blob: 27dc8baf9aad03dda48944e4c567e8bd92a975ed [file] [log] [blame]
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack_test
import (
"context"
"encoding/binary"
"fmt"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/checker"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/link/channel"
"gvisor.dev/gvisor/pkg/tcpip/network/ipv6"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/tcpip/transport/icmp"
"gvisor.dev/gvisor/pkg/tcpip/transport/udp"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
addr1 = tcpip.Address("\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01")
addr2 = tcpip.Address("\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02")
addr3 = tcpip.Address("\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03")
linkAddr1 = tcpip.LinkAddress("\x02\x02\x03\x04\x05\x06")
linkAddr2 = tcpip.LinkAddress("\x02\x02\x03\x04\x05\x07")
linkAddr3 = tcpip.LinkAddress("\x02\x02\x03\x04\x05\x08")
linkAddr4 = tcpip.LinkAddress("\x02\x02\x03\x04\x05\x09")
defaultTimeout = 100 * time.Millisecond
defaultAsyncEventTimeout = time.Second
)
var (
llAddr1 = header.LinkLocalAddr(linkAddr1)
llAddr2 = header.LinkLocalAddr(linkAddr2)
llAddr3 = header.LinkLocalAddr(linkAddr3)
llAddr4 = header.LinkLocalAddr(linkAddr4)
dstAddr = tcpip.FullAddress{
Addr: "\x0a\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01",
Port: 25,
}
)
func addrForSubnet(subnet tcpip.Subnet, linkAddr tcpip.LinkAddress) tcpip.AddressWithPrefix {
if !header.IsValidUnicastEthernetAddress(linkAddr) {
return tcpip.AddressWithPrefix{}
}
addrBytes := []byte(subnet.ID())
header.EthernetAdddressToModifiedEUI64IntoBuf(linkAddr, addrBytes[header.IIDOffsetInIPv6Address:])
return tcpip.AddressWithPrefix{
Address: tcpip.Address(addrBytes),
PrefixLen: 64,
}
}
// prefixSubnetAddr returns a prefix (Address + Length), the prefix's equivalent
// tcpip.Subnet, and an address where the lower half of the address is composed
// of the EUI-64 of linkAddr if it is a valid unicast ethernet address.
func prefixSubnetAddr(offset uint8, linkAddr tcpip.LinkAddress) (tcpip.AddressWithPrefix, tcpip.Subnet, tcpip.AddressWithPrefix) {
prefixBytes := []byte{1, 2, 3, 4, 5, 6, 7, 8 + offset, 0, 0, 0, 0, 0, 0, 0, 0}
prefix := tcpip.AddressWithPrefix{
Address: tcpip.Address(prefixBytes),
PrefixLen: 64,
}
subnet := prefix.Subnet()
return prefix, subnet, addrForSubnet(subnet, linkAddr)
}
// ndpDADEvent is a set of parameters that was passed to
// ndpDispatcher.OnDuplicateAddressDetectionStatus.
type ndpDADEvent struct {
nicID tcpip.NICID
addr tcpip.Address
resolved bool
err *tcpip.Error
}
type ndpRouterEvent struct {
nicID tcpip.NICID
addr tcpip.Address
// true if router was discovered, false if invalidated.
discovered bool
}
type ndpPrefixEvent struct {
nicID tcpip.NICID
prefix tcpip.Subnet
// true if prefix was discovered, false if invalidated.
discovered bool
}
type ndpAutoGenAddrEventType int
const (
newAddr ndpAutoGenAddrEventType = iota
deprecatedAddr
invalidatedAddr
)
type ndpAutoGenAddrEvent struct {
nicID tcpip.NICID
addr tcpip.AddressWithPrefix
eventType ndpAutoGenAddrEventType
}
type ndpRDNSS struct {
addrs []tcpip.Address
lifetime time.Duration
}
type ndpRDNSSEvent struct {
nicID tcpip.NICID
rdnss ndpRDNSS
}
type ndpDHCPv6Event struct {
nicID tcpip.NICID
configuration stack.DHCPv6ConfigurationFromNDPRA
}
var _ stack.NDPDispatcher = (*ndpDispatcher)(nil)
// ndpDispatcher implements NDPDispatcher so tests can know when various NDP
// related events happen for test purposes.
type ndpDispatcher struct {
dadC chan ndpDADEvent
routerC chan ndpRouterEvent
rememberRouter bool
prefixC chan ndpPrefixEvent
rememberPrefix bool
autoGenAddrC chan ndpAutoGenAddrEvent
rdnssC chan ndpRDNSSEvent
dhcpv6ConfigurationC chan ndpDHCPv6Event
}
// Implements stack.NDPDispatcher.OnDuplicateAddressDetectionStatus.
func (n *ndpDispatcher) OnDuplicateAddressDetectionStatus(nicID tcpip.NICID, addr tcpip.Address, resolved bool, err *tcpip.Error) {
if n.dadC != nil {
n.dadC <- ndpDADEvent{
nicID,
addr,
resolved,
err,
}
}
}
// Implements stack.NDPDispatcher.OnDefaultRouterDiscovered.
func (n *ndpDispatcher) OnDefaultRouterDiscovered(nicID tcpip.NICID, addr tcpip.Address) bool {
if c := n.routerC; c != nil {
c <- ndpRouterEvent{
nicID,
addr,
true,
}
}
return n.rememberRouter
}
// Implements stack.NDPDispatcher.OnDefaultRouterInvalidated.
func (n *ndpDispatcher) OnDefaultRouterInvalidated(nicID tcpip.NICID, addr tcpip.Address) {
if c := n.routerC; c != nil {
c <- ndpRouterEvent{
nicID,
addr,
false,
}
}
}
// Implements stack.NDPDispatcher.OnOnLinkPrefixDiscovered.
func (n *ndpDispatcher) OnOnLinkPrefixDiscovered(nicID tcpip.NICID, prefix tcpip.Subnet) bool {
if c := n.prefixC; c != nil {
c <- ndpPrefixEvent{
nicID,
prefix,
true,
}
}
return n.rememberPrefix
}
// Implements stack.NDPDispatcher.OnOnLinkPrefixInvalidated.
func (n *ndpDispatcher) OnOnLinkPrefixInvalidated(nicID tcpip.NICID, prefix tcpip.Subnet) {
if c := n.prefixC; c != nil {
c <- ndpPrefixEvent{
nicID,
prefix,
false,
}
}
}
func (n *ndpDispatcher) OnAutoGenAddress(nicID tcpip.NICID, addr tcpip.AddressWithPrefix) bool {
if c := n.autoGenAddrC; c != nil {
c <- ndpAutoGenAddrEvent{
nicID,
addr,
newAddr,
}
}
return true
}
func (n *ndpDispatcher) OnAutoGenAddressDeprecated(nicID tcpip.NICID, addr tcpip.AddressWithPrefix) {
if c := n.autoGenAddrC; c != nil {
c <- ndpAutoGenAddrEvent{
nicID,
addr,
deprecatedAddr,
}
}
}
func (n *ndpDispatcher) OnAutoGenAddressInvalidated(nicID tcpip.NICID, addr tcpip.AddressWithPrefix) {
if c := n.autoGenAddrC; c != nil {
c <- ndpAutoGenAddrEvent{
nicID,
addr,
invalidatedAddr,
}
}
}
// Implements stack.NDPDispatcher.OnRecursiveDNSServerOption.
func (n *ndpDispatcher) OnRecursiveDNSServerOption(nicID tcpip.NICID, addrs []tcpip.Address, lifetime time.Duration) {
if c := n.rdnssC; c != nil {
c <- ndpRDNSSEvent{
nicID,
ndpRDNSS{
addrs,
lifetime,
},
}
}
}
// Implements stack.NDPDispatcher.OnDHCPv6Configuration.
