blob: 3f083928f73aa0aab179896bce3a5df4f92f2df3 [file] [log] [blame]
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"encoding/binary"
"sync"
"time"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/transport/tcpconntrack"
)
// Connection tracking is used to track and manipulate packets for NAT rules.
// The connection is created for a packet if it does not exist. Every
// connection contains two tuples (original and reply). The tuples are
// manipulated if there is a matching NAT rule. The packet is modified by
// looking at the tuples in the Prerouting and Output hooks.
//
// Currently, only TCP tracking is supported.
// Our hash table has 16K buckets.
// TODO(gvisor.dev/issue/170): These should be tunable.
const numBuckets = 1 << 14
// Direction of the tuple.
type direction int
const (
dirOriginal direction = iota
dirReply
)
// Manipulation type for the connection.
type manipType int
const (
manipNone manipType = iota
manipDstPrerouting
manipDstOutput
)
// tuple holds a connection's identifying and manipulating data in one
// direction. It is immutable.
//
// +stateify savable
type tuple struct {
// tupleEntry is used to build an intrusive list of tuples.
tupleEntry
tupleID
// conn is the connection tracking entry this tuple belongs to.
conn *conn
// direction is the direction of the tuple.
direction direction
}
// tupleID uniquely identifies a connection in one direction. It currently
// contains enough information to distinguish between any TCP or UDP
// connection, and will need to be extended to support other protocols.
//
// +stateify savable
type tupleID struct {
srcAddr tcpip.Address
srcPort uint16
dstAddr tcpip.Address
dstPort uint16
transProto tcpip.TransportProtocolNumber
netProto tcpip.NetworkProtocolNumber
}
// reply creates the reply tupleID.
func (ti tupleID) reply() tupleID {
return tupleID{
srcAddr: ti.dstAddr,
srcPort: ti.dstPort,
dstAddr: ti.srcAddr,
dstPort: ti.srcPort,
transProto: ti.transProto,
netProto: ti.netProto,
}
}
// conn is a tracked connection.
//
// +stateify savable
type conn struct {
// original is the tuple in original direction. It is immutable.
original tuple
// reply is the tuple in reply direction. It is immutable.
reply tuple
// manip indicates if the packet should be manipulated. It is immutable.
manip manipType
// tcbHook indicates if the packet is inbound or outbound to
// update the state of tcb. It is immutable.
tcbHook Hook
// mu protects all mutable state.
mu sync.Mutex `state:"nosave"`
// tcb is TCB control block. It is used to keep track of states
// of tcp connection and is protected by mu.
tcb tcpconntrack.TCB
// lastUsed is the last time the connection saw a relevant packet, and
// is updated by each packet on the connection. It is protected by mu.
lastUsed time.Time `state:".(unixTime)"`
}
// timedOut returns whether the connection timed out based on its state.
func (cn *conn) timedOut(now time.Time) bool {
const establishedTimeout = 5 * 24 * time.Hour
const defaultTimeout = 120 * time.Second
cn.mu.Lock()
defer cn.mu.Unlock()
if cn.tcb.State() == tcpconntrack.ResultAlive {
// Use the same default as Linux, which doesn't delete
// established connections for 5(!) days.
return now.Sub(cn.lastUsed) > establishedTimeout
}
// Use the same default as Linux, which lets connections in most states
// other than established remain for <= 120 seconds.
return now.Sub(cn.lastUsed) > defaultTimeout
}
// update the connection tracking state.
//
// Precondition: cn.mu must be held.
func (cn *conn) updateLocked(tcpHeader header.TCP, hook Hook) {
// Update the state of tcb. tcb assumes it's always initialized on the
// client. However, we only need to know whether the connection is
// established or not, so the client/server distinction isn't important.
// TODO(gvisor.dev/issue/170): Add support in tcpconntrack to handle
// other tcp states.
if cn.tcb.IsEmpty() {
cn.tcb.Init(tcpHeader)
} else if hook == cn.tcbHook {
cn.tcb.UpdateStateOutbound(tcpHeader)
} else {
cn.tcb.UpdateStateInbound(tcpHeader)
}
}
// ConnTrack tracks all connections created for NAT rules. Most users are
// expected to only call handlePacket, insertRedirectConn, and maybeInsertNoop.
