArrayType::value_type>::value or
has_non_default_from_json <
BasicJsonType, typename ConstructibleArrayType::value_type >::value);
};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type
: is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
template <typename RealIntegerType, typename CompatibleNumberIntegerType,
typename = void>
struct is_compatible_integer_type_impl : std::false_type {};
template <typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type_impl <
RealIntegerType, CompatibleNumberIntegerType,
enable_if_t<std::is_integral<RealIntegerType>::value and
std::is_integral<CompatibleNumberIntegerType>::value and
not std::is_same<bool, CompatibleNumberIntegerType>::value >>
{
// is there an assert somewhere on overflows?
using RealLimits = std::numeric_limits<RealIntegerType>;
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
static constexpr auto value =
std::is_constructible<RealIntegerType,
CompatibleNumberIntegerType>::value and
CompatibleLimits::is_integer and
RealLimits::is_signed == CompatibleLimits::is_signed;
};
template <typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type
: is_compatible_integer_type_impl<RealIntegerType,
CompatibleNumberIntegerType> {};
template <typename BasicJsonType, typename CompatibleType, typename = void>
struct is_compatible_type_impl: std::false_type {};
template <typename BasicJsonType, typename CompatibleType>
struct is_compatible_type_impl <
BasicJsonType, CompatibleType,
enable_if_t<is_complete_type<CompatibleType>::value >>
{
static constexpr bool value =
has_to_json<BasicJsonType, CompatibleType>::value;
};
template <typename BasicJsonType, typename CompatibleType>
struct is_compatible_type
: is_compatible_type_impl<BasicJsonType, CompatibleType> {};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/value_t.hpp>
#include <array> // array
#include <ciso646> // and
#include <cstddef> // size_t
#include <cstdint> // uint8_t
#include <string> // string
namespace nlohmann
{
namespace detail
{
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used to
distinguish the stored values, and the functions @ref basic_json::is_null(),
@ref basic_json::is_object(), @ref basic_json::is_array(),
@ref basic_json::is_string(), @ref basic_json::is_boolean(),
@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
@ref basic_json::is_structured() rely on it.
@note There are three enumeration entries (number_integer, number_unsigned, and
number_float), because the library distinguishes these three types for numbers:
@ref basic_json::number_unsigned_t is used for unsigned integers,
@ref basic_json::number_integer_t is used for signed integers, and
@ref basic_json::number_float_t is used for floating-point numbers or to
approximate integers which do not fit in the limits of their respective type.
@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
value with the default value for a given type
@since version 1.0.0
*/
enum class value_t : std::uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
- discarded values are not comparable
@since version 1.0.0
*/
inline bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<std::uint8_t, 8> order = {{
0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */
}
};
const auto l_index = static_cast<std::size_t>(lhs);
const auto r_index = static_cast<std::size_t>(rhs);
return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index];
}
} // namespace detail
} // namespace nlohmann
namespace nlohmann
{
namespace detail
{
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
{
if (JSON_UNLIKELY(not j.is_null()))
{
JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name())));
}
n = nullptr;
}
// overloads for basic_json template parameters
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t<std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (JSON_UNLIKELY(not j.is_boolean()))
{
JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (JSON_UNLIKELY(not j.is_string()))
{
JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template <
typename BasicJsonType, typename ConstructibleStringType,
enable_if_t <
is_constructible_string_type<BasicJsonType, ConstructibleStringType>::value and
not std::is_same<typename BasicJsonType::string_t,
ConstructibleStringType>::value,
int > = 0 >
void from_json(const BasicJsonType& j, ConstructibleStringType& s)
{
if (JSON_UNLIKELY(not j.is_string()))
{
JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void from_json(const BasicJsonType& j, EnumType& e)
{
typename std::underlying_type<EnumType>::type val;
get_arithmetic_value(j, val);
e = static_cast<EnumType>(val);
}
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
std::transform(j.rbegin(), j.rend(),
std::front_inserter(l), [](const BasicJsonType & i)
{
return i.template get<T>();
});
}
// valarray doesn't have an insert method
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::valarray<T>& l)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
l.resize(j.size());
std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l));
}
template<typename BasicJsonType>
void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
{
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
template <typename BasicJsonType, typename T, std::size_t N>
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
priority_tag<2> /*unused*/)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType, typename ConstructibleArrayType>
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
-> decltype(
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
using std::end;
arr.reserve(j.size());
std::transform(j.begin(), j.end(),
std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