func (n *ndpDispatcher) OnDHCPv6Configuration(nicID tcpip.NICID, configuration stack.DHCPv6ConfigurationFromNDPRA) {
if c := n.dhcpv6ConfigurationC; c != nil {
c <- ndpDHCPv6Event{
nicID,
configuration,
}
}
}
// channelLinkWithHeaderLength is a channel.Endpoint with a configurable
// header length.
type channelLinkWithHeaderLength struct {
*channel.Endpoint
headerLength uint16
}
func (l *channelLinkWithHeaderLength) MaxHeaderLength() uint16 {
return l.headerLength
}
// Check e to make sure that the event is for addr on nic with ID 1, and the
// resolved flag set to resolved with the specified err.
func checkDADEvent(e ndpDADEvent, nicID tcpip.NICID, addr tcpip.Address, resolved bool, err *tcpip.Error) string {
return cmp.Diff(ndpDADEvent{nicID: nicID, addr: addr, resolved: resolved, err: err}, e, cmp.AllowUnexported(e))
}
// TestDADDisabled tests that an address successfully resolves immediately
// when DAD is not enabled (the default for an empty stack.Options).
func TestDADDisabled(t *testing.T) {
const nicID = 1
ndpDisp := ndpDispatcher{
dadC: make(chan ndpDADEvent, 1),
}
opts := stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPDisp: &ndpDisp,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(opts)
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
if err := s.AddAddress(nicID, header.IPv6ProtocolNumber, addr1); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID, header.IPv6ProtocolNumber, addr1, err)
}
// Should get the address immediately since we should not have performed
// DAD on it.
select {
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID, addr1, true, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected DAD event")
}
addr, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("stack.GetMainNICAddress(%d, %d) err = %s", nicID, header.IPv6ProtocolNumber, err)
}
if addr.Address != addr1 {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, addr, addr1)
}
// We should not have sent any NDP NS messages.
if got := s.Stats().ICMP.V6PacketsSent.NeighborSolicit.Value(); got != 0 {
t.Fatalf("got NeighborSolicit = %d, want = 0", got)
}
}
// TestDADResolve tests that an address successfully resolves after performing
// DAD for various values of DupAddrDetectTransmits and RetransmitTimer.
// Included in the subtests is a test to make sure that an invalid
// RetransmitTimer (<1ms) values get fixed to the default RetransmitTimer of 1s.
// This tests also validates the NDP NS packet that is transmitted.
func TestDADResolve(t *testing.T) {
const nicID = 1
tests := []struct {
name string
linkHeaderLen uint16
dupAddrDetectTransmits uint8
retransTimer time.Duration
expectedRetransmitTimer time.Duration
}{
{
name: "1:1s:1s",
dupAddrDetectTransmits: 1,
retransTimer: time.Second,
expectedRetransmitTimer: time.Second,
},
{
name: "2:1s:1s",
linkHeaderLen: 1,
dupAddrDetectTransmits: 2,
retransTimer: time.Second,
expectedRetransmitTimer: time.Second,
},
{
name: "1:2s:2s",
linkHeaderLen: 2,
dupAddrDetectTransmits: 1,
retransTimer: 2 * time.Second,
expectedRetransmitTimer: 2 * time.Second,
},
// 0s is an invalid RetransmitTimer timer and will be fixed to
// the default RetransmitTimer value of 1s.
{
name: "1:0s:1s",
linkHeaderLen: 3,
dupAddrDetectTransmits: 1,
retransTimer: 0,
expectedRetransmitTimer: time.Second,
},
}
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
ndpDisp := ndpDispatcher{
dadC: make(chan ndpDADEvent),
}
opts := stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPDisp: &ndpDisp,
}
opts.NDPConfigs.RetransmitTimer = test.retransTimer
opts.NDPConfigs.DupAddrDetectTransmits = test.dupAddrDetectTransmits
e := channelLinkWithHeaderLength{
Endpoint: channel.New(int(test.dupAddrDetectTransmits), 1280, linkAddr1),
headerLength: test.linkHeaderLen,
}
e.Endpoint.LinkEPCapabilities |= stack.CapabilityResolutionRequired
s := stack.New(opts)
if err := s.CreateNIC(nicID, &e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
if err := s.AddAddress(nicID, header.IPv6ProtocolNumber, addr1); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID, header.IPv6ProtocolNumber, addr1, err)
}
// Address should not be considered bound to the NIC yet (DAD ongoing).
addr, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
// Make sure the address does not resolve before the resolution time has
// passed.
time.Sleep(test.expectedRetransmitTimer*time.Duration(test.dupAddrDetectTransmits) - defaultAsyncEventTimeout)
addr, err = s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
// Wait for DAD to resolve.
select {
case <-time.After(2 * defaultAsyncEventTimeout):
t.Fatal("timed out waiting for DAD resolution")
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID, addr1, true, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
}
addr, err = s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if addr.Address != addr1 {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, addr, addr1)
}
// Should not have sent any more NS messages.
if got := s.Stats().ICMP.V6PacketsSent.NeighborSolicit.Value(); got != uint64(test.dupAddrDetectTransmits) {
t.Fatalf("got NeighborSolicit = %d, want = %d", got, test.dupAddrDetectTransmits)
}
// Validate the sent Neighbor Solicitation messages.
for i := uint8(0); i < test.dupAddrDetectTransmits; i++ {
p, _ := e.ReadContext(context.Background())
// Make sure its an IPv6 packet.
if p.Proto != header.IPv6ProtocolNumber {
t.Fatalf("got Proto = %d, want = %d", p.Proto, header.IPv6ProtocolNumber)
}
// Make sure the right remote link address is used.
snmc := header.SolicitedNodeAddr(addr1)
if want := header.EthernetAddressFromMulticastIPv6Address(snmc); p.Route.RemoteLinkAddress != want {
t.Errorf("got remote link address = %s, want = %s", p.Route.RemoteLinkAddress, want)
}
// Check NDP NS packet.
//
// As per RFC 4861 section 4.3, a possible option is the Source Link
// Layer option, but this option MUST NOT be included when the source
// address of the packet is the unspecified address.
checker.IPv6(t, p.Pkt.Header.View(),
checker.SrcAddr(header.IPv6Any),
checker.DstAddr(snmc),
checker.TTL(header.NDPHopLimit),
checker.NDPNS(
checker.NDPNSTargetAddress(addr1),
checker.NDPNSOptions(nil),
))
if l, want := p.Pkt.Header.AvailableLength(), int(test.linkHeaderLen); l != want {
t.Errorf("got p.Pkt.Header.AvailableLength() = %d; want = %d", l, want)
}
}
})
}
}
// TestDADFail tests to make sure that the DAD process fails if another node is
// detected to be performing DAD on the same address (receive an NS message from
// a node doing DAD for the same address), or if another node is detected to own
// the address already (receive an NA message for the tentative address).
