blob: c9cbed8f401796133e83e8a680e93898ac025b05 [file] [log] [blame]
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package udp
import (
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/iptables"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// +stateify savable
type udpPacket struct {
udpPacketEntry
senderAddress tcpip.FullAddress
data buffer.VectorisedView `state:".(buffer.VectorisedView)"`
timestamp int64
tos uint8
}
// EndpointState represents the state of a UDP endpoint.
type EndpointState uint32
// Endpoint states. Note that are represented in a netstack-specific manner and
// may not be meaningful externally. Specifically, they need to be translated to
// Linux's representation for these states if presented to userspace.
const (
StateInitial EndpointState = iota
StateBound
StateConnected
StateClosed
)
// String implements fmt.Stringer.String.
func (s EndpointState) String() string {
switch s {
case StateInitial:
return "INITIAL"
case StateBound:
return "BOUND"
case StateConnected:
return "CONNECTING"
case StateClosed:
return "CLOSED"
default:
return "UNKNOWN"
}
}
// endpoint represents a UDP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized.
//
// It implements tcpip.Endpoint.
//
// +stateify savable
type endpoint struct {
stack.TransportEndpointInfo
// The following fields are initialized at creation time and do not
// change throughout the lifetime of the endpoint.
stack *stack.Stack `state:"manual"`
waiterQueue *waiter.Queue
uniqueID uint64
// The following fields are used to manage the receive queue, and are
// protected by rcvMu.
rcvMu sync.Mutex `state:"nosave"`
rcvReady bool
rcvList udpPacketList
rcvBufSizeMax int `state:".(int)"`
rcvBufSize int
rcvClosed bool
// The following fields are protected by the mu mutex.
mu sync.RWMutex `state:"nosave"`
sndBufSize int
state EndpointState
route stack.Route `state:"manual"`
dstPort uint16
v6only bool
ttl uint8
multicastTTL uint8
multicastAddr tcpip.Address
multicastNICID tcpip.NICID
multicastLoop bool
reusePort bool
bindToDevice tcpip.NICID
broadcast bool
// Values used to reserve a port or register a transport endpoint.
// (which ever happens first).
boundBindToDevice tcpip.NICID
boundPortFlags ports.Flags
// sendTOS represents IPv4 TOS or IPv6 TrafficClass,
// applied while sending packets. Defaults to 0 as on Linux.
sendTOS uint8
// receiveTOS determines if the incoming IPv4 TOS header field is passed
// as ancillary data to ControlMessages on Read.
receiveTOS bool
// shutdownFlags represent the current shutdown state of the endpoint.
shutdownFlags tcpip.ShutdownFlags
// multicastMemberships that need to be remvoed when the endpoint is
// closed. Protected by the mu mutex.
multicastMemberships []multicastMembership
// effectiveNetProtos contains the network protocols actually in use. In
// most cases it will only contain "netProto", but in cases like IPv6
// endpoints with v6only set to false, this could include multiple
// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
// address).
effectiveNetProtos []tcpip.NetworkProtocolNumber
// TODO(b/142022063): Add ability to save and restore per endpoint stats.
stats tcpip.TransportEndpointStats `state:"nosave"`
}
// +stateify savable
type multicastMembership struct {
nicID tcpip.NICID
multicastAddr tcpip.Address
}
func newEndpoint(s *stack.Stack, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
return &endpoint{
stack: s,
TransportEndpointInfo: stack.TransportEndpointInfo{
NetProto: netProto,
TransProto: header.UDPProtocolNumber,
},
waiterQueue: waiterQueue,
// RFC 1075 section 5.4 recommends a TTL of 1 for membership
// requests.
//
// RFC 5135 4.2.1 appears to assume that IGMP messages have a
// TTL of 1.
//
// RFC 5135 Appendix A defines TTL=1: A multicast source that
// wants its traffic to not traverse a router (e.g., leave a
// home network) may find it useful to send traffic with IP
// TTL=1.
