blob: fb819d7a8172456b0d045adfb5be17fdac04ed7e [file] [log] [blame]
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package faketime provides a fake clock that implements tcpip.Clock interface.
package faketime
import (
"container/heap"
"fmt"
"sync"
"time"
"gvisor.dev/gvisor/pkg/tcpip"
)
// NullClock implements a clock that never advances.
type NullClock struct{}
var _ tcpip.Clock = (*NullClock)(nil)
// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (*NullClock) NowNanoseconds() int64 {
return 0
}
// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (*NullClock) NowMonotonic() int64 {
return 0
}
// AfterFunc implements tcpip.Clock.AfterFunc.
func (*NullClock) AfterFunc(time.Duration, func()) tcpip.Timer {
return nil
}
type notificationChannels struct {
mu struct {
sync.Mutex
ch []<-chan struct{}
}
}
func (n *notificationChannels) add(ch <-chan struct{}) {
n.mu.Lock()
defer n.mu.Unlock()
n.mu.ch = append(n.mu.ch, ch)
}
// wait returns once all the notification channels are readable.
//
// Channels that are added while waiting on existing channels will be waited on
// as well.
func (n *notificationChannels) wait() {
for {
n.mu.Lock()
ch := n.mu.ch
n.mu.ch = nil
n.mu.Unlock()
if len(ch) == 0 {
break
}
for _, c := range ch {
<-c
}
}
}
// ManualClock implements tcpip.Clock and only advances manually with Advance
// method.
type ManualClock struct {
// runningTimers tracks the completion of timer callbacks that began running
// immediately upon their scheduling. It is used to ensure the proper ordering
// of timer callback dispatch.
runningTimers notificationChannels
mu struct {
sync.RWMutex
// now is the current (fake) time of the clock.
now time.Time
// times is min-heap of times.
times timeHeap
// timers holds the timers scheduled for each time.
timers map[time.Time]map[*manualTimer]struct{}
}
}
// NewManualClock creates a new ManualClock instance.
func NewManualClock() *ManualClock {
c := &ManualClock{}
c.mu.Lock()
defer c.mu.Unlock()
// Set the initial time to a non-zero value since the zero value is used to
// detect inactive timers.
c.mu.now = time.Unix(0, 0)
c.mu.timers = make(map[time.Time]map[*manualTimer]struct{})
return c
}
var _ tcpip.Clock = (*ManualClock)(nil)
// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (mc *ManualClock) NowNanoseconds() int64 {
mc.mu.RLock()
defer mc.mu.RUnlock()
return mc.mu.now.UnixNano()
}
// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (mc *ManualClock) NowMonotonic() int64 {
return mc.NowNanoseconds()
}
// AfterFunc implements tcpip.Clock.AfterFunc.
func (mc *ManualClock) AfterFunc(d time.Duration, f func()) tcpip.Timer {
mt := &manualTimer{
clock: mc,
f: f,
}
mc.mu.Lock()
defer mc.mu.Unlock()
mt.mu.Lock()
defer mt.mu.Unlock()
mc.resetTimerLocked(mt, d)
return mt
}
// resetTimerLocked schedules a timer to be fired after the given duration.
//
// Precondition: mc.mu and mt.mu must be locked.
func (mc *ManualClock) resetTimerLocked(mt *manualTimer, d time.Duration) {
if !mt.mu.firesAt.IsZero() {
panic("tried to reset an active timer")
}
t := mc.mu.now.Add(d)
if !mc.mu.now.Before(t) {
// If the timer is scheduled to fire immediately, call its callback
// in a new goroutine immediately.
//
// It needs to be called in its own goroutine to escape its current
// execution context - like an actual timer.
ch := make(chan struct{})
mc.runningTimers.add(ch)
go func() {
defer close(ch)
mt.f()
}()
return
}
mt.mu.firesAt = t
timers, ok := mc.mu.timers[t]
if !ok {
timers = make(map[*manualTimer]struct{})
mc.mu.timers[t] = timers
heap.Push(&mc.mu.times, t)
}
timers[mt] = struct{}{}
}
// stopTimerLocked stops a timer from firing.