func TestDADFail(t *testing.T) {
const nicID = 1
tests := []struct {
name string
makeBuf func(tgt tcpip.Address) buffer.Prependable
getStat func(s tcpip.ICMPv6ReceivedPacketStats) *tcpip.StatCounter
}{
{
"RxSolicit",
func(tgt tcpip.Address) buffer.Prependable {
hdr := buffer.NewPrependable(header.IPv6MinimumSize + header.ICMPv6NeighborSolicitMinimumSize)
pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborSolicitMinimumSize))
pkt.SetType(header.ICMPv6NeighborSolicit)
ns := header.NDPNeighborSolicit(pkt.NDPPayload())
ns.SetTargetAddress(tgt)
snmc := header.SolicitedNodeAddr(tgt)
pkt.SetChecksum(header.ICMPv6Checksum(pkt, header.IPv6Any, snmc, buffer.VectorisedView{}))
payloadLength := hdr.UsedLength()
ip := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
ip.Encode(&header.IPv6Fields{
PayloadLength: uint16(payloadLength),
NextHeader: uint8(icmp.ProtocolNumber6),
HopLimit: 255,
SrcAddr: header.IPv6Any,
DstAddr: snmc,
})
return hdr
},
func(s tcpip.ICMPv6ReceivedPacketStats) *tcpip.StatCounter {
return s.NeighborSolicit
},
},
{
"RxAdvert",
func(tgt tcpip.Address) buffer.Prependable {
naSize := header.ICMPv6NeighborAdvertMinimumSize + header.NDPLinkLayerAddressSize
hdr := buffer.NewPrependable(header.IPv6MinimumSize + naSize)
pkt := header.ICMPv6(hdr.Prepend(naSize))
pkt.SetType(header.ICMPv6NeighborAdvert)
na := header.NDPNeighborAdvert(pkt.NDPPayload())
na.SetSolicitedFlag(true)
na.SetOverrideFlag(true)
na.SetTargetAddress(tgt)
na.Options().Serialize(header.NDPOptionsSerializer{
header.NDPTargetLinkLayerAddressOption(linkAddr1),
})
pkt.SetChecksum(header.ICMPv6Checksum(pkt, tgt, header.IPv6AllNodesMulticastAddress, buffer.VectorisedView{}))
payloadLength := hdr.UsedLength()
ip := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
ip.Encode(&header.IPv6Fields{
PayloadLength: uint16(payloadLength),
NextHeader: uint8(icmp.ProtocolNumber6),
HopLimit: 255,
SrcAddr: tgt,
DstAddr: header.IPv6AllNodesMulticastAddress,
})
return hdr
},
func(s tcpip.ICMPv6ReceivedPacketStats) *tcpip.StatCounter {
return s.NeighborAdvert
},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
ndpDisp := ndpDispatcher{
dadC: make(chan ndpDADEvent, 1),
}
ndpConfigs := stack.DefaultNDPConfigurations()
opts := stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: ndpConfigs,
NDPDisp: &ndpDisp,
}
opts.NDPConfigs.RetransmitTimer = time.Second * 2
e := channel.New(0, 1280, linkAddr1)
s := stack.New(opts)
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
if err := s.AddAddress(nicID, header.IPv6ProtocolNumber, addr1); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID, header.IPv6ProtocolNumber, addr1, err)
}
// Address should not be considered bound to the NIC yet
// (DAD ongoing).
addr, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
// Receive a packet to simulate multiple nodes owning or
// attempting to own the same address.
hdr := test.makeBuf(addr1)
e.InjectInbound(header.IPv6ProtocolNumber, stack.PacketBuffer{
Data: hdr.View().ToVectorisedView(),
})
stat := test.getStat(s.Stats().ICMP.V6PacketsReceived)
if got := stat.Value(); got != 1 {
t.Fatalf("got stat = %d, want = 1", got)
}
// Wait for DAD to fail and make sure the address did
// not get resolved.
select {
case <-time.After(time.Duration(ndpConfigs.DupAddrDetectTransmits)*ndpConfigs.RetransmitTimer + time.Second):
// If we don't get a failure event after the
// expected resolution time + extra 1s buffer,
// something is wrong.
t.Fatal("timed out waiting for DAD failure")
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID, addr1, false, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
}
addr, err = s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
})
}
}
func TestDADStop(t *testing.T) {
const nicID = 1
tests := []struct {
name string
stopFn func(t *testing.T, s *stack.Stack)
skipFinalAddrCheck bool
}{
// Tests to make sure that DAD stops when an address is removed.
{
name: "Remove address",
stopFn: func(t *testing.T, s *stack.Stack) {
if err := s.RemoveAddress(nicID, addr1); err != nil {
t.Fatalf("RemoveAddress(%d, %s): %s", nicID, addr1, err)
}
},
},
// Tests to make sure that DAD stops when the NIC is disabled.
{
name: "Disable NIC",
stopFn: func(t *testing.T, s *stack.Stack) {
if err := s.DisableNIC(nicID); err != nil {
t.Fatalf("DisableNIC(%d): %s", nicID, err)
}
},
},
// Tests to make sure that DAD stops when the NIC is removed.
{
name: "Remove NIC",
stopFn: func(t *testing.T, s *stack.Stack) {
if err := s.RemoveNIC(nicID); err != nil {
t.Fatalf("RemoveNIC(%d): %s", nicID, err)
}
},
// The NIC is removed so we can't check its addresses after calling
// stopFn.
skipFinalAddrCheck: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
ndpDisp := ndpDispatcher{
dadC: make(chan ndpDADEvent, 1),
}
ndpConfigs := stack.NDPConfigurations{
RetransmitTimer: time.Second,
DupAddrDetectTransmits: 2,
}
opts := stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPDisp: &ndpDisp,
NDPConfigs: ndpConfigs,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(opts)
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _): %s", nicID, err)
}
if err := s.AddAddress(nicID, header.IPv6ProtocolNumber, addr1); err != nil {
t.Fatalf("AddAddress(%d, %d, %s): %s", nicID, header.IPv6ProtocolNumber, addr1, err)
}
// Address should not be considered bound to the NIC yet (DAD ongoing).
addr, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
test.stopFn(t, s)
// Wait for DAD to fail (since the address was removed during DAD).
select {
case <-time.After(time.Duration(ndpConfigs.DupAddrDetectTransmits)*ndpConfigs.RetransmitTimer + time.Second):
// If we don't get a failure event after the expected resolution
// time + extra 1s buffer, something is wrong.
t.Fatal("timed out waiting for DAD failure")
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID, addr1, false, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
}
if !test.skipFinalAddrCheck {
addr, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Errorf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID, header.IPv6ProtocolNumber, addr, want)
}
}
// Should not have sent more than 1 NS message.
if got := s.Stats().ICMP.V6PacketsSent.NeighborSolicit.Value(); got > 1 {
t.Errorf("got NeighborSolicit = %d, want <= 1", got)
}
})
}
}
// TestSetNDPConfigurationFailsForBadNICID tests to make sure we get an error if
// we attempt to update NDP configurations using an invalid NICID.
func TestSetNDPConfigurationFailsForBadNICID(t *testing.T) {
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
})
// No NIC with ID 1 yet.
if got := s.SetNDPConfigurations(1, stack.NDPConfigurations{}); got != tcpip.ErrUnknownNICID {
t.Fatalf("got s.SetNDPConfigurations = %v, want = %s", got, tcpip.ErrUnknownNICID)
}
}
// TestSetNDPConfigurations tests that we can update and use per-interface NDP
// configurations without affecting the default NDP configurations or other
// interfaces' configurations.
func TestSetNDPConfigurations(t *testing.T) {
const nicID1 = 1
const nicID2 = 2
const nicID3 = 3
tests := []struct {
name string
dupAddrDetectTransmits uint8
retransmitTimer time.Duration
expectedRetransmitTimer time.Duration
}{
{
"OK",
1,
time.Second,
time.Second,
},
{
"Invalid Retransmit Timer",
1,
0,
time.Second,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
ndpDisp := ndpDispatcher{
dadC: make(chan ndpDADEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPDisp: &ndpDisp,
})
expectDADEvent := func(nicID tcpip.NICID, addr tcpip.Address) {
select {
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID, addr, true, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatalf("expected DAD event for %s", addr)
}
}
// This NIC(1)'s NDP configurations will be updated to
// be different from the default.