//
// ConnTrack keeps all connections in a slice of buckets, each of which holds a
// linked list of tuples. This gives us some desirable properties:
// - Each bucket has its own lock, lessening lock contention.
// - The slice is large enough that lists stay short (<10 elements on average).
// Thus traversal is fast.
// - During linked list traversal we reap expired connections. This amortizes
// the cost of reaping them and makes reapUnused faster.
//
// Locks are ordered by their location in the buckets slice. That is, a
// goroutine that locks buckets[i] can only lock buckets[j] s.t. i < j.
//
// +stateify savable
type ConnTrack struct {
// seed is a one-time random value initialized at stack startup
// and is used in the calculation of hash keys for the list of buckets.
// It is immutable.
seed uint32
// mu protects the buckets slice, but not buckets' contents. Only take
// the write lock if you are modifying the slice or saving for S/R.
mu sync.RWMutex `state:"nosave"`
// buckets is protected by mu.
buckets []bucket
}
// +stateify savable
type bucket struct {
// mu protects tuples.
mu sync.Mutex `state:"nosave"`
tuples tupleList
}
// packetToTupleID converts packet to a tuple ID. It fails when pkt lacks a valid
// TCP header.
//
// Preconditions: pkt.NetworkHeader() is valid.
func packetToTupleID(pkt *PacketBuffer) (tupleID, tcpip.Error) {
netHeader := pkt.Network()
if netHeader.TransportProtocol() != header.TCPProtocolNumber {
return tupleID{}, &tcpip.ErrUnknownProtocol{}
}
tcpHeader := header.TCP(pkt.TransportHeader().View())
if len(tcpHeader) < header.TCPMinimumSize {
return tupleID{}, &tcpip.ErrUnknownProtocol{}
}
return tupleID{
srcAddr: netHeader.SourceAddress(),
srcPort: tcpHeader.SourcePort(),
dstAddr: netHeader.DestinationAddress(),
dstPort: tcpHeader.DestinationPort(),
transProto: netHeader.TransportProtocol(),
netProto: pkt.NetworkProtocolNumber,
}, nil
}
// newConn creates new connection.
func newConn(orig, reply tupleID, manip manipType, hook Hook) *conn {
conn := conn{
manip: manip,
tcbHook: hook,
lastUsed: time.Now(),
}
conn.original = tuple{conn: &conn, tupleID: orig}
conn.reply = tuple{conn: &conn, tupleID: reply, direction: dirReply}
return &conn
}
func (ct *ConnTrack) init() {
ct.mu.Lock()
defer ct.mu.Unlock()
ct.buckets = make([]bucket, numBuckets)
}
// connFor gets the conn for pkt if it exists, or returns nil
// if it does not. It returns an error when pkt does not contain a valid TCP
// header.
// TODO(gvisor.dev/issue/170): Only TCP packets are supported. Need to support
// other transport protocols.
func (ct *ConnTrack) connFor(pkt *PacketBuffer) (*conn, direction) {
tid, err := packetToTupleID(pkt)
if err != nil {
return nil, dirOriginal
}
return ct.connForTID(tid)
}
func (ct *ConnTrack) connForTID(tid tupleID) (*conn, direction) {
bucket := ct.bucket(tid)
now := time.Now()
ct.mu.RLock()
defer ct.mu.RUnlock()
ct.buckets[bucket].mu.Lock()
defer ct.buckets[bucket].mu.Unlock()
// Iterate over the tuples in a bucket, cleaning up any unused
// connections we find.
for other := ct.buckets[bucket].tuples.Front(); other != nil; other = other.Next() {
// Clean up any timed-out connections we happen to find.
if ct.reapTupleLocked(other, bucket, now) {
// The tuple expired.
continue
}
if tid == other.tupleID {
return other.conn, other.direction
}
}
return nil, dirOriginal
}
func (ct *ConnTrack) insertRedirectConn(pkt *PacketBuffer, hook Hook, port uint16, address tcpip.Address) *conn {
tid, err := packetToTupleID(pkt)
if err != nil {
return nil
}
if hook != Prerouting && hook != Output {
return nil
}
// Create a new connection and change the port as per the iptables
// rule. This tuple will be used to manipulate the packet in
// handlePacket.