}
template <typename BasicJsonType, typename ConstructibleArrayType>
void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
priority_tag<0> /*unused*/)
{
using std::end;
std::transform(
j.begin(), j.end(), std::inserter(arr, end(arr)),
[](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
}
template <typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t <
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value and
not is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value and
not is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value and
not is_basic_json<ConstructibleArrayType>::value,
int > = 0 >
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " +
std::string(j.type_name())));
}
from_json_array_impl(j, arr, priority_tag<3> {});
}
template<typename BasicJsonType, typename ConstructibleObjectType,
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
{
if (JSON_UNLIKELY(not j.is_object()))
{
JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
}
auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using value_type = typename ConstructibleObjectType::value_type;
std::transform(
inner_object->begin(), inner_object->end(),
std::inserter(obj, obj.begin()),
[](typename BasicJsonType::object_t::value_type const & p)
{
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
});
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType, typename A1, typename A2>
void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
{
p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/)
{
t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
}
template<typename BasicJsonType, typename... Args>
void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
{
from_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
typename = enable_if_t<not std::is_constructible<
typename BasicJsonType::string_t, Key>::value>>
void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
for (const auto& p : j)
{
if (JSON_UNLIKELY(not p.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
typename = enable_if_t<not std::is_constructible<
typename BasicJsonType::string_t, Key>::value>>
void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
for (const auto& p : j)
{
if (JSON_UNLIKELY(not p.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
struct from_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(const BasicJsonType& j, T& val) const
noexcept(noexcept(from_json(j, val)))
-> decltype(from_json(j, val), void())
{
return from_json(j, val);
}
};
} // namespace detail
/// namespace to hold default `from_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace
{
constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
} // namespace
} // namespace nlohmann
// #include <nlohmann/detail/conversions/to_json.hpp>
#include <algorithm> // copy
#include <ciso646> // or, and, not
#include <iterator> // begin, end
#include <string> // string
#include <tuple> // tuple, get
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
#include <utility> // move, forward, declval, pair
#include <valarray> // valarray
#include <vector> // vector
// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
#include <cstddef> // size_t
#include <iterator> // input_iterator_tag
#include <string> // string, to_string
#include <tuple> // tuple_size, get, tuple_element
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
template <typename IteratorType> class iteration_proxy_value
{
public:
using difference_type = std::ptrdiff_t;
using value_type = iteration_proxy_value;
using pointer = value_type * ;
using reference = value_type & ;
using iterator_category = std::input_iterator_tag;
private:
/// the iterator
IteratorType anchor;
/// an index for arrays (used to create key names)
std::size_t array_index = 0;
/// last stringified array index
mutable std::size_t array_index_last = 0;
/// a string representation of the array index
mutable std::string array_index_str = "0";
/// an empty string (to return a reference for primitive values)
const std::string empty_str = "";
public:
explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {}
/// dereference operator (needed for range-based for)
iteration_proxy_value& operator*()
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_value& operator++()
{
++anchor;
++array_index;
return *this;
}
/// equality operator (needed for InputIterator)
bool operator==(const iteration_proxy_value& o) const
{
return anchor == o.anchor;
}
/// inequality operator (needed for range-based for)
bool operator!=(const iteration_proxy_value& o) const
{
return anchor != o.anchor;
}
/// return key of the iterator
const std::string& key() const
{
assert(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
{
if (array_index != array_index_last)
{
array_index_str = std::to_string(array_index);
array_index_last = array_index;
}
return array_index_str;
}
// use key from the object
case value_t::object:
return anchor.key();
// use an empty key for all primitive types
default:
return empty_str;
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// proxy class for the items() function
template<typename IteratorType> class iteration_proxy
{
private:
/// the container to iterate
typename IteratorType::reference container;
public:
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont) noexcept
: container(cont) {}
/// return iterator begin (needed for range-based for)
iteration_proxy_value<IteratorType> begin() noexcept
{
return iteration_proxy_value<IteratorType>(container.begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_value<IteratorType> end() noexcept
{
return iteration_proxy_value<IteratorType>(container.end());