if err := s.CreateNIC(nicID1, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID1, err)
}
// Created before updating NIC(1)'s NDP configurations
// but updating NIC(1)'s NDP configurations should not
// affect other existing NICs.
if err := s.CreateNIC(nicID2, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID2, err)
}
// Update the NDP configurations on NIC(1) to use DAD.
configs := stack.NDPConfigurations{
DupAddrDetectTransmits: test.dupAddrDetectTransmits,
RetransmitTimer: test.retransmitTimer,
}
if err := s.SetNDPConfigurations(nicID1, configs); err != nil {
t.Fatalf("got SetNDPConfigurations(%d, _) = %s", nicID1, err)
}
// Created after updating NIC(1)'s NDP configurations
// but the stack's default NDP configurations should not
// have been updated.
if err := s.CreateNIC(nicID3, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID3, err)
}
// Add addresses for each NIC.
if err := s.AddAddress(nicID1, header.IPv6ProtocolNumber, addr1); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID1, header.IPv6ProtocolNumber, addr1, err)
}
if err := s.AddAddress(nicID2, header.IPv6ProtocolNumber, addr2); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID2, header.IPv6ProtocolNumber, addr2, err)
}
expectDADEvent(nicID2, addr2)
if err := s.AddAddress(nicID3, header.IPv6ProtocolNumber, addr3); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID3, header.IPv6ProtocolNumber, addr3, err)
}
expectDADEvent(nicID3, addr3)
// Address should not be considered bound to NIC(1) yet
// (DAD ongoing).
addr, err := s.GetMainNICAddress(nicID1, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID1, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID1, header.IPv6ProtocolNumber, addr, want)
}
// Should get the address on NIC(2) and NIC(3)
// immediately since we should not have performed DAD on
// it as the stack was configured to not do DAD by
// default and we only updated the NDP configurations on
// NIC(1).
addr, err = s.GetMainNICAddress(nicID2, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID2, header.IPv6ProtocolNumber, err)
}
if addr.Address != addr2 {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = %s, want = %s", nicID2, header.IPv6ProtocolNumber, addr, addr2)
}
addr, err = s.GetMainNICAddress(nicID3, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID3, header.IPv6ProtocolNumber, err)
}
if addr.Address != addr3 {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = %s, want = %s", nicID3, header.IPv6ProtocolNumber, addr, addr3)
}
// Sleep until right (500ms before) before resolution to
// make sure the address didn't resolve on NIC(1) yet.
const delta = 500 * time.Millisecond
time.Sleep(time.Duration(test.dupAddrDetectTransmits)*test.expectedRetransmitTimer - delta)
addr, err = s.GetMainNICAddress(nicID1, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID1, header.IPv6ProtocolNumber, err)
}
if want := (tcpip.AddressWithPrefix{}); addr != want {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (%s, nil), want = (%s, nil)", nicID1, header.IPv6ProtocolNumber, addr, want)
}
// Wait for DAD to resolve.
select {
case <-time.After(2 * delta):
// We should get a resolution event after 500ms
// (delta) since we wait for 500ms less than the
// expected resolution time above to make sure
// that the address did not yet resolve. Waiting
// for 1s (2x delta) without a resolution event
// means something is wrong.
t.Fatal("timed out waiting for DAD resolution")
case e := <-ndpDisp.dadC:
if diff := checkDADEvent(e, nicID1, addr1, true, nil); diff != "" {
t.Errorf("dad event mismatch (-want +got):\n%s", diff)
}
}
addr, err = s.GetMainNICAddress(nicID1, header.IPv6ProtocolNumber)
if err != nil {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = (_, %v), want = (_, nil)", nicID1, header.IPv6ProtocolNumber, err)
}
if addr.Address != addr1 {
t.Fatalf("got stack.GetMainNICAddress(%d, %d) = %s, want = %s", nicID1, header.IPv6ProtocolNumber, addr, addr1)
}
})
}
}
// raBufWithOptsAndDHCPv6 returns a valid NDP Router Advertisement with options
// and DHCPv6 configurations specified.
func raBufWithOptsAndDHCPv6(ip tcpip.Address, rl uint16, managedAddress, otherConfigurations bool, optSer header.NDPOptionsSerializer) stack.PacketBuffer {
icmpSize := header.ICMPv6HeaderSize + header.NDPRAMinimumSize + int(optSer.Length())
hdr := buffer.NewPrependable(header.IPv6MinimumSize + icmpSize)
pkt := header.ICMPv6(hdr.Prepend(icmpSize))
pkt.SetType(header.ICMPv6RouterAdvert)
pkt.SetCode(0)
raPayload := pkt.NDPPayload()
ra := header.NDPRouterAdvert(raPayload)
// Populate the Router Lifetime.
binary.BigEndian.PutUint16(raPayload[2:], rl)
// Populate the Managed Address flag field.
if managedAddress {
// The Managed Addresses flag field is the 7th bit of byte #1 (0-indexing)
// of the RA payload.
raPayload[1] |= (1 << 7)
}
// Populate the Other Configurations flag field.
if otherConfigurations {
// The Other Configurations flag field is the 6th bit of byte #1
// (0-indexing) of the RA payload.
raPayload[1] |= (1 << 6)
}
opts := ra.Options()
opts.Serialize(optSer)
pkt.SetChecksum(header.ICMPv6Checksum(pkt, ip, header.IPv6AllNodesMulticastAddress, buffer.VectorisedView{}))
payloadLength := hdr.UsedLength()
iph := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
iph.Encode(&header.IPv6Fields{
PayloadLength: uint16(payloadLength),
NextHeader: uint8(icmp.ProtocolNumber6),
HopLimit: header.NDPHopLimit,
SrcAddr: ip,
DstAddr: header.IPv6AllNodesMulticastAddress,
})
return stack.PacketBuffer{Data: hdr.View().ToVectorisedView()}
}
// raBufWithOpts returns a valid NDP Router Advertisement with options.
//
// Note, raBufWithOpts does not populate any of the RA fields other than the
// Router Lifetime.
func raBufWithOpts(ip tcpip.Address, rl uint16, optSer header.NDPOptionsSerializer) stack.PacketBuffer {
return raBufWithOptsAndDHCPv6(ip, rl, false, false, optSer)
}
// raBufWithDHCPv6 returns a valid NDP Router Advertisement with DHCPv6 related
// fields set.
//
// Note, raBufWithDHCPv6 does not populate any of the RA fields other than the
// DHCPv6 related ones.
func raBufWithDHCPv6(ip tcpip.Address, managedAddresses, otherConfiguratiosns bool) stack.PacketBuffer {
return raBufWithOptsAndDHCPv6(ip, 0, managedAddresses, otherConfiguratiosns, header.NDPOptionsSerializer{})
}
// raBuf returns a valid NDP Router Advertisement.
//
// Note, raBuf does not populate any of the RA fields other than the
// Router Lifetime.
func raBuf(ip tcpip.Address, rl uint16) stack.PacketBuffer {
return raBufWithOpts(ip, rl, header.NDPOptionsSerializer{})
}
// raBufWithPI returns a valid NDP Router Advertisement with a single Prefix
// Information option.
