blob: d7221e9e8d9886881a1889c44ba71746805124de [file] [log] [blame]
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package state
import (
"bytes"
"context"
"io/ioutil"
"math"
"reflect"
"testing"
)
// TestCase is used to define a single success/failure testcase of
// serialization of a set of objects.
type TestCase struct {
// Name is the name of the test case.
Name string
// Objects is the list of values to serialize.
Objects []interface{}
// Fail is whether the test case is supposed to fail or not.
Fail bool
}
// runTest runs all testcases.
func runTest(t *testing.T, tests []TestCase) {
for _, test := range tests {
t.Logf("TEST %s:", test.Name)
for i, root := range test.Objects {
t.Logf(" case#%d: %#v", i, root)
// Save the passed object.
saveBuffer := &bytes.Buffer{}
saveObjectPtr := reflect.New(reflect.TypeOf(root))
saveObjectPtr.Elem().Set(reflect.ValueOf(root))
if err := Save(context.Background(), saveBuffer, saveObjectPtr.Interface(), nil); err != nil && !test.Fail {
t.Errorf(" FAIL: Save failed unexpectedly: %v", err)
continue
} else if err != nil {
t.Logf(" PASS: Save failed as expected: %v", err)
continue
}
// Load a new copy of the object.
loadObjectPtr := reflect.New(reflect.TypeOf(root))
if err := Load(context.Background(), bytes.NewReader(saveBuffer.Bytes()), loadObjectPtr.Interface(), nil); err != nil && !test.Fail {
t.Errorf(" FAIL: Load failed unexpectedly: %v", err)
continue
} else if err != nil {
t.Logf(" PASS: Load failed as expected: %v", err)
continue
}
// Compare the values.
loadedValue := loadObjectPtr.Elem().Interface()
if eq := reflect.DeepEqual(root, loadedValue); !eq && !test.Fail {
t.Errorf(" FAIL: Objects differs; got %#v", loadedValue)
continue
} else if !eq {
t.Logf(" PASS: Object different as expected.")
continue
}
// Everything went okay. Is that good?
if test.Fail {
t.Errorf(" FAIL: Unexpected success.")
} else {
t.Logf(" PASS: Success.")
}
}
}
}
// dumbStruct is a struct which does not implement the loader/saver interface.
// We expect that serialization of this struct will fail.
type dumbStruct struct {
A int
B int
}
// smartStruct is a struct which does implement the loader/saver interface.
// We expect that serialization of this struct will succeed.
type smartStruct struct {
A int
B int
}
func (s *smartStruct) save(m Map) {
m.Save("A", &s.A)
m.Save("B", &s.B)
}
func (s *smartStruct) load(m Map) {
m.Load("A", &s.A)
m.Load("B", &s.B)
}
// valueLoadStruct uses a value load.
type valueLoadStruct struct {
v int
}
func (v *valueLoadStruct) save(m Map) {
m.SaveValue("v", v.v)
}
func (v *valueLoadStruct) load(m Map) {
m.LoadValue("v", new(int), func(value interface{}) {
v.v = value.(int)
})
}
// afterLoadStruct has an AfterLoad function.
type afterLoadStruct struct {
v int
}
func (a *afterLoadStruct) save(m Map) {
}
func (a *afterLoadStruct) load(m Map) {
m.AfterLoad(func() {
a.v++
})
}
// genericContainer is a generic dispatcher.
type genericContainer struct {
v interface{}
}
func (g *genericContainer) save(m Map) {
m.Save("v", &g.v)
}
func (g *genericContainer) load(m Map) {
m.Load("v", &g.v)
}
// sliceContainer is a generic slice.
type sliceContainer struct {
v []interface{}
}
func (s *sliceContainer) save(m Map) {
m.Save("v", &s.v)
}
func (s *sliceContainer) load(m Map) {
m.Load("v", &s.v)
}
// mapContainer is a generic map.
type mapContainer struct {
v map[int]interface{}
}
func (mc *mapContainer) save(m Map) {
m.Save("v", &mc.v)
}
func (mc *mapContainer) load(m Map) {
// Some of the test cases below assume legacy behavior wherein maps
// will automatically inherit dependencies.
m.LoadWait("v", &mc.v)
}
// dumbMap is a map which does not implement the loader/saver interface.