//
// Linux defaults to TTL=1.
multicastTTL: 1,
multicastLoop: true,
rcvBufSizeMax: 32 * 1024,
sndBufSize: 32 * 1024,
state: StateInitial,
uniqueID: s.UniqueID(),
}
}
// UniqueID implements stack.TransportEndpoint.UniqueID.
func (e *endpoint) UniqueID() uint64 {
return e.uniqueID
}
// Close puts the endpoint in a closed state and frees all resources
// associated with it.
func (e *endpoint) Close() {
e.mu.Lock()
e.shutdownFlags = tcpip.ShutdownRead | tcpip.ShutdownWrite
switch e.state {
case StateBound, StateConnected:
e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.ID.LocalAddress, e.ID.LocalPort, e.boundPortFlags, e.boundBindToDevice)
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
}
for _, mem := range e.multicastMemberships {
e.stack.LeaveGroup(e.NetProto, mem.nicID, mem.multicastAddr)
}
e.multicastMemberships = nil
// Close the receive list and drain it.
e.rcvMu.Lock()
e.rcvClosed = true
e.rcvBufSize = 0
for !e.rcvList.Empty() {
p := e.rcvList.Front()
e.rcvList.Remove(p)
}
e.rcvMu.Unlock()
e.route.Release()
// Update the state.
e.state = StateClosed
e.mu.Unlock()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}
// ModerateRecvBuf implements tcpip.Endpoint.ModerateRecvBuf.
func (e *endpoint) ModerateRecvBuf(copied int) {}
// IPTables implements tcpip.Endpoint.IPTables.
func (e *endpoint) IPTables() (iptables.IPTables, error) {
return e.stack.IPTables(), nil
}
// Read reads data from the endpoint. This method does not block if
// there is no data pending.
func (e *endpoint) Read(addr *tcpip.FullAddress) (buffer.View, tcpip.ControlMessages, *tcpip.Error) {
e.rcvMu.Lock()
if e.rcvList.Empty() {
err := tcpip.ErrWouldBlock
if e.rcvClosed {
e.stats.ReadErrors.ReadClosed.Increment()
err = tcpip.ErrClosedForReceive
}
e.rcvMu.Unlock()
return buffer.View{}, tcpip.ControlMessages{}, err
}
p := e.rcvList.Front()
e.rcvList.Remove(p)
e.rcvBufSize -= p.data.Size()
e.rcvMu.Unlock()
if addr != nil {
*addr = p.senderAddress
}
cm := tcpip.ControlMessages{
HasTimestamp: true,
Timestamp: p.timestamp,
}
e.mu.RLock()
receiveTOS := e.receiveTOS
e.mu.RUnlock()
if receiveTOS {
cm.HasTOS = true
cm.TOS = p.tos
}
return p.data.ToView(), cm, nil
}
// prepareForWrite prepares the endpoint for sending data. In particular, it
// binds it if it's still in the initial state. To do so, it must first
// reacquire the mutex in exclusive mode.
//
// Returns true for retry if preparation should be retried.
func (e *endpoint) prepareForWrite(to *tcpip.FullAddress) (retry bool, err *tcpip.Error) {
switch e.state {
case StateInitial:
case StateConnected:
return false, nil
case StateBound:
if to == nil {
return false, tcpip.ErrDestinationRequired
}
return false, nil
default:
return false, tcpip.ErrInvalidEndpointState
}
e.mu.RUnlock()
defer e.mu.RLock()
e.mu.Lock()
defer e.mu.Unlock()
// The state changed when we released the shared locked and re-acquired
// it in exclusive mode. Try again.
if e.state != StateInitial {
return true, nil
}
// The state is still 'initial', so try to bind the endpoint.
if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
return false, err
}
return true, nil
}
// connectRoute establishes a route to the specified interface or the
// configured multicast interface if no interface is specified and the
// specified address is a multicast address.
func (e *endpoint) connectRoute(nicID tcpip.NICID, addr tcpip.FullAddress, netProto tcpip.NetworkProtocolNumber) (stack.Route, tcpip.NICID, *tcpip.Error) {
localAddr := e.ID.LocalAddress
if isBroadcastOrMulticast(localAddr) {
// A packet can only originate from a unicast address (i.e., an interface).
localAddr = ""
}
if header.IsV4MulticastAddress(addr.Addr) || header.IsV6MulticastAddress(addr.Addr) {
if nicID == 0 {
nicID = e.multicastNICID
}
if localAddr == "" && nicID == 0 {
localAddr = e.multicastAddr
}
}
// Find a route to the desired destination.