//
// Note, raBufWithPI does not populate any of the RA fields other than the
// Router Lifetime.
func raBufWithPI(ip tcpip.Address, rl uint16, prefix tcpip.AddressWithPrefix, onLink, auto bool, vl, pl uint32) stack.PacketBuffer {
flags := uint8(0)
if onLink {
// The OnLink flag is the 7th bit in the flags byte.
flags |= 1 << 7
}
if auto {
// The Address Auto-Configuration flag is the 6th bit in the
// flags byte.
flags |= 1 << 6
}
// A valid header.NDPPrefixInformation must be 30 bytes.
buf := [30]byte{}
// The first byte in a header.NDPPrefixInformation is the Prefix Length
// field.
buf[0] = uint8(prefix.PrefixLen)
// The 2nd byte within a header.NDPPrefixInformation is the Flags field.
buf[1] = flags
// The Valid Lifetime field starts after the 2nd byte within a
// header.NDPPrefixInformation.
binary.BigEndian.PutUint32(buf[2:], vl)
// The Preferred Lifetime field starts after the 6th byte within a
// header.NDPPrefixInformation.
binary.BigEndian.PutUint32(buf[6:], pl)
// The Prefix Address field starts after the 14th byte within a
// header.NDPPrefixInformation.
copy(buf[14:], prefix.Address)
return raBufWithOpts(ip, rl, header.NDPOptionsSerializer{
header.NDPPrefixInformation(buf[:]),
})
}
// TestNoRouterDiscovery tests that router discovery will not be performed if
// configured not to.
func TestNoRouterDiscovery(t *testing.T) {
// Being configured to discover routers means handle and
// discover are set to true and forwarding is set to false.
// This tests all possible combinations of the configurations,
// except for the configuration where handle = true, discover =
// true and forwarding = false (the required configuration to do
// router discovery) - that will done in other tests.
for i := 0; i < 7; i++ {
handle := i&1 != 0
discover := i&2 != 0
forwarding := i&4 == 0
t.Run(fmt.Sprintf("HandleRAs(%t), DiscoverDefaultRouters(%t), Forwarding(%t)", handle, discover, forwarding), func(t *testing.T) {
ndpDisp := ndpDispatcher{
routerC: make(chan ndpRouterEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: handle,
DiscoverDefaultRouters: discover,
},
NDPDisp: &ndpDisp,
})
s.SetForwarding(forwarding)
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Rx an RA with non-zero lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, 1000))
select {
case <-ndpDisp.routerC:
t.Fatal("unexpectedly discovered a router when configured not to")
default:
}
})
}
}
// Check e to make sure that the event is for addr on nic with ID 1, and the
// discovered flag set to discovered.
func checkRouterEvent(e ndpRouterEvent, addr tcpip.Address, discovered bool) string {
return cmp.Diff(ndpRouterEvent{nicID: 1, addr: addr, discovered: discovered}, e, cmp.AllowUnexported(e))
}
// TestRouterDiscoveryDispatcherNoRemember tests that the stack does not
// remember a discovered router when the dispatcher asks it not to.
func TestRouterDiscoveryDispatcherNoRemember(t *testing.T) {
ndpDisp := ndpDispatcher{
routerC: make(chan ndpRouterEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Receive an RA for a router we should not remember.
const lifetimeSeconds = 1
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, lifetimeSeconds))
select {
case e := <-ndpDisp.routerC:
if diff := checkRouterEvent(e, llAddr2, true); diff != "" {
t.Errorf("router event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected router discovery event")
}
// Wait for the invalidation time plus some buffer to make sure we do
// not actually receive any invalidation events as we should not have
// remembered the router in the first place.
select {
case <-ndpDisp.routerC:
t.Fatal("should not have received any router events")
case <-time.After(lifetimeSeconds*time.Second + defaultTimeout):
}
}
func TestRouterDiscovery(t *testing.T) {
ndpDisp := ndpDispatcher{
routerC: make(chan ndpRouterEvent, 1),
rememberRouter: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: true,
},
NDPDisp: &ndpDisp,
})
expectRouterEvent := func(addr tcpip.Address, discovered bool) {
t.Helper()
select {
case e := <-ndpDisp.routerC:
if diff := checkRouterEvent(e, addr, discovered); diff != "" {
t.Errorf("router event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected router discovery event")
}
}
expectAsyncRouterInvalidationEvent := func(addr tcpip.Address, timeout time.Duration) {
t.Helper()
select {
case e := <-ndpDisp.routerC:
if diff := checkRouterEvent(e, addr, false); diff != "" {
t.Errorf("router event mismatch (-want +got):\n%s", diff)
}
case <-time.After(timeout):
t.Fatal("timed out waiting for router discovery event")
}
}
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Rx an RA from lladdr2 with zero lifetime. It should not be
// remembered.
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, 0))
select {
case <-ndpDisp.routerC:
t.Fatal("unexpectedly discovered a router with 0 lifetime")
default:
}
// Rx an RA from lladdr2 with a huge lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, 1000))
expectRouterEvent(llAddr2, true)
// Rx an RA from another router (lladdr3) with non-zero lifetime.
const l3LifetimeSeconds = 6
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr3, l3LifetimeSeconds))
expectRouterEvent(llAddr3, true)
// Rx an RA from lladdr2 with lesser lifetime.
const l2LifetimeSeconds = 2
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, l2LifetimeSeconds))
select {
case <-ndpDisp.routerC:
t.Fatal("Should not receive a router event when updating lifetimes for known routers")
default:
}
// Wait for lladdr2's router invalidation timer to fire. The lifetime
// of the router should have been updated to the most recent (smaller)
// lifetime.
//
// Wait for the normal lifetime plus an extra bit for the
// router to get invalidated. If we don't get an invalidation
// event after this time, then something is wrong.
expectAsyncRouterInvalidationEvent(llAddr2, l2LifetimeSeconds*time.Second+defaultAsyncEventTimeout)
// Rx an RA from lladdr2 with huge lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, 1000))
expectRouterEvent(llAddr2, true)
// Rx an RA from lladdr2 with zero lifetime. It should be invalidated.
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr2, 0))
expectRouterEvent(llAddr2, false)
// Wait for lladdr3's router invalidation timer to fire. The lifetime
// of the router should have been updated to the most recent (smaller)
// lifetime.
//
// Wait for the normal lifetime plus an extra bit for the
// router to get invalidated. If we don't get an invalidation
// event after this time, then something is wrong.
expectAsyncRouterInvalidationEvent(llAddr3, l3LifetimeSeconds*time.Second+defaultAsyncEventTimeout)
}
// TestRouterDiscoveryMaxRouters tests that only
// stack.MaxDiscoveredDefaultRouters discovered routers are remembered.
func TestRouterDiscoveryMaxRouters(t *testing.T) {
ndpDisp := ndpDispatcher{
routerC: make(chan ndpRouterEvent, 1),
rememberRouter: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Receive an RA from 2 more than the max number of discovered routers.
for i := 1; i <= stack.MaxDiscoveredDefaultRouters+2; i++ {
linkAddr := []byte{2, 2, 3, 4, 5, 0}
linkAddr[5] = byte(i)
llAddr := header.LinkLocalAddr(tcpip.LinkAddress(linkAddr))
e.InjectInbound(header.IPv6ProtocolNumber, raBuf(llAddr, 5))
if i <= stack.MaxDiscoveredDefaultRouters {
select {
case e := <-ndpDisp.routerC:
if diff := checkRouterEvent(e, llAddr, true); diff != "" {
t.Errorf("router event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected router discovery event")
}
} else {
select {
case <-ndpDisp.routerC:
t.Fatal("should not have discovered a new router after we already discovered the max number of routers")
default:
}
}
}
}
// TestNoPrefixDiscovery tests that prefix discovery will not be performed if
// configured not to.
func TestNoPrefixDiscovery(t *testing.T) {
prefix := tcpip.AddressWithPrefix{
Address: tcpip.Address("\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x00"),
PrefixLen: 64,
}
// Being configured to discover prefixes means handle and
// discover are set to true and forwarding is set to false.