// Serialization of this map will default to the standard encode/decode logic.
type dumbMap map[string]int
// pointerStruct contains various pointers, shared and non-shared, and pointers
// to pointers. We expect that serialization will respect the structure.
type pointerStruct struct {
A *int
B *int
C *int
D *int
AA **int
BB **int
}
func (p *pointerStruct) save(m Map) {
m.Save("A", &p.A)
m.Save("B", &p.B)
m.Save("C", &p.C)
m.Save("D", &p.D)
m.Save("AA", &p.AA)
m.Save("BB", &p.BB)
}
func (p *pointerStruct) load(m Map) {
m.Load("A", &p.A)
m.Load("B", &p.B)
m.Load("C", &p.C)
m.Load("D", &p.D)
m.Load("AA", &p.AA)
m.Load("BB", &p.BB)
}
// testInterface is a trivial interface example.
type testInterface interface {
Foo()
}
// testImpl is a trivial implementation of testInterface.
type testImpl struct {
}
// Foo satisfies testInterface.
func (t *testImpl) Foo() {
}
// testImpl is trivially serializable.
func (t *testImpl) save(m Map) {
}
// testImpl is trivially serializable.
func (t *testImpl) load(m Map) {
}
// testI demonstrates interface dispatching.
type testI struct {
I testInterface
}
func (t *testI) save(m Map) {
m.Save("I", &t.I)
}
func (t *testI) load(m Map) {
m.Load("I", &t.I)
}
// cycleStruct is used to implement basic cycles.
type cycleStruct struct {
c *cycleStruct
}
func (c *cycleStruct) save(m Map) {
m.Save("c", &c.c)
}
func (c *cycleStruct) load(m Map) {
m.Load("c", &c.c)
}
// badCycleStruct actually has deadlocking dependencies.
//
// This should pass if b.b = {nil|b} and fail otherwise.
type badCycleStruct struct {
b *badCycleStruct
}
func (b *badCycleStruct) save(m Map) {
m.Save("b", &b.b)
}
func (b *badCycleStruct) load(m Map) {
m.LoadWait("b", &b.b)
m.AfterLoad(func() {
// This is not executable, since AfterLoad requires that the
// object and all dependencies are complete. This should cause
// a deadlock error during load.
})
}
// emptyStructPointer points to an empty struct.
type emptyStructPointer struct {
nothing *struct{}
}
func (e *emptyStructPointer) save(m Map) {
m.Save("nothing", &e.nothing)
}
func (e *emptyStructPointer) load(m Map) {
m.Load("nothing", &e.nothing)
}
// truncateInteger truncates an integer.
type truncateInteger struct {
v int64
v2 int32
}
func (t *truncateInteger) save(m Map) {
t.v2 = int32(t.v)
m.Save("v", &t.v)
}
func (t *truncateInteger) load(m Map) {
m.Load("v", &t.v2)
t.v = int64(t.v2)
}
// truncateUnsignedInteger truncates an unsigned integer.
type truncateUnsignedInteger struct {
v uint64
v2 uint32
}
func (t *truncateUnsignedInteger) save(m Map) {
t.v2 = uint32(t.v)
m.Save("v", &t.v)
}
func (t *truncateUnsignedInteger) load(m Map) {
m.Load("v", &t.v2)
t.v = uint64(t.v2)
}
// truncateFloat truncates a floating point number.
type truncateFloat struct {
v float64
v2 float32
}
func (t *truncateFloat) save(m Map) {
t.v2 = float32(t.v)
m.Save("v", &t.v)
}
func (t *truncateFloat) load(m Map) {
m.Load("v", &t.v2)
t.v = float64(t.v2)
}
func TestTypes(t *testing.T) {
// x and y are basic integers, while xp points to x.
x := 1
y := 2
xp := &x
// cs is a single object cycle.
cs := cycleStruct{nil}
cs.c = &cs
// cs1 and cs2 are in a two object cycle.
cs1 := cycleStruct{nil}
cs2 := cycleStruct{nil}
cs1.c = &cs2
cs2.c = &cs1
// bs is a single object cycle.
bs := badCycleStruct{nil}
bs.b = &bs
// bs2 and bs2 are in a deadlocking cycle.
bs1 := badCycleStruct{nil}
bs2 := badCycleStruct{nil}
bs1.b = &bs2
bs2.b = &bs1
// regular nils.
var (
nilmap dumbMap
nilslice []byte
)
// embed points to embedded fields.
embed1 := pointerStruct{}
embed1.AA = &embed1.A
embed2 := pointerStruct{}
embed2.BB = &embed2.B
// es1 contains two structs pointing to the same empty struct.