r, err := e.stack.FindRoute(nicID, localAddr, addr.Addr, netProto, e.multicastLoop)
if err != nil {
return stack.Route{}, 0, err
}
return r, nicID, nil
}
// Write writes data to the endpoint's peer. This method does not block
// if the data cannot be written.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) {
n, ch, err := e.write(p, opts)
switch err {
case nil:
e.stats.PacketsSent.Increment()
case tcpip.ErrMessageTooLong, tcpip.ErrInvalidOptionValue:
e.stats.WriteErrors.InvalidArgs.Increment()
case tcpip.ErrClosedForSend:
e.stats.WriteErrors.WriteClosed.Increment()
case tcpip.ErrInvalidEndpointState:
e.stats.WriteErrors.InvalidEndpointState.Increment()
case tcpip.ErrNoLinkAddress:
e.stats.SendErrors.NoLinkAddr.Increment()
case tcpip.ErrNoRoute, tcpip.ErrBroadcastDisabled, tcpip.ErrNetworkUnreachable:
// Errors indicating any problem with IP routing of the packet.
e.stats.SendErrors.NoRoute.Increment()
default:
// For all other errors when writing to the network layer.
e.stats.SendErrors.SendToNetworkFailed.Increment()
}
return n, ch, err
}
func (e *endpoint) write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) {
// MSG_MORE is unimplemented. (This also means that MSG_EOR is a no-op.)
if opts.More {
return 0, nil, tcpip.ErrInvalidOptionValue
}
to := opts.To
e.mu.RLock()
defer e.mu.RUnlock()
// If we've shutdown with SHUT_WR we are in an invalid state for sending.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 {
return 0, nil, tcpip.ErrClosedForSend
}
// Prepare for write.
for {
retry, err := e.prepareForWrite(to)
if err != nil {
return 0, nil, err
}
if !retry {
break
}
}
var route *stack.Route
var dstPort uint16
if to == nil {
route = &e.route
dstPort = e.dstPort
if route.IsResolutionRequired() {
// Promote lock to exclusive if using a shared route, given that it may need to
// change in Route.Resolve() call below.
e.mu.RUnlock()
defer e.mu.RLock()
e.mu.Lock()
defer e.mu.Unlock()
// Recheck state after lock was re-acquired.
if e.state != StateConnected {
return 0, nil, tcpip.ErrInvalidEndpointState
}
}
} else {
// Reject destination address if it goes through a different
// NIC than the endpoint was bound to.
nicID := to.NIC
if e.BindNICID != 0 {
if nicID != 0 && nicID != e.BindNICID {
return 0, nil, tcpip.ErrNoRoute
}
nicID = e.BindNICID
}
if to.Addr == header.IPv4Broadcast && !e.broadcast {
return 0, nil, tcpip.ErrBroadcastDisabled
}
netProto, err := e.checkV4Mapped(to)
if err != nil {
return 0, nil, err
}
r, _, err := e.connectRoute(nicID, *to, netProto)
if err != nil {
return 0, nil, err
}
defer r.Release()
route = &r
dstPort = to.Port
}
if route.IsResolutionRequired() {
if ch, err := route.Resolve(nil); err != nil {
if err == tcpip.ErrWouldBlock {
return 0, ch, tcpip.ErrNoLinkAddress
}
return 0, nil, err
}
}
v, err := p.FullPayload()
if err != nil {
return 0, nil, err
}
if len(v) > header.UDPMaximumPacketSize {
// Payload can't possibly fit in a packet.
return 0, nil, tcpip.ErrMessageTooLong
}
ttl := e.ttl
useDefaultTTL := ttl == 0
if header.IsV4MulticastAddress(route.RemoteAddress) || header.IsV6MulticastAddress(route.RemoteAddress) {
ttl = e.multicastTTL
// Multicast allows a 0 TTL.
useDefaultTTL = false
}
if err := sendUDP(route, buffer.View(v).ToVectorisedView(), e.ID.LocalPort, dstPort, ttl, useDefaultTTL, e.sendTOS); err != nil {
return 0, nil, err
}
return int64(len(v)), nil, nil
}
// Peek only returns data from a single datagram, so do nothing here.
func (e *endpoint) Peek([][]byte) (int64, tcpip.ControlMessages, *tcpip.Error) {
return 0, tcpip.ControlMessages{}, nil
}
// SetSockOptBool implements tcpip.Endpoint.SetSockOptBool.