replyTID := tid.reply()
replyTID.srcAddr = address
replyTID.srcPort = port
var manip manipType
switch hook {
case Prerouting:
manip = manipDstPrerouting
case Output:
manip = manipDstOutput
}
conn := newConn(tid, replyTID, manip, hook)
ct.insertConn(conn)
return conn
}
// insertConn inserts conn into the appropriate table bucket.
func (ct *ConnTrack) insertConn(conn *conn) {
// Lock the buckets in the correct order.
tupleBucket := ct.bucket(conn.original.tupleID)
replyBucket := ct.bucket(conn.reply.tupleID)
ct.mu.RLock()
defer ct.mu.RUnlock()
if tupleBucket < replyBucket {
ct.buckets[tupleBucket].mu.Lock()
ct.buckets[replyBucket].mu.Lock()
} else if tupleBucket > replyBucket {
ct.buckets[replyBucket].mu.Lock()
ct.buckets[tupleBucket].mu.Lock()
} else {
// Both tuples are in the same bucket.
ct.buckets[tupleBucket].mu.Lock()
}
// Now that we hold the locks, ensure the tuple hasn't been inserted by
// another thread.
alreadyInserted := false
for other := ct.buckets[tupleBucket].tuples.Front(); other != nil; other = other.Next() {
if other.tupleID == conn.original.tupleID {
alreadyInserted = true
break
}
}
if !alreadyInserted {
// Add the tuple to the map.
ct.buckets[tupleBucket].tuples.PushFront(&conn.original)
ct.buckets[replyBucket].tuples.PushFront(&conn.reply)
}
// Unlocking can happen in any order.
ct.buckets[tupleBucket].mu.Unlock()
if tupleBucket != replyBucket {
ct.buckets[replyBucket].mu.Unlock()
}
}
// handlePacketPrerouting manipulates ports for packets in Prerouting hook.
// TODO(gvisor.dev/issue/170): Change address for Prerouting hook.
func handlePacketPrerouting(pkt *PacketBuffer, conn *conn, dir direction) {
// If this is a noop entry, don't do anything.
if conn.manip == manipNone {
return
}
netHeader := pkt.Network()
tcpHeader := header.TCP(pkt.TransportHeader().View())
// For prerouting redirection, packets going in the original direction
// have their destinations modified and replies have their sources
// modified.
switch dir {
case dirOriginal:
port := conn.reply.srcPort
tcpHeader.SetDestinationPort(port)
netHeader.SetDestinationAddress(conn.reply.srcAddr)
case dirReply:
port := conn.original.dstPort
tcpHeader.SetSourcePort(port)
netHeader.SetSourceAddress(conn.original.dstAddr)
}
// TODO(gvisor.dev/issue/170): TCP checksums aren't usually validated
// on inbound packets, so we don't recalculate them. However, we should
// support cases when they are validated, e.g. when we can't offload
// receive checksumming.
// After modification, IPv4 packets need a valid checksum.
if pkt.NetworkProtocolNumber == header.IPv4ProtocolNumber {
netHeader := header.IPv4(pkt.NetworkHeader().View())
netHeader.SetChecksum(0)
netHeader.SetChecksum(^netHeader.CalculateChecksum())
}
}
// handlePacketOutput manipulates ports for packets in Output hook.
func handlePacketOutput(pkt *PacketBuffer, conn *conn, gso *GSO, r *Route, dir direction) {
// If this is a noop entry, don't do anything.
if conn.manip == manipNone {
return
}
netHeader := pkt.Network()
tcpHeader := header.TCP(pkt.TransportHeader().View())
// For output redirection, packets going in the original direction
// have their destinations modified and replies have their sources
// modified. For prerouting redirection, we only reach this point
// when replying, so packet sources are modified.
if conn.manip == manipDstOutput && dir == dirOriginal {
port := conn.reply.srcPort
tcpHeader.SetDestinationPort(port)
netHeader.SetDestinationAddress(conn.reply.srcAddr)
} else {
port := conn.original.dstPort
tcpHeader.SetSourcePort(port)
netHeader.SetSourceAddress(conn.original.dstAddr)
}
// Calculate the TCP checksum and set it.