}
};
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
{
return i.key();
}
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
{
return i.value();
}
} // namespace detail
} // namespace nlohmann
// The Addition to the STD Namespace is required to add
// Structured Bindings Support to the iteration_proxy_value class
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
namespace std
{
#if defined(__clang__)
// Fix: https://github.com/nlohmann/json/issues/1401
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
template <typename IteratorType>
class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>>
: public std::integral_constant<std::size_t, 2> {};
template <std::size_t N, typename IteratorType>
class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >>
{
public:
using type = decltype(
get<N>(std::declval <
::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} // namespace std
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
//////////////////
// constructors //
//////////////////
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_type = value_t::boolean;
j.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_type = value_t::string;
j.m_value = s;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
j.m_type = value_t::string;
j.m_value = std::move(s);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleStringType,
enable_if_t<not std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleStringType& str)
{
j.m_type = value_t::string;
j.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
j.m_type = value_t::number_float;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_type = value_t::number_unsigned;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_type = value_t::number_integer;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_type = value_t::array;
j.m_value = arr;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
j.m_type = value_t::array;
j.m_value = std::move(arr);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_type = value_t::array;
j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->reserve(arr.size());
for (const bool x : arr)
{
j.m_value.array->push_back(x);
}
j.assert_invariant();
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->resize(arr.size());
std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_type = value_t::object;
j.m_value = obj;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
j.m_type = value_t::object;
j.m_value = std::move(obj);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0>
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_type = value_t::object;
j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.assert_invariant();
}
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
void to_json(BasicJsonType& j, T b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
external_constructor<value_t::string>::construct(j, std::move(s));
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void to_json(BasicJsonType& j, EnumType e) noexcept
{
using underlying_type = typename std::underlying_type<EnumType>::type;
external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, const std::vector<bool>& e)
{
external_constructor<value_t::array>::construct(j, e);
}
template <typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<is_compatible_array_type<BasicJsonType,
CompatibleArrayType>::value and
not is_compatible_object_type<
BasicJsonType, CompatibleArrayType>::value and
not is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value and
not is_basic_json<CompatibleArrayType>::value,
int> = 0>
void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
void to_json(BasicJsonType& j, const std::valarray<T>& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value and not is_basic_json<CompatibleObjectType>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
{
external_constructor<value_t::object>::construct(j, obj);
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
external_constructor<value_t::object>::construct(j, std::move(obj));
}
template <
typename BasicJsonType, typename T, std::size_t N,
enable_if_t<not std::is_constructible<typename BasicJsonType::string_t,
const T(&)[N]>::value,
int> = 0 >
void to_json(BasicJsonType& j, const T(&arr)[N])
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::pair<Args...>& p)
{
j = { p.first, p.second };
}
// for https://github.com/nlohmann/json/pull/1134
template < typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
void to_json(BasicJsonType& j, const T& b)
{
j = { {b.key(), b.value()} };
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
{
j = { std::get<Idx>(t)... };
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::tuple<Args...>& t)
{
to_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
struct to_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
};
} // namespace detail
/// namespace to hold default `to_json` function
namespace
{
constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
} // namespace
} // namespace nlohmann
namespace nlohmann
{
template<typename, typename>
struct adl_serializer
{
/*!
@brief convert a JSON value to any value type
This function is usually called by the `get()` function of the
@ref basic_json class (either explicit or via conversion operators).
@param[in] j JSON value to read from
@param[in,out] val value to write to
*/
template<typename BasicJsonType, typename ValueType>
static auto from_json(BasicJsonType&& j, ValueType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/*!
@brief convert any value type to a JSON value
This function is usually called by the constructors of the @ref basic_json
class.