func (e *endpoint) SetSockOptBool(opt tcpip.SockOptBool, v bool) *tcpip.Error {
switch opt {
case tcpip.ReceiveTOSOption:
e.mu.Lock()
e.receiveTOS = v
e.mu.Unlock()
return nil
case tcpip.V6OnlyOption:
// We only recognize this option on v6 endpoints.
if e.NetProto != header.IPv6ProtocolNumber {
return tcpip.ErrInvalidEndpointState
}
e.mu.Lock()
defer e.mu.Unlock()
// We only allow this to be set when we're in the initial state.
if e.state != StateInitial {
return tcpip.ErrInvalidEndpointState
}
e.v6only = v
}
return nil
}
// SetSockOptInt implements tcpip.Endpoint.SetSockOptInt.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOptInt, v int) *tcpip.Error {
return nil
}
// SetSockOpt implements tcpip.Endpoint.SetSockOpt.
func (e *endpoint) SetSockOpt(opt interface{}) *tcpip.Error {
switch v := opt.(type) {
case tcpip.TTLOption:
e.mu.Lock()
e.ttl = uint8(v)
e.mu.Unlock()
case tcpip.MulticastTTLOption:
e.mu.Lock()
e.multicastTTL = uint8(v)
e.mu.Unlock()
case tcpip.MulticastInterfaceOption:
e.mu.Lock()
defer e.mu.Unlock()
fa := tcpip.FullAddress{Addr: v.InterfaceAddr}
netProto, err := e.checkV4Mapped(&fa)
if err != nil {
return err
}
nic := v.NIC
addr := fa.Addr
if nic == 0 && addr == "" {
e.multicastAddr = ""
e.multicastNICID = 0
break
}
if nic != 0 {
if !e.stack.CheckNIC(nic) {
return tcpip.ErrBadLocalAddress
}
} else {
nic = e.stack.CheckLocalAddress(0, netProto, addr)
if nic == 0 {
return tcpip.ErrBadLocalAddress
}
}
if e.BindNICID != 0 && e.BindNICID != nic {
return tcpip.ErrInvalidEndpointState
}
e.multicastNICID = nic
e.multicastAddr = addr
case tcpip.AddMembershipOption:
if !header.IsV4MulticastAddress(v.MulticastAddr) && !header.IsV6MulticastAddress(v.MulticastAddr) {
return tcpip.ErrInvalidOptionValue
}
nicID := v.NIC
// The interface address is considered not-set if it is empty or contains
// all-zeros. The former represent the zero-value in golang, the latter the
// same in a setsockopt(IP_ADD_MEMBERSHIP, &ip_mreqn) syscall.
allZeros := header.IPv4Any
if len(v.InterfaceAddr) == 0 || v.InterfaceAddr == allZeros {
if nicID == 0 {
r, err := e.stack.FindRoute(0, "", v.MulticastAddr, header.IPv4ProtocolNumber, false /* multicastLoop */)
if err == nil {
nicID = r.NICID()
r.Release()
}
}
} else {
nicID = e.stack.CheckLocalAddress(nicID, e.NetProto, v.InterfaceAddr)
}
if nicID == 0 {
return tcpip.ErrUnknownDevice
}
memToInsert := multicastMembership{nicID: nicID, multicastAddr: v.MulticastAddr}
e.mu.Lock()
defer e.mu.Unlock()
for _, mem := range e.multicastMemberships {
if mem == memToInsert {
return tcpip.ErrPortInUse
}
}
if err := e.stack.JoinGroup(e.NetProto, nicID, v.MulticastAddr); err != nil {
return err
}
e.multicastMemberships = append(e.multicastMemberships, memToInsert)
case tcpip.RemoveMembershipOption:
if !header.IsV4MulticastAddress(v.MulticastAddr) && !header.IsV6MulticastAddress(v.MulticastAddr) {
return tcpip.ErrInvalidOptionValue
}
nicID := v.NIC
if v.InterfaceAddr == header.IPv4Any {
if nicID == 0 {
r, err := e.stack.FindRoute(0, "", v.MulticastAddr, header.IPv4ProtocolNumber, false /* multicastLoop */)
if err == nil {
nicID = r.NICID()
r.Release()
}
}
} else {
nicID = e.stack.CheckLocalAddress(nicID, e.NetProto, v.InterfaceAddr)
}
if nicID == 0 {
return tcpip.ErrUnknownDevice
}
memToRemove := multicastMembership{nicID: nicID, multicastAddr: v.MulticastAddr}
memToRemoveIndex := -1
e.mu.Lock()
defer e.mu.Unlock()
for i, mem := range e.multicastMemberships {
if mem == memToRemove {