// This tests all possible combinations of the configurations,
// except for the configuration where handle = true, discover =
// true and forwarding = false (the required configuration to do
// prefix discovery) - that will done in other tests.
for i := 0; i < 7; i++ {
handle := i&1 != 0
discover := i&2 != 0
forwarding := i&4 == 0
t.Run(fmt.Sprintf("HandleRAs(%t), DiscoverOnLinkPrefixes(%t), Forwarding(%t)", handle, discover, forwarding), func(t *testing.T) {
ndpDisp := ndpDispatcher{
prefixC: make(chan ndpPrefixEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: handle,
DiscoverOnLinkPrefixes: discover,
},
NDPDisp: &ndpDisp,
})
s.SetForwarding(forwarding)
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Rx an RA with prefix with non-zero lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, 10, 0))
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly discovered a prefix when configured not to")
default:
}
})
}
}
// Check e to make sure that the event is for prefix on nic with ID 1, and the
// discovered flag set to discovered.
func checkPrefixEvent(e ndpPrefixEvent, prefix tcpip.Subnet, discovered bool) string {
return cmp.Diff(ndpPrefixEvent{nicID: 1, prefix: prefix, discovered: discovered}, e, cmp.AllowUnexported(e))
}
// TestPrefixDiscoveryDispatcherNoRemember tests that the stack does not
// remember a discovered on-link prefix when the dispatcher asks it not to.
func TestPrefixDiscoveryDispatcherNoRemember(t *testing.T) {
prefix, subnet, _ := prefixSubnetAddr(0, "")
ndpDisp := ndpDispatcher{
prefixC: make(chan ndpPrefixEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: false,
DiscoverOnLinkPrefixes: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Receive an RA with prefix that we should not remember.
const lifetimeSeconds = 1
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, lifetimeSeconds, 0))
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, subnet, true); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected prefix discovery event")
}
// Wait for the invalidation time plus some buffer to make sure we do
// not actually receive any invalidation events as we should not have
// remembered the prefix in the first place.
select {
case <-ndpDisp.prefixC:
t.Fatal("should not have received any prefix events")
case <-time.After(lifetimeSeconds*time.Second + defaultTimeout):
}
}
func TestPrefixDiscovery(t *testing.T) {
prefix1, subnet1, _ := prefixSubnetAddr(0, "")
prefix2, subnet2, _ := prefixSubnetAddr(1, "")
prefix3, subnet3, _ := prefixSubnetAddr(2, "")
ndpDisp := ndpDispatcher{
prefixC: make(chan ndpPrefixEvent, 1),
rememberPrefix: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverOnLinkPrefixes: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
expectPrefixEvent := func(prefix tcpip.Subnet, discovered bool) {
t.Helper()
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, prefix, discovered); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected prefix discovery event")
}
}
// Receive an RA with prefix1 in an NDP Prefix Information option (PI)
// with zero valid lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, false, 0, 0))
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly discovered a prefix with 0 lifetime")
default:
}
// Receive an RA with prefix1 in an NDP Prefix Information option (PI)
// with non-zero lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, false, 100, 0))
expectPrefixEvent(subnet1, true)
// Receive an RA with prefix2 in a PI.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, false, 100, 0))
expectPrefixEvent(subnet2, true)
// Receive an RA with prefix3 in a PI.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix3, true, false, 100, 0))
expectPrefixEvent(subnet3, true)
// Receive an RA with prefix1 in a PI with lifetime = 0.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, false, 0, 0))
expectPrefixEvent(subnet1, false)
// Receive an RA with prefix2 in a PI with lesser lifetime.
lifetime := uint32(2)
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, false, lifetime, 0))
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly received prefix event when updating lifetime")
default:
}
// Wait for prefix2's most recent invalidation timer plus some buffer to
// expire.
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, subnet2, false); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
case <-time.After(time.Duration(lifetime)*time.Second + defaultAsyncEventTimeout):
t.Fatal("timed out waiting for prefix discovery event")
}
// Receive RA to invalidate prefix3.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix3, true, false, 0, 0))
expectPrefixEvent(subnet3, false)
}
func TestPrefixDiscoveryWithInfiniteLifetime(t *testing.T) {
// Update the infinite lifetime value to a smaller value so we can test
// that when we receive a PI with such a lifetime value, we do not
// invalidate the prefix.
const testInfiniteLifetimeSeconds = 2
const testInfiniteLifetime = testInfiniteLifetimeSeconds * time.Second
saved := header.NDPInfiniteLifetime
header.NDPInfiniteLifetime = testInfiniteLifetime
defer func() {
header.NDPInfiniteLifetime = saved
}()
prefix := tcpip.AddressWithPrefix{
Address: tcpip.Address("\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x00"),
PrefixLen: 64,
}
subnet := prefix.Subnet()
ndpDisp := ndpDispatcher{
prefixC: make(chan ndpPrefixEvent, 1),
rememberPrefix: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverOnLinkPrefixes: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
expectPrefixEvent := func(prefix tcpip.Subnet, discovered bool) {
t.Helper()
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, prefix, discovered); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected prefix discovery event")
}
}
// Receive an RA with prefix in an NDP Prefix Information option (PI)
// with infinite valid lifetime which should not get invalidated.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, testInfiniteLifetimeSeconds, 0))
expectPrefixEvent(subnet, true)
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly invalidated a prefix with infinite lifetime")
case <-time.After(testInfiniteLifetime + defaultTimeout):
}
// Receive an RA with finite lifetime.
// The prefix should get invalidated after 1s.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, testInfiniteLifetimeSeconds-1, 0))
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, subnet, false); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
case <-time.After(testInfiniteLifetime):
t.Fatal("timed out waiting for prefix discovery event")
}
// Receive an RA with finite lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, testInfiniteLifetimeSeconds-1, 0))
expectPrefixEvent(subnet, true)
// Receive an RA with prefix with an infinite lifetime.
// The prefix should not be invalidated.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, testInfiniteLifetimeSeconds, 0))
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly invalidated a prefix with infinite lifetime")
case <-time.After(testInfiniteLifetime + defaultTimeout):
}
// Receive an RA with a prefix with a lifetime value greater than the
// set infinite lifetime value.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, testInfiniteLifetimeSeconds+1, 0))
select {
case <-ndpDisp.prefixC:
t.Fatal("unexpectedly invalidated a prefix with infinite lifetime")
case <-time.After((testInfiniteLifetimeSeconds+1)*time.Second + defaultTimeout):
}
// Receive an RA with 0 lifetime.
// The prefix should get invalidated.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, false, 0, 0))
expectPrefixEvent(subnet, false)
}
// TestPrefixDiscoveryMaxRouters tests that only
// stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are remembered.
func TestPrefixDiscoveryMaxOnLinkPrefixes(t *testing.T) {
ndpDisp := ndpDispatcher{
prefixC: make(chan ndpPrefixEvent, stack.MaxDiscoveredOnLinkPrefixes+3),
rememberPrefix: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: false,
DiscoverOnLinkPrefixes: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
optSer := make(header.NDPOptionsSerializer, stack.MaxDiscoveredOnLinkPrefixes+2)
prefixes := [stack.MaxDiscoveredOnLinkPrefixes + 2]tcpip.Subnet{}
// Receive an RA with 2 more than the max number of discovered on-link
// prefixes.