es := emptyStructPointer{new(struct{})}
es1 := []emptyStructPointer{es, es}
tests := []TestCase{
{
Name: "bool",
Objects: []interface{}{
true,
false,
},
},
{
Name: "integers",
Objects: []interface{}{
int(0),
int(1),
int(-1),
int8(0),
int8(1),
int8(-1),
int16(0),
int16(1),
int16(-1),
int32(0),
int32(1),
int32(-1),
int64(0),
int64(1),
int64(-1),
},
},
{
Name: "unsigned integers",
Objects: []interface{}{
uint(0),
uint(1),
uint8(0),
uint8(1),
uint16(0),
uint16(1),
uint32(1),
uint64(0),
uint64(1),
},
},
{
Name: "strings",
Objects: []interface{}{
"",
"foo",
"bar",
"\xa0",
},
},
{
Name: "slices",
Objects: []interface{}{
[]int{-1, 0, 1},
[]*int{&x, &x, &x},
[]int{1, 2, 3}[0:1],
[]int{1, 2, 3}[1:2],
make([]byte, 32),
make([]byte, 32)[:16],
make([]byte, 32)[:16:20],
nilslice,
},
},
{
Name: "arrays",
Objects: []interface{}{
&[1048576]bool{false, true, false, true},
&[1048576]uint8{0, 1, 2, 3},
&[1048576]byte{0, 1, 2, 3},
&[1048576]uint16{0, 1, 2, 3},
&[1048576]uint{0, 1, 2, 3},
&[1048576]uint32{0, 1, 2, 3},
&[1048576]uint64{0, 1, 2, 3},
&[1048576]uintptr{0, 1, 2, 3},
&[1048576]int8{0, -1, -2, -3},
&[1048576]int16{0, -1, -2, -3},
&[1048576]int32{0, -1, -2, -3},
&[1048576]int64{0, -1, -2, -3},
&[1048576]float32{0, 1.1, 2.2, 3.3},
&[1048576]float64{0, 1.1, 2.2, 3.3},
},
},
{
Name: "pointers",
Objects: []interface{}{
&pointerStruct{A: &x, B: &x, C: &y, D: &y, AA: &xp, BB: &xp},
&pointerStruct{},
},
},
{
Name: "empty struct",
Objects: []interface{}{
struct{}{},
},
},
{
Name: "unenlightened structs",
Objects: []interface{}{
&dumbStruct{A: 1, B: 2},
},
Fail: true,
},
{
Name: "enlightened structs",
Objects: []interface{}{
&smartStruct{A: 1, B: 2},
},
},
{
Name: "load-hooks",
Objects: []interface{}{
&afterLoadStruct{v: 1},
&valueLoadStruct{v: 1},
&genericContainer{v: &afterLoadStruct{v: 1}},
&genericContainer{v: &valueLoadStruct{v: 1}},
&sliceContainer{v: []interface{}{&afterLoadStruct{v: 1}}},
&sliceContainer{v: []interface{}{&valueLoadStruct{v: 1}}},
&mapContainer{v: map[int]interface{}{0: &afterLoadStruct{v: 1}}},
&mapContainer{v: map[int]interface{}{0: &valueLoadStruct{v: 1}}},
},
},
{
Name: "maps",
Objects: []interface{}{
dumbMap{"a": -1, "b": 0, "c": 1},
map[smartStruct]int{{}: 0, {A: 1}: 1},
nilmap,
&mapContainer{v: map[int]interface{}{0: &smartStruct{A: 1}}},
},
},
{
Name: "interfaces",
Objects: []interface{}{
&testI{&testImpl{}},
&testI{nil},
&testI{(*testImpl)(nil)},
},
},
{
Name: "unregistered-interfaces",
Objects: []interface{}{
&genericContainer{v: afterLoadStruct{v: 1}},
&genericContainer{v: valueLoadStruct{v: 1}},
&sliceContainer{v: []interface{}{afterLoadStruct{v: 1}}},
&sliceContainer{v: []interface{}{valueLoadStruct{v: 1}}},
&mapContainer{v: map[int]interface{}{0: afterLoadStruct{v: 1}}},
&mapContainer{v: map[int]interface{}{0: valueLoadStruct{v: 1}}},
},
Fail: true,
},
{
Name: "cycles",
Objects: []interface{}{
&cs,
&cs1,
&cycleStruct{&cs1},
&cycleStruct{&cs},
&badCycleStruct{nil},
&bs,
},
},
{
Name: "deadlock",
Objects: []interface{}{
&bs1,
},
Fail: true,
},
{
Name: "embed",
Objects: []interface{}{
&embed1,
&embed2,
},
Fail: true,
},
{
Name: "empty structs",
Objects: []interface{}{
new(struct{}),
es,
es1,
},
},
{
Name: "truncated okay",
Objects: []interface{}{
&truncateInteger{v: 1},
&truncateUnsignedInteger{v: 1},
&truncateFloat{v: 1.0},
},
},
{
Name: "truncated bad",
Objects: []interface{}{
&truncateInteger{v: math.MaxInt32 + 1},
&truncateUnsignedInteger{v: math.MaxUint32 + 1},
&truncateFloat{v: math.MaxFloat32 * 2},
},
Fail: true,
},
}
runTest(t, tests)
}
// benchStruct is used for benchmarking.
type benchStruct struct {
b *benchStruct
// Dummy data is included to ensure that these objects are large.