//
// Precondition: mc.mu and mt.mu must be locked.
func (mc *ManualClock) stopTimerLocked(mt *manualTimer) {
t := mt.mu.firesAt
mt.mu.firesAt = time.Time{}
if t.IsZero() {
panic("tried to stop an inactive timer")
}
timers, ok := mc.mu.timers[t]
if !ok {
err := fmt.Sprintf("tried to stop an active timer but the clock does not have anything scheduled for the timer @ t = %s %p\nScheduled timers @:", t.UTC(), mt)
for t := range mc.mu.timers {
err += fmt.Sprintf("%s\n", t.UTC())
}
panic(err)
}
if _, ok := timers[mt]; !ok {
panic(fmt.Sprintf("did not have an entry in timers for an active timer @ t = %s", t.UTC()))
}
delete(timers, mt)
if len(timers) == 0 {
delete(mc.mu.timers, t)
}
}
// Advance executes all work that have been scheduled to execute within d from
// the current time. Blocks until all work has completed execution.
func (mc *ManualClock) Advance(d time.Duration) {
// We spawn goroutines for timers that were scheduled to fire at the time of
// being reset. Wait for those goroutines to complete before proceeding so
// that timer callbacks are called in the right order.
mc.runningTimers.wait()
mc.mu.Lock()
defer mc.mu.Unlock()
until := mc.mu.now.Add(d)
for mc.mu.times.Len() > 0 {
t := heap.Pop(&mc.mu.times).(time.Time)
if t.After(until) {
// No work to do
heap.Push(&mc.mu.times, t)
break
}
timers := mc.mu.timers[t]
delete(mc.mu.timers, t)
mc.mu.now = t
// Mark the timers as inactive since they will be fired.
//
// This needs to be done while holding mc's lock because we remove the entry
// in the map of timers for the current time. If an attempt to stop a
// timer is made after mc's lock was dropped but before the timer is
// marked inactive, we would panic since no entry exists for the time when
// the timer was expected to fire.
for mt := range timers {
mt.mu.Lock()
mt.mu.firesAt = time.Time{}
mt.mu.Unlock()
}
// Release the lock before calling the timer's callback fn since the
// callback fn might try to schedule a timer which requires obtaining
// mc's lock.
mc.mu.Unlock()
for mt := range timers {
mt.f()
}
// The timer callbacks may have scheduled a timer to fire immediately.
// We spawn goroutines for these timers and need to wait for them to
// finish before proceeding so that timer callbacks are called in the
// right order.
mc.runningTimers.wait()
mc.mu.Lock()
}
mc.mu.now = until
}
func (mc *ManualClock) resetTimer(mt *manualTimer, d time.Duration) {
mc.mu.Lock()
defer mc.mu.Unlock()
mt.mu.Lock()
defer mt.mu.Unlock()
if !mt.mu.firesAt.IsZero() {
mc.stopTimerLocked(mt)
}
mc.resetTimerLocked(mt, d)
}
func (mc *ManualClock) stopTimer(mt *manualTimer) bool {
mc.mu.Lock()
defer mc.mu.Unlock()
mt.mu.Lock()
defer mt.mu.Unlock()
if mt.mu.firesAt.IsZero() {
return false
}
mc.stopTimerLocked(mt)
return true
}
type manualTimer struct {
clock *ManualClock
f func()
mu struct {
sync.Mutex
// firesAt is the time when the timer will fire.
//
// Zero only when the timer is not active.
firesAt time.Time
}
}
var _ tcpip.Timer = (*manualTimer)(nil)
// Reset implements tcpip.Timer.Reset.
func (mt *manualTimer) Reset(d time.Duration) {
mt.clock.resetTimer(mt, d)
}
// Stop implements tcpip.Timer.Stop.
func (mt *manualTimer) Stop() bool {
return mt.clock.stopTimer(mt)
}
type timeHeap []time.Time
var _ heap.Interface = (*timeHeap)(nil)
func (h timeHeap) Len() int {
return len(h)
}
func (h timeHeap) Less(i, j int) bool {
return h[i].Before(h[j])
}
func (h timeHeap) Swap(i, j int) {
h[i], h[j] = h[j], h[i]
}
func (h *timeHeap) Push(x interface{}) {
*h = append(*h, x.(time.Time))
}
func (h *timeHeap) Pop() interface{} {
last := (*h)[len(*h)-1]
*h = (*h)[:len(*h)-1]
return last
}