memToRemoveIndex = i
break
}
}
if memToRemoveIndex == -1 {
return tcpip.ErrBadLocalAddress
}
if err := e.stack.LeaveGroup(e.NetProto, nicID, v.MulticastAddr); err != nil {
return err
}
e.multicastMemberships[memToRemoveIndex] = e.multicastMemberships[len(e.multicastMemberships)-1]
e.multicastMemberships = e.multicastMemberships[:len(e.multicastMemberships)-1]
case tcpip.MulticastLoopOption:
e.mu.Lock()
e.multicastLoop = bool(v)
e.mu.Unlock()
case tcpip.ReusePortOption:
e.mu.Lock()
e.reusePort = v != 0
e.mu.Unlock()
case tcpip.BindToDeviceOption:
id := tcpip.NICID(v)
if id != 0 && !e.stack.HasNIC(id) {
return tcpip.ErrUnknownDevice
}
e.mu.Lock()
e.bindToDevice = id
e.mu.Unlock()
return nil
case tcpip.BroadcastOption:
e.mu.Lock()
e.broadcast = v != 0
e.mu.Unlock()
return nil
case tcpip.IPv4TOSOption:
e.mu.Lock()
e.sendTOS = uint8(v)
e.mu.Unlock()
return nil
case tcpip.IPv6TrafficClassOption:
e.mu.Lock()
e.sendTOS = uint8(v)
e.mu.Unlock()
return nil
}
return nil
}
// GetSockOptBool implements tcpip.Endpoint.GetSockOptBool.
func (e *endpoint) GetSockOptBool(opt tcpip.SockOptBool) (bool, *tcpip.Error) {
switch opt {
case tcpip.ReceiveTOSOption:
e.mu.RLock()
v := e.receiveTOS
e.mu.RUnlock()
return v, nil
case tcpip.V6OnlyOption:
// We only recognize this option on v6 endpoints.
if e.NetProto != header.IPv6ProtocolNumber {
return false, tcpip.ErrUnknownProtocolOption
}
e.mu.RLock()
v := e.v6only
e.mu.RUnlock()
return v, nil
}
return false, tcpip.ErrUnknownProtocolOption
}
// GetSockOptInt implements tcpip.Endpoint.GetSockOptInt.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOptInt) (int, *tcpip.Error) {
switch opt {
case tcpip.ReceiveQueueSizeOption:
v := 0
e.rcvMu.Lock()
if !e.rcvList.Empty() {
p := e.rcvList.Front()
v = p.data.Size()
}
e.rcvMu.Unlock()
return v, nil
case tcpip.SendBufferSizeOption:
e.mu.Lock()
v := e.sndBufSize
e.mu.Unlock()
return v, nil
case tcpip.ReceiveBufferSizeOption:
e.rcvMu.Lock()
v := e.rcvBufSizeMax
e.rcvMu.Unlock()
return v, nil
}
return -1, tcpip.ErrUnknownProtocolOption
}
// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt interface{}) *tcpip.Error {
switch o := opt.(type) {
case tcpip.ErrorOption:
return nil
case *tcpip.TTLOption:
e.mu.Lock()
*o = tcpip.TTLOption(e.ttl)
e.mu.Unlock()
return nil
case *tcpip.MulticastTTLOption:
e.mu.Lock()
*o = tcpip.MulticastTTLOption(e.multicastTTL)
e.mu.Unlock()
return nil
case *tcpip.MulticastInterfaceOption:
e.mu.Lock()
*o = tcpip.MulticastInterfaceOption{
e.multicastNICID,
e.multicastAddr,
}
e.mu.Unlock()
return nil
case *tcpip.MulticastLoopOption:
e.mu.RLock()
v := e.multicastLoop
e.mu.RUnlock()
*o = tcpip.MulticastLoopOption(v)
return nil
case *tcpip.ReuseAddressOption:
*o = 0
return nil
case *tcpip.ReusePortOption:
e.mu.RLock()
v := e.reusePort
e.mu.RUnlock()
*o = 0
if v {
*o = 1
}
return nil
case *tcpip.BindToDeviceOption:
e.mu.RLock()
*o = tcpip.BindToDeviceOption(e.bindToDevice)
e.mu.RUnlock()
return nil
case *tcpip.KeepaliveEnabledOption:
*o = 0
return nil
case *tcpip.BroadcastOption:
e.mu.RLock()
v := e.broadcast
e.mu.RUnlock()
*o = 0
if v {
*o = 1
}
return nil
case *tcpip.IPv4TOSOption:
e.mu.RLock()
*o = tcpip.IPv4TOSOption(e.sendTOS)
e.mu.RUnlock()
return nil
case *tcpip.IPv6TrafficClassOption:
e.mu.RLock()
*o = tcpip.IPv6TrafficClassOption(e.sendTOS)
e.mu.RUnlock()
return nil
default:
return tcpip.ErrUnknownProtocolOption
}
}
// sendUDP sends a UDP segment via the provided network endpoint and under the
// provided identity.