tcpHeader.SetChecksum(0)
length := uint16(len(tcpHeader) + pkt.Data().Size())
xsum := header.PseudoHeaderChecksum(header.TCPProtocolNumber, netHeader.SourceAddress(), netHeader.DestinationAddress(), length)
if gso != nil && gso.NeedsCsum {
tcpHeader.SetChecksum(xsum)
} else if r.RequiresTXTransportChecksum() {
xsum = header.ChecksumCombine(xsum, pkt.Data().AsRange().Checksum())
tcpHeader.SetChecksum(^tcpHeader.CalculateChecksum(xsum))
}
if pkt.NetworkProtocolNumber == header.IPv4ProtocolNumber {
netHeader := header.IPv4(pkt.NetworkHeader().View())
netHeader.SetChecksum(0)
netHeader.SetChecksum(^netHeader.CalculateChecksum())
}
}
// handlePacket will manipulate the port and address of the packet if the
// connection exists. Returns whether, after the packet traverses the tables,
// it should create a new entry in the table.
func (ct *ConnTrack) handlePacket(pkt *PacketBuffer, hook Hook, gso *GSO, r *Route) bool {
if pkt.NatDone {
return false
}
if hook != Prerouting && hook != Output {
return false
}
// TODO(gvisor.dev/issue/170): Support other transport protocols.
if pkt.Network().TransportProtocol() != header.TCPProtocolNumber {
return false
}
conn, dir := ct.connFor(pkt)
// Connection or Rule not found for the packet.
if conn == nil {
return true
}
tcpHeader := header.TCP(pkt.TransportHeader().View())
if len(tcpHeader) < header.TCPMinimumSize {
return false
}
switch hook {
case Prerouting:
handlePacketPrerouting(pkt, conn, dir)
case Output:
handlePacketOutput(pkt, conn, gso, r, dir)
}
pkt.NatDone = true
// Update the state of tcb.
// TODO(gvisor.dev/issue/170): Add support in tcpcontrack to handle
// other tcp states.
conn.mu.Lock()
defer conn.mu.Unlock()
// Mark the connection as having been used recently so it isn't reaped.
conn.lastUsed = time.Now()
// Update connection state.
conn.updateLocked(header.TCP(pkt.TransportHeader().View()), hook)
return false
}
// maybeInsertNoop tries to insert a no-op connection entry to keep connections
// from getting clobbered when replies arrive. It only inserts if there isn't
// already a connection for pkt.
//
// This should be called after traversing iptables rules only, to ensure that
// pkt.NatDone is set correctly.
func (ct *ConnTrack) maybeInsertNoop(pkt *PacketBuffer, hook Hook) {
// If there were a rule applying to this packet, it would be marked
// with NatDone.
if pkt.NatDone {
return
}
// We only track TCP connections.
if pkt.Network().TransportProtocol() != header.TCPProtocolNumber {
return
}
// This is the first packet we're seeing for the TCP connection. Insert
// the noop entry (an identity mapping) so that the response doesn't
// get NATed, breaking the connection.
tid, err := packetToTupleID(pkt)
if err != nil {
return
}
conn := newConn(tid, tid.reply(), manipNone, hook)
conn.updateLocked(header.TCP(pkt.TransportHeader().View()), hook)
ct.insertConn(conn)
}
// bucket gets the conntrack bucket for a tupleID.
func (ct *ConnTrack) bucket(id tupleID) int {
h := jenkins.Sum32(ct.seed)
h.Write([]byte(id.srcAddr))
h.Write([]byte(id.dstAddr))
shortBuf := make([]byte, 2)
binary.LittleEndian.PutUint16(shortBuf, id.srcPort)
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, id.dstPort)
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, uint16(id.transProto))
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, uint16(id.netProto))
h.Write([]byte(shortBuf))
ct.mu.RLock()
defer ct.mu.RUnlock()
return int(h.Sum32()) % len(ct.buckets)
}
// reapUnused deletes timed out entries from the conntrack map. The rules for
// reaping are:
// - Most reaping occurs in connFor, which is called on each packet. connFor
// cleans up the bucket the packet's connection maps to. Thus calls to
// reapUnused should be fast.