@param[in,out] j JSON value to write to
@param[in] val value to read from
*/
template <typename BasicJsonType, typename ValueType>
static auto to_json(BasicJsonType& j, ValueType&& val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
-> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void())
{
::nlohmann::to_json(j, std::forward<ValueType>(val));
}
};
} // namespace nlohmann
// #include <nlohmann/detail/conversions/from_json.hpp>
// #include <nlohmann/detail/conversions/to_json.hpp>
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/input/binary_reader.hpp>
#include <algorithm> // generate_n
#include <array> // array
#include <cassert> // assert
#include <cmath> // ldexp
#include <cstddef> // size_t
#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
#include <cstdio> // snprintf
#include <cstring> // memcpy
#include <iterator> // back_inserter
#include <limits> // numeric_limits
#include <string> // char_traits, string
#include <utility> // make_pair, move
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/input/input_adapters.hpp>
#include <array> // array
#include <cassert> // assert
#include <cstddef> // size_t
#include <cstdio> //FILE *
#include <cstring> // strlen
#include <istream> // istream
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
#include <memory> // shared_ptr, make_shared, addressof
#include <numeric> // accumulate
#include <string> // string, char_traits
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
#include <utility> // pair, declval
// #include <nlohmann/detail/iterators/iterator_traits.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
namespace detail
{
/// the supported input formats
enum class input_format_t { json, cbor, msgpack, ubjson, bson };
////////////////////
// input adapters //
////////////////////
/*!
@brief abstract input adapter interface
Produces a stream of std::char_traits<char>::int_type characters from a
std::istream, a buffer, or some other input type. Accepts the return of
exactly one non-EOF character for future input. The int_type characters
returned consist of all valid char values as positive values (typically
unsigned char), plus an EOF value outside that range, specified by the value
of the function std::char_traits<char>::eof(). This value is typically -1, but
could be any arbitrary value which is not a valid char value.
*/
struct input_adapter_protocol
{
/// get a character [0,255] or std::char_traits<char>::eof().
virtual std::char_traits<char>::int_type get_character() = 0;
virtual ~input_adapter_protocol() = default;
};
/// a type to simplify interfaces
using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
/*!
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
buffer. This adapter is a very low level adapter.
*/
class file_input_adapter : public input_adapter_protocol
{
public:
explicit file_input_adapter(std::FILE* f) noexcept
: m_file(f)
{}
// make class move-only
file_input_adapter(const file_input_adapter&) = delete;
file_input_adapter(file_input_adapter&&) = default;
file_input_adapter& operator=(const file_input_adapter&) = delete;
file_input_adapter& operator=(file_input_adapter&&) = default;
~file_input_adapter() override = default;
std::char_traits<char>::int_type get_character() noexcept override
{
return std::fgetc(m_file);
}
private:
/// the file pointer to read from
std::FILE* m_file;
};
/*!
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
beginning of input. Does not support changing the underlying std::streambuf
in mid-input. Maintains underlying std::istream and std::streambuf to support
subsequent use of standard std::istream operations to process any input
characters following those used in parsing the JSON input. Clears the
std::istream flags; any input errors (e.g., EOF) will be detected by the first
subsequent call for input from the std::istream.
*/
class input_stream_adapter : public input_adapter_protocol
{
public:
~input_stream_adapter() override
{
// clear stream flags; we use underlying streambuf I/O, do not
// maintain ifstream flags, except eof
is.clear(is.rdstate() & std::ios::eofbit);
}
explicit input_stream_adapter(std::istream& i)
: is(i), sb(*i.rdbuf())
{}
// delete because of pointer members
input_stream_adapter(const input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&) = delete;
input_stream_adapter(input_stream_adapter&&) = delete;
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
// end up as the same value, eg. 0xFFFFFFFF.
std::char_traits<char>::int_type get_character() override
{
auto res = sb.sbumpc();
// set eof manually, as we don't use the istream interface.