func sendUDP(r *stack.Route, data buffer.VectorisedView, localPort, remotePort uint16, ttl uint8, useDefaultTTL bool, tos uint8) *tcpip.Error {
// Allocate a buffer for the UDP header.
hdr := buffer.NewPrependable(header.UDPMinimumSize + int(r.MaxHeaderLength()))
// Initialize the header.
udp := header.UDP(hdr.Prepend(header.UDPMinimumSize))
length := uint16(hdr.UsedLength() + data.Size())
udp.Encode(&header.UDPFields{
SrcPort: localPort,
DstPort: remotePort,
Length: length,
})
// Only calculate the checksum if offloading isn't supported.
if r.Capabilities()&stack.CapabilityTXChecksumOffload == 0 {
xsum := r.PseudoHeaderChecksum(ProtocolNumber, length)
for _, v := range data.Views() {
xsum = header.Checksum(v, xsum)
}
udp.SetChecksum(^udp.CalculateChecksum(xsum))
}
if useDefaultTTL {
ttl = r.DefaultTTL()
}
if err := r.WritePacket(nil /* gso */, stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: ttl, TOS: tos}, tcpip.PacketBuffer{
Header: hdr,
Data: data,
TransportHeader: buffer.View(udp),
}); err != nil {
r.Stats().UDP.PacketSendErrors.Increment()
return err
}
// Track count of packets sent.
r.Stats().UDP.PacketsSent.Increment()
return nil
}
func (e *endpoint) checkV4Mapped(addr *tcpip.FullAddress) (tcpip.NetworkProtocolNumber, *tcpip.Error) {
unwrapped, netProto, err := e.TransportEndpointInfo.AddrNetProto(*addr, e.v6only)
if err != nil {
return 0, err
}
*addr = unwrapped
return netProto, nil
}
// Disconnect implements tcpip.Endpoint.Disconnect.
func (e *endpoint) Disconnect() *tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
if e.state != StateConnected {
return nil
}
var (
id stack.TransportEndpointID
btd tcpip.NICID
)
// Exclude ephemerally bound endpoints.
if e.BindNICID != 0 || e.ID.LocalAddress == "" {
var err *tcpip.Error
id = stack.TransportEndpointID{
LocalPort: e.ID.LocalPort,
LocalAddress: e.ID.LocalAddress,
}
id, btd, err = e.registerWithStack(e.RegisterNICID, e.effectiveNetProtos, id)
if err != nil {
return err
}
e.state = StateBound
} else {
if e.ID.LocalPort != 0 {
// Release the ephemeral port.
e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.ID.LocalAddress, e.ID.LocalPort, e.boundPortFlags, e.boundBindToDevice)
e.boundPortFlags = ports.Flags{}
}
e.state = StateInitial
}
e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
e.ID = id
e.boundBindToDevice = btd
e.route.Release()
e.route = stack.Route{}
e.dstPort = 0
return nil
}
// Connect connects the endpoint to its peer. Specifying a NIC is optional.
func (e *endpoint) Connect(addr tcpip.FullAddress) *tcpip.Error {
netProto, err := e.checkV4Mapped(&addr)
if err != nil {
return err
}
if addr.Port == 0 {
// We don't support connecting to port zero.