// - Each call to reapUnused traverses a fraction of the conntrack table.
// Specifically, it traverses len(ct.buckets)/fractionPerReaping.
// - After reaping, reapUnused decides when it should next run based on the
// ratio of expired connections to examined connections. If the ratio is
// greater than maxExpiredPct, it schedules the next run quickly. Otherwise it
// slightly increases the interval between runs.
// - maxFullTraversal caps the time it takes to traverse the entire table.
//
// reapUnused returns the next bucket that should be checked and the time after
// which it should be called again.
func (ct *ConnTrack) reapUnused(start int, prevInterval time.Duration) (int, time.Duration) {
// TODO(gvisor.dev/issue/170): This can be more finely controlled, as
// it is in Linux via sysctl.
const fractionPerReaping = 128
const maxExpiredPct = 50
const maxFullTraversal = 60 * time.Second
const minInterval = 10 * time.Millisecond
const maxInterval = maxFullTraversal / fractionPerReaping
now := time.Now()
checked := 0
expired := 0
var idx int
ct.mu.RLock()
defer ct.mu.RUnlock()
for i := 0; i < len(ct.buckets)/fractionPerReaping; i++ {
idx = (i + start) % len(ct.buckets)
ct.buckets[idx].mu.Lock()
for tuple := ct.buckets[idx].tuples.Front(); tuple != nil; tuple = tuple.Next() {
checked++
if ct.reapTupleLocked(tuple, idx, now) {
expired++
}
}
ct.buckets[idx].mu.Unlock()
}
// We already checked buckets[idx].
idx++
// If half or more of the connections are expired, the table has gotten
// stale. Reschedule quickly.
expiredPct := 0
if checked != 0 {
expiredPct = expired * 100 / checked
}
if expiredPct > maxExpiredPct {
return idx, minInterval
}
if interval := prevInterval + minInterval; interval <= maxInterval {
// Increment the interval between runs.
return idx, interval
}
// We've hit the maximum interval.
return idx, maxInterval
}
// reapTupleLocked tries to remove tuple and its reply from the table. It
// returns whether the tuple's connection has timed out.
//
// Preconditions:
// * ct.mu is locked for reading.
// * bucket is locked.
func (ct *ConnTrack) reapTupleLocked(tuple *tuple, bucket int, now time.Time) bool {
if !tuple.conn.timedOut(now) {
return false
}
// To maintain lock order, we can only reap these tuples if the reply
// appears later in the table.
replyBucket := ct.bucket(tuple.reply())
if bucket > replyBucket {
return true
}
// Don't re-lock if both tuples are in the same bucket.
differentBuckets := bucket != replyBucket
if differentBuckets {
ct.buckets[replyBucket].mu.Lock()
}
// We have the buckets locked and can remove both tuples.
if tuple.direction == dirOriginal {
ct.buckets[replyBucket].tuples.Remove(&tuple.conn.reply)
} else {
ct.buckets[replyBucket].tuples.Remove(&tuple.conn.original)
}
ct.buckets[bucket].tuples.Remove(tuple)
// Don't re-unlock if both tuples are in the same bucket.
if differentBuckets {
ct.buckets[replyBucket].mu.Unlock()
}
return true
}
func (ct *ConnTrack) originalDst(epID TransportEndpointID, netProto tcpip.NetworkProtocolNumber) (tcpip.Address, uint16, tcpip.Error) {
// Lookup the connection. The reply's original destination
// describes the original address.
tid := tupleID{
srcAddr: epID.LocalAddress,
srcPort: epID.LocalPort,
dstAddr: epID.RemoteAddress,
dstPort: epID.RemotePort,
transProto: header.TCPProtocolNumber,
netProto: netProto,
}
conn, _ := ct.connForTID(tid)
if conn == nil {
// Not a tracked connection.
return "", 0, &tcpip.ErrNotConnected{}
} else if conn.manip == manipNone {
// Unmanipulated connection.
return "", 0, &tcpip.ErrInvalidOptionValue{}
}
return conn.original.dstAddr, conn.original.dstPort, nil
}