if (res == EOF)
{
is.clear(is.rdstate() | std::ios::eofbit);
}
return res;
}
private:
/// the associated input stream
std::istream& is;
std::streambuf& sb;
};
/// input adapter for buffer input
class input_buffer_adapter : public input_adapter_protocol
{
public:
input_buffer_adapter(const char* b, const std::size_t l) noexcept
: cursor(b), limit(b + l)
{}
// delete because of pointer members
input_buffer_adapter(const input_buffer_adapter&) = delete;
input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
input_buffer_adapter(input_buffer_adapter&&) = delete;
input_buffer_adapter& operator=(input_buffer_adapter&&) = delete;
~input_buffer_adapter() override = default;
std::char_traits<char>::int_type get_character() noexcept override
{
if (JSON_LIKELY(cursor < limit))
{
return std::char_traits<char>::to_int_type(*(cursor++));
}
return std::char_traits<char>::eof();
}
private:
/// pointer to the current character
const char* cursor;
/// pointer past the last character
const char* const limit;
};
template<typename WideStringType, size_t T>
struct wide_string_input_helper
{
// UTF-32
static void fill_buffer(const WideStringType& str,
size_t& current_wchar,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (current_wchar == str.size())
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = static_cast<unsigned int>(str[current_wchar++]);
// UTF-32 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u) & 0x1Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (wc <= 0xFFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u) & 0x0Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 3;
}
else if (wc <= 0x10FFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((wc >> 18u) & 0x07u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
};
template<typename WideStringType>
struct wide_string_input_helper<WideStringType, 2>
{
// UTF-16
static void fill_buffer(const WideStringType& str,
size_t& current_wchar,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (current_wchar == str.size())
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = static_cast<unsigned int>(str[current_wchar++]);
// UTF-16 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (0xD800 > wc or wc >= 0xE000)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 3;
}
else
{
if (current_wchar < str.size())
{
const auto wc2 = static_cast<unsigned int>(str[current_wchar++]);
const auto charcode = 0x10000u + (((wc & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
++current_wchar;
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
}
};
template<typename WideStringType>
class wide_string_input_adapter : public input_adapter_protocol
{
public:
explicit wide_string_input_adapter(const WideStringType& w) noexcept
: str(w)
{}
std::char_traits<char>::int_type get_character() noexcept override
{
// check if buffer needs to be filled
if (utf8_bytes_index == utf8_bytes_filled)
{
fill_buffer<sizeof(typename WideStringType::value_type)>();
assert(utf8_bytes_filled > 0);
assert(utf8_bytes_index == 0);
}
// use buffer
assert(utf8_bytes_filled > 0);
assert(utf8_bytes_index < utf8_bytes_filled);
return utf8_bytes[utf8_bytes_index++];
}
private:
template<size_t T>
void fill_buffer()
{
wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
}
/// the wstring to process
const WideStringType& str;
/// index of the current wchar in str
std::size_t current_wchar = 0;
/// a buffer for UTF-8 bytes
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
/// index to the utf8_codes array for the next valid byte
std::size_t utf8_bytes_index = 0;
/// number of valid bytes in the utf8_codes array
std::size_t utf8_bytes_filled = 0;
};
class input_adapter
{
public:
// native support
input_adapter(std::FILE* file)
: ia(std::make_shared<file_input_adapter>(file)) {}
/// input adapter for input stream
input_adapter(std::istream& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
/// input adapter for input stream
input_adapter(std::istream&& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
input_adapter(const std::wstring& ws)
: ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
input_adapter(const std::u16string& ws)
: ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
input_adapter(const std::u32string& ws)
: ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
/// input adapter for buffer
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b, std::size_t l)
: ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
// derived support
/// input adapter for string literal
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b)
: input_adapter(reinterpret_cast<const char*>(b),
std::strlen(reinterpret_cast<const char*>(b))) {}
/// input adapter for iterator range with contiguous storage
template<class IteratorType,
typename std::enable_if<
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
int>::type = 0>
input_adapter(IteratorType first, IteratorType last)
{
#ifndef NDEBUG
// assertion to check that the iterator range is indeed contiguous,
// see http://stackoverflow.com/a/35008842/266378 for more discussion
const auto is_contiguous = std::accumulate(
first, last, std::pair<bool, int>(true, 0),
[&first](std::pair<bool, int> res, decltype(*first) val)