return tcpip.ErrInvalidEndpointState
}
e.mu.Lock()
defer e.mu.Unlock()
nicID := addr.NIC
var localPort uint16
switch e.state {
case StateInitial:
case StateBound, StateConnected:
localPort = e.ID.LocalPort
if e.BindNICID == 0 {
break
}
if nicID != 0 && nicID != e.BindNICID {
return tcpip.ErrInvalidEndpointState
}
nicID = e.BindNICID
default:
return tcpip.ErrInvalidEndpointState
}
r, nicID, err := e.connectRoute(nicID, addr, netProto)
if err != nil {
return err
}
defer r.Release()
id := stack.TransportEndpointID{
LocalAddress: e.ID.LocalAddress,
LocalPort: localPort,
RemotePort: addr.Port,
RemoteAddress: r.RemoteAddress,
}
if e.state == StateInitial {
id.LocalAddress = r.LocalAddress
}
// Even if we're connected, this endpoint can still be used to send
// packets on a different network protocol, so we register both even if
// v6only is set to false and this is an ipv6 endpoint.
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if netProto == header.IPv6ProtocolNumber && !e.v6only {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv4ProtocolNumber,
header.IPv6ProtocolNumber,
}
}
id, btd, err := e.registerWithStack(nicID, netProtos, id)
if err != nil {
return err
}
// Remove the old registration.
if e.ID.LocalPort != 0 {
e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
}
e.ID = id
e.boundBindToDevice = btd
e.route = r.Clone()
e.dstPort = addr.Port
e.RegisterNICID = nicID
e.effectiveNetProtos = netProtos
e.state = StateConnected
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) *tcpip.Error {
return tcpip.ErrInvalidEndpointState
}
// Shutdown closes the read and/or write end of the endpoint connection
// to its peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) *tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
// A socket in the bound state can still receive multicast messages,
// so we need to notify waiters on shutdown.
if e.state != StateBound && e.state != StateConnected {
return tcpip.ErrNotConnected
}
e.shutdownFlags |= flags
if flags&tcpip.ShutdownRead != 0 {
e.rcvMu.Lock()
wasClosed := e.rcvClosed
e.rcvClosed = true
e.rcvMu.Unlock()
if !wasClosed {
e.waiterQueue.Notify(waiter.EventIn)
}
}
return nil
}
// Listen is not supported by UDP, it just fails.
func (*endpoint) Listen(int) *tcpip.Error {
return tcpip.ErrNotSupported
}
// Accept is not supported by UDP, it just fails.
func (*endpoint) Accept() (tcpip.Endpoint, *waiter.Queue, *tcpip.Error) {
return nil, nil, tcpip.ErrNotSupported
}
func (e *endpoint) registerWithStack(nicID tcpip.NICID, netProtos []tcpip.NetworkProtocolNumber, id stack.TransportEndpointID) (stack.TransportEndpointID, tcpip.NICID, *tcpip.Error) {
if e.ID.LocalPort == 0 {
flags := ports.Flags{
LoadBalanced: e.reusePort,
// FIXME(b/129164367): Support SO_REUSEADDR.
MostRecent: false,
}
port, err := e.stack.ReservePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort, flags, e.bindToDevice)
if err != nil {
return id, e.bindToDevice, err
}
e.boundPortFlags = flags
id.LocalPort = port
}
err := e.stack.RegisterTransportEndpoint(nicID, netProtos, ProtocolNumber, id, e, e.reusePort, e.bindToDevice)
if err != nil {
e.stack.ReleasePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort, e.boundPortFlags, e.bindToDevice)
e.boundPortFlags = ports.Flags{}
}
return id, e.bindToDevice, err
}
func (e *endpoint) bindLocked(addr tcpip.FullAddress) *tcpip.Error {
// Don't allow binding once endpoint is not in the initial state
// anymore.
if e.state != StateInitial {
return tcpip.ErrInvalidEndpointState
}
netProto, err := e.checkV4Mapped(&addr)
if err != nil {
return err
}
// Expand netProtos to include v4 and v6 if the caller is binding to a
// wildcard (empty) address, and this is an IPv6 endpoint with v6only
// set to false.