for i := 0; i < stack.MaxDiscoveredOnLinkPrefixes+2; i++ {
prefixAddr := [16]byte{1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0}
prefixAddr[7] = byte(i)
prefix := tcpip.AddressWithPrefix{
Address: tcpip.Address(prefixAddr[:]),
PrefixLen: 64,
}
prefixes[i] = prefix.Subnet()
buf := [30]byte{}
buf[0] = uint8(prefix.PrefixLen)
buf[1] = 128
binary.BigEndian.PutUint32(buf[2:], 10)
copy(buf[14:], prefix.Address)
optSer[i] = header.NDPPrefixInformation(buf[:])
}
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithOpts(llAddr1, 0, optSer))
for i := 0; i < stack.MaxDiscoveredOnLinkPrefixes+2; i++ {
if i < stack.MaxDiscoveredOnLinkPrefixes {
select {
case e := <-ndpDisp.prefixC:
if diff := checkPrefixEvent(e, prefixes[i], true); diff != "" {
t.Errorf("prefix event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected prefix discovery event")
}
} else {
select {
case <-ndpDisp.prefixC:
t.Fatal("should not have discovered a new prefix after we already discovered the max number of prefixes")
default:
}
}
}
}
// Checks to see if list contains an IPv6 address, item.
func containsV6Addr(list []tcpip.ProtocolAddress, item tcpip.AddressWithPrefix) bool {
protocolAddress := tcpip.ProtocolAddress{
Protocol: header.IPv6ProtocolNumber,
AddressWithPrefix: item,
}
for _, i := range list {
if i == protocolAddress {
return true
}
}
return false
}
// TestNoAutoGenAddr tests that SLAAC is not performed when configured not to.
func TestNoAutoGenAddr(t *testing.T) {
prefix, _, _ := prefixSubnetAddr(0, "")
// Being configured to auto-generate addresses means handle and
// autogen are set to true and forwarding is set to false.
// This tests all possible combinations of the configurations,
// except for the configuration where handle = true, autogen =
// true and forwarding = false (the required configuration to do
// SLAAC) - that will done in other tests.
for i := 0; i < 7; i++ {
handle := i&1 != 0
autogen := i&2 != 0
forwarding := i&4 == 0
t.Run(fmt.Sprintf("HandleRAs(%t), AutoGenAddr(%t), Forwarding(%t)", handle, autogen, forwarding), func(t *testing.T) {
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: handle,
AutoGenGlobalAddresses: autogen,
},
NDPDisp: &ndpDisp,
})
s.SetForwarding(forwarding)
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Rx an RA with prefix with non-zero lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, false, true, 10, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly auto-generated an address when configured not to")
default:
}
})
}
}
// Check e to make sure that the event is for addr on nic with ID 1, and the
// event type is set to eventType.
func checkAutoGenAddrEvent(e ndpAutoGenAddrEvent, addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) string {
return cmp.Diff(ndpAutoGenAddrEvent{nicID: 1, addr: addr, eventType: eventType}, e, cmp.AllowUnexported(e))
}
// TestAutoGenAddr tests that an address is properly generated and invalidated
// when configured to do so.
func TestAutoGenAddr(t *testing.T) {
const newMinVL = 2
newMinVLDuration := newMinVL * time.Second
saved := stack.MinPrefixInformationValidLifetimeForUpdate
defer func() {
stack.MinPrefixInformationValidLifetimeForUpdate = saved
}()
stack.MinPrefixInformationValidLifetimeForUpdate = newMinVLDuration
prefix1, _, addr1 := prefixSubnetAddr(0, linkAddr1)
prefix2, _, addr2 := prefixSubnetAddr(1, linkAddr1)
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
// Receive an RA with prefix1 in an NDP Prefix Information option (PI)
// with zero valid lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 0, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly auto-generated an address with 0 lifetime")
default:
}
// Receive an RA with prefix1 in an NDP Prefix Information option (PI)
// with non-zero lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 100, 0))
expectAutoGenAddrEvent(addr1, newAddr)
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr1) {
t.Fatalf("Should have %s in the list of addresses", addr1)
}
// Receive an RA with prefix2 in an NDP Prefix Information option (PI)
// with preferred lifetime > valid lifetime
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 5, 6))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly auto-generated an address with preferred lifetime > valid lifetime")
default:
}
// Receive an RA with prefix2 in a PI.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 0))
expectAutoGenAddrEvent(addr2, newAddr)
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr1) {
t.Fatalf("Should have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr2) {
t.Fatalf("Should have %s in the list of addresses", addr2)
}
// Refresh valid lifetime for addr of prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, newMinVL, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly auto-generated an address when we already have an address for a prefix")
default:
}
// Wait for addr of prefix1 to be invalidated.
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr1, invalidatedAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(newMinVLDuration + defaultAsyncEventTimeout):
t.Fatal("timed out waiting for addr auto gen event")
}
if containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr1) {
t.Fatalf("Should not have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr2) {
t.Fatalf("Should have %s in the list of addresses", addr2)
}
}
// stackAndNdpDispatcherWithDefaultRoute returns an ndpDispatcher,
// channel.Endpoint and stack.Stack.
//
// stack.Stack will have a default route through the router (llAddr3) installed
// and a static link-address (linkAddr3) added to the link address cache for the
// router.
func stackAndNdpDispatcherWithDefaultRoute(t *testing.T, nicID tcpip.NICID) (*ndpDispatcher, *channel.Endpoint, *stack.Stack) {
t.Helper()
ndpDisp := &ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
TransportProtocols: []stack.TransportProtocol{udp.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: ndpDisp,
})
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
s.SetRouteTable([]tcpip.Route{{
Destination: header.IPv6EmptySubnet,
Gateway: llAddr3,
NIC: nicID,
}})
s.AddLinkAddress(nicID, llAddr3, linkAddr3)
return ndpDisp, e, s
}
// addrForNewConnectionTo returns the local address used when creating a new
// connection to addr.
func addrForNewConnectionTo(t *testing.T, s *stack.Stack, addr tcpip.FullAddress) tcpip.Address {
t.Helper()
wq := waiter.Queue{}
we, ch := waiter.NewChannelEntry(nil)
wq.EventRegister(&we, waiter.EventIn)
defer wq.EventUnregister(&we)
defer close(ch)
ep, err := s.NewEndpoint(header.UDPProtocolNumber, header.IPv6ProtocolNumber, &wq)
if err != nil {
t.Fatalf("s.NewEndpoint(%d, %d, _): %s", header.UDPProtocolNumber, header.IPv6ProtocolNumber, err)
}
defer ep.Close()
if err := ep.SetSockOptBool(tcpip.V6OnlyOption, true); err != nil {
t.Fatalf("SetSockOpt(tcpip.V6OnlyOption, true): %s", err)
}
if err := ep.Connect(addr); err != nil {
t.Fatalf("ep.Connect(%+v): %s", addr, err)
}
got, err := ep.GetLocalAddress()
if err != nil {
t.Fatalf("ep.GetLocalAddress(): %s", err)
}
return got.Addr
}
// addrForNewConnection returns the local address used when creating a new
// connection.
func addrForNewConnection(t *testing.T, s *stack.Stack) tcpip.Address {
t.Helper()
return addrForNewConnectionTo(t, s, dstAddr)
}
// addrForNewConnectionWithAddr returns the local address used when creating a
// new connection with a specific local address.
func addrForNewConnectionWithAddr(t *testing.T, s *stack.Stack, addr tcpip.FullAddress) tcpip.Address {
t.Helper()
wq := waiter.Queue{}
we, ch := waiter.NewChannelEntry(nil)
wq.EventRegister(&we, waiter.EventIn)
defer wq.EventUnregister(&we)
defer close(ch)
ep, err := s.NewEndpoint(header.UDPProtocolNumber, header.IPv6ProtocolNumber, &wq)
if err != nil {
t.Fatalf("s.NewEndpoint(%d, %d, _): %s", header.UDPProtocolNumber, header.IPv6ProtocolNumber, err)
}
defer ep.Close()
if err := ep.SetSockOptBool(tcpip.V6OnlyOption, true); err != nil {
t.Fatalf("SetSockOpt(tcpip.V6OnlyOption, true): %s", err)
}
if err := ep.Bind(addr); err != nil {
t.Fatalf("ep.Bind(%+v): %s", addr, err)
}
if err := ep.Connect(dstAddr); err != nil {
t.Fatalf("ep.Connect(%+v): %s", dstAddr, err)
}
got, err := ep.GetLocalAddress()
if err != nil {
t.Fatalf("ep.GetLocalAddress(): %s", err)
}
return got.Addr
}
// TestAutoGenAddrDeprecateFromPI tests deprecating a SLAAC address when
// receiving a PI with 0 preferred lifetime.
func TestAutoGenAddrDeprecateFromPI(t *testing.T) {
const nicID = 1
prefix1, _, addr1 := prefixSubnetAddr(0, linkAddr1)
prefix2, _, addr2 := prefixSubnetAddr(1, linkAddr1)
ndpDisp, e, s := stackAndNdpDispatcherWithDefaultRoute(t, nicID)
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
expectPrimaryAddr := func(addr tcpip.AddressWithPrefix) {
t.Helper()
if got, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber); err != nil {
t.Fatalf("s.GetMainNICAddress(%d, %d): %s", nicID, header.IPv6ProtocolNumber, err)
} else if got != addr {
t.Errorf("got s.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, got, addr)
}
if got := addrForNewConnection(t, s); got != addr.Address {
t.Errorf("got addrForNewConnection = %s, want = %s", got, addr.Address)
}
}
// Receive PI for prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 100, 100))
expectAutoGenAddrEvent(addr1, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should have %s in the list of addresses", addr1)
}
expectPrimaryAddr(addr1)
// Deprecate addr for prefix1 immedaitely.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 100, 0))
expectAutoGenAddrEvent(addr1, deprecatedAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should have %s in the list of addresses", addr1)
}
// addr should still be the primary endpoint as there are no other addresses.
expectPrimaryAddr(addr1)
// Refresh lifetimes of addr generated from prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 100, 100))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
expectPrimaryAddr(addr1)
// Receive PI for prefix2.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 100))
expectAutoGenAddrEvent(addr2, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
expectPrimaryAddr(addr2)
// Deprecate addr for prefix2 immedaitely.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 0))
expectAutoGenAddrEvent(addr2, deprecatedAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
// addr1 should be the primary endpoint now since addr2 is deprecated but
// addr1 is not.
expectPrimaryAddr(addr1)
// addr2 is deprecated but if explicitly requested, it should be used.
fullAddr2 := tcpip.FullAddress{Addr: addr2.Address, NIC: nicID}
if got := addrForNewConnectionWithAddr(t, s, fullAddr2); got != addr2.Address {
t.Errorf("got addrForNewConnectionWithAddr(_, _, %+v) = %s, want = %s", got, addr2.Address)
}
// Another PI w/ 0 preferred lifetime should not result in a deprecation
// event.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
expectPrimaryAddr(addr1)
if got := addrForNewConnectionWithAddr(t, s, fullAddr2); got != addr2.Address {
t.Errorf("got addrForNewConnectionWithAddr(_, _, %+v) = %s, want = %s", got, addr2.Address)
}
// Refresh lifetimes of addr generated from prefix2.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 100))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
expectPrimaryAddr(addr2)
}
// TestAutoGenAddrTimerDeprecation tests that an address is properly deprecated
// when its preferred lifetime expires.
func TestAutoGenAddrTimerDeprecation(t *testing.T) {
const nicID = 1
const newMinVL = 2
newMinVLDuration := newMinVL * time.Second
saved := stack.MinPrefixInformationValidLifetimeForUpdate
defer func() {
stack.MinPrefixInformationValidLifetimeForUpdate = saved
}()
stack.MinPrefixInformationValidLifetimeForUpdate = newMinVLDuration
prefix1, _, addr1 := prefixSubnetAddr(0, linkAddr1)
prefix2, _, addr2 := prefixSubnetAddr(1, linkAddr1)
ndpDisp, e, s := stackAndNdpDispatcherWithDefaultRoute(t, nicID)
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
expectAutoGenAddrEventAfter := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType, timeout time.Duration) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(timeout):
t.Fatal("timed out waiting for addr auto gen event")
}
}
expectPrimaryAddr := func(addr tcpip.AddressWithPrefix) {
t.Helper()
if got, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber); err != nil {
t.Fatalf("s.GetMainNICAddress(%d, %d): %s", nicID, header.IPv6ProtocolNumber, err)
} else if got != addr {
t.Errorf("got s.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, got, addr)
}
if got := addrForNewConnection(t, s); got != addr.Address {
t.Errorf("got addrForNewConnection = %s, want = %s", got, addr.Address)
}
}
// Receive PI for prefix2.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 100))
expectAutoGenAddrEvent(addr2, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
expectPrimaryAddr(addr2)
// Receive a PI for prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, 100, 90))
expectAutoGenAddrEvent(addr1, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
expectPrimaryAddr(addr1)
// Refresh lifetime for addr of prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, newMinVL, newMinVL-1))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
expectPrimaryAddr(addr1)
// Wait for addr of prefix1 to be deprecated.
expectAutoGenAddrEventAfter(addr1, deprecatedAddr, newMinVLDuration-time.Second+defaultAsyncEventTimeout)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should not have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
// addr2 should be the primary endpoint now since addr1 is deprecated but
// addr2 is not.
expectPrimaryAddr(addr2)
// addr1 is deprecated but if explicitly requested, it should be used.
fullAddr1 := tcpip.FullAddress{Addr: addr1.Address, NIC: nicID}
if got := addrForNewConnectionWithAddr(t, s, fullAddr1); got != addr1.Address {
t.Errorf("got addrForNewConnectionWithAddr(_, _, %+v) = %s, want = %s", got, addr1.Address)
}
// Refresh valid lifetime for addr of prefix1, w/ 0 preferred lifetime to make
// sure we do not get a deprecation event again.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, newMinVL, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
expectPrimaryAddr(addr2)
if got := addrForNewConnectionWithAddr(t, s, fullAddr1); got != addr1.Address {
t.Errorf("got addrForNewConnectionWithAddr(_, _, %+v) = %s, want = %s", got, addr1.Address)
}
// Refresh lifetimes for addr of prefix1.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, newMinVL, newMinVL-1))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
// addr1 is the primary endpoint again since it is non-deprecated now.
expectPrimaryAddr(addr1)
// Wait for addr of prefix1 to be deprecated.
expectAutoGenAddrEventAfter(addr1, deprecatedAddr, newMinVLDuration-time.Second+defaultAsyncEventTimeout)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should not have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
// addr2 should be the primary endpoint now since it is not deprecated.
expectPrimaryAddr(addr2)
if got := addrForNewConnectionWithAddr(t, s, fullAddr1); got != addr1.Address {
t.Errorf("got addrForNewConnectionWithAddr(_, _, %+v) = %s, want = %s", got, addr1.Address)
}
// Wait for addr of prefix1 to be invalidated.
expectAutoGenAddrEventAfter(addr1, invalidatedAddr, time.Second+defaultAsyncEventTimeout)
if containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should not have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
expectPrimaryAddr(addr2)
// Refresh both lifetimes for addr of prefix2 to the same value.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, newMinVL, newMinVL))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
default:
}
// Wait for a deprecation then invalidation events, or just an invalidation
// event. We need to cover both cases but cannot deterministically hit both
// cases because the deprecation and invalidation handlers could be handled in
// either deprecation then invalidation, or invalidation then deprecation
// (which should be cancelled by the invalidation handler).
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr2, deprecatedAddr); diff == "" {
// If we