// This is to detect possible regression when registering objects.
_ [4096]byte
}
func (b *benchStruct) save(m Map) {
m.Save("b", &b.b)
}
func (b *benchStruct) load(m Map) {
m.LoadWait("b", &b.b)
m.AfterLoad(b.afterLoad)
}
func (b *benchStruct) afterLoad() {
// Do nothing, just force scheduling.
}
// buildObject builds a benchmark object.
func buildObject(n int) (b *benchStruct) {
for i := 0; i < n; i++ {
b = &benchStruct{b: b}
}
return
}
func BenchmarkEncoding(b *testing.B) {
b.StopTimer()
bs := buildObject(b.N)
var stats Stats
b.StartTimer()
if err := Save(context.Background(), ioutil.Discard, bs, &stats); err != nil {
b.Errorf("save failed: %v", err)
}
b.StopTimer()
if b.N > 1000 {
b.Logf("breakdown (n=%d): %s", b.N, &stats)
}
}
func BenchmarkDecoding(b *testing.B) {
b.StopTimer()
bs := buildObject(b.N)
var newBS benchStruct
buf := &bytes.Buffer{}
if err := Save(context.Background(), buf, bs, nil); err != nil {
b.Errorf("save failed: %v", err)
}
var stats Stats
b.StartTimer()
if err := Load(context.Background(), buf, &newBS, &stats); err != nil {
b.Errorf("load failed: %v", err)
}
b.StopTimer()
if b.N > 1000 {
b.Logf("breakdown (n=%d): %s", b.N, &stats)
}
}
func init() {
Register("stateTest.smartStruct", (*smartStruct)(nil), Fns{
Save: (*smartStruct).save,
Load: (*smartStruct).load,
})
Register("stateTest.afterLoadStruct", (*afterLoadStruct)(nil), Fns{
Save: (*afterLoadStruct).save,
Load: (*afterLoadStruct).load,
})
Register("stateTest.valueLoadStruct", (*valueLoadStruct)(nil), Fns{
Save: (*valueLoadStruct).save,
Load: (*valueLoadStruct).load,
})
Register("stateTest.genericContainer", (*genericContainer)(nil), Fns{
Save: (*genericContainer).save,
Load: (*genericContainer).load,
})
Register("stateTest.sliceContainer", (*sliceContainer)(nil), Fns{
Save: (*sliceContainer).save,
Load: (*sliceContainer).load,
})
Register("stateTest.mapContainer", (*mapContainer)(nil), Fns{
Save: (*mapContainer).save,
Load: (*mapContainer).load,
})
Register("stateTest.pointerStruct", (*pointerStruct)(nil), Fns{
Save: (*pointerStruct).save,
Load: (*pointerStruct).load,
})
Register("stateTest.testImpl", (*testImpl)(nil), Fns{
Save: (*testImpl).save,
Load: (*testImpl).load,
})
Register("stateTest.testI", (*testI)(nil), Fns{
Save: (*testI).save,
Load: (*testI).load,
})
Register("stateTest.cycleStruct", (*cycleStruct)(nil), Fns{
Save: (*cycleStruct).save,
Load: (*cycleStruct).load,
})
Register("stateTest.badCycleStruct", (*badCycleStruct)(nil), Fns{
Save: (*badCycleStruct).save,
Load: (*badCycleStruct).load,
})
Register("stateTest.emptyStructPointer", (*emptyStructPointer)(nil), Fns{
Save: (*emptyStructPointer).save,
Load: (*emptyStructPointer).load,
})
Register("stateTest.truncateInteger", (*truncateInteger)(nil), Fns{
Save: (*truncateInteger).save,
Load: (*truncateInteger).load,
})
Register("stateTest.truncateUnsignedInteger", (*truncateUnsignedInteger)(nil), Fns{
Save: (*truncateUnsignedInteger).save,
Load: (*truncateUnsignedInteger).load,
})
Register("stateTest.truncateFloat", (*truncateFloat)(nil), Fns{
Save: (*truncateFloat).save,
Load: (*truncateFloat).load,
})
Register("stateTest.benchStruct", (*benchStruct)(nil), Fns{
Save: (*benchStruct).save,
Load: (*benchStruct).load,
})
}