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if netProto == header.IPv6ProtocolNumber && !e.v6only && addr.Addr == "" {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv6ProtocolNumber,
header.IPv4ProtocolNumber,
}
}
nicID := addr.NIC
if len(addr.Addr) != 0 && !isBroadcastOrMulticast(addr.Addr) {
// A local unicast address was specified, verify that it's valid.
nicID = e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr)
if nicID == 0 {
return tcpip.ErrBadLocalAddress
}
}
id := stack.TransportEndpointID{
LocalPort: addr.Port,
LocalAddress: addr.Addr,
}
id, btd, err := e.registerWithStack(nicID, netProtos, id)
if err != nil {
return err
}
e.ID = id
e.boundBindToDevice = btd
e.RegisterNICID = nicID
e.effectiveNetProtos = netProtos
// Mark endpoint as bound.
e.state = StateBound
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// Bind binds the endpoint to a specific local address and port.
// Specifying a NIC is optional.
func (e *endpoint) Bind(addr tcpip.FullAddress) *tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
err := e.bindLocked(addr)
if err != nil {
return err
}
// Save the effective NICID generated by bindLocked.
e.BindNICID = e.RegisterNICID
return nil
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
addr := e.ID.LocalAddress
if e.state == StateConnected {
addr = e.route.LocalAddress
}
return tcpip.FullAddress{
NIC: e.RegisterNICID,
Addr: addr,
Port: e.ID.LocalPort,
}, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
if e.state != StateConnected {
return tcpip.FullAddress{}, tcpip.ErrNotConnected
}
return tcpip.FullAddress{
NIC: e.RegisterNICID,
Addr: e.ID.RemoteAddress,
Port: e.ID.RemotePort,
}, nil
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
// The endpoint is always writable.
result := waiter.EventOut & mask
// Determine if the endpoint is readable if requested.
if (mask & waiter.EventIn) != 0 {
e.rcvMu.Lock()
if !e.rcvList.Empty() || e.rcvClosed {
result |= waiter.EventIn
}
e.rcvMu.Unlock()
}
return result
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, id stack.TransportEndpointID, pkt tcpip.PacketBuffer) {
// Get the header then trim it from the view.
hdr := header.UDP(pkt.Data.First())
if int(hdr.Length()) > pkt.Data.Size() {
// Malformed packet.
e.stack.Stats().UDP.MalformedPacketsReceived.Increment()
e.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
return
}
pkt.Data.TrimFront(header.UDPMinimumSize)
e.rcvMu.Lock()
e.stack.Stats().UDP.PacketsReceived.Increment()
e.stats.PacketsReceived.Increment()
// Drop the packet if our buffer is currently full.
if !e.rcvReady || e.rcvClosed {
e.rcvMu.Unlock()
e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
e.stats.ReceiveErrors.ClosedReceiver.Increment()
return
}
if e.rcvBufSize >= e.rcvBufSizeMax {
e.rcvMu.Unlock()
e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
e.stats.ReceiveErrors.ReceiveBufferOverflow.Increment()
return
}
wasEmpty := e.rcvBufSize == 0
// Push new packet into receive list and increment the buffer size.
packet := &udpPacket{
senderAddress: tcpip.FullAddress{
NIC: r.NICID(),
Addr: id.RemoteAddress,
Port: hdr.SourcePort(),
},
}
packet.data = pkt.Data
e.rcvList.PushBack(packet)
e.rcvBufSize += pkt.Data.Size()
// Save any useful information from the network header to the packet.
switch r.NetProto {
case header.IPv4ProtocolNumber:
packet.tos, _ = header.IPv4(pkt.NetworkHeader).TOS()
}
packet.timestamp = e.stack.NowNanoseconds()
e.rcvMu.Unlock()
// Notify any waiters that there's data to be read now.
if wasEmpty {
e.waiterQueue.Notify(waiter.EventIn)
}
}
// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (e *endpoint) HandleControlPacket(id stack.TransportEndpointID, typ stack.ControlType, extra uint32, pkt tcpip.PacketBuffer) {
}
// State implements tcpip.Endpoint.State.
func (e *endpoint) State() uint32 {
e.mu.Lock()
defer e.mu.Unlock()
return uint32(e.state)
}
// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
e.mu.RLock()
// Make a copy of the endpoint info.
ret := e.TransportEndpointInfo
e.mu.RUnlock()
return &ret
}
// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
return &e.stats
}
// Wait implements tcpip.Endpoint.Wait.
func (*endpoint) Wait() {}
func isBroadcastOrMulticast(a tcpip.Address) bool {
return a == header.IPv4Broadcast || header.IsV4MulticastAddress(a) || header.IsV6MulticastAddress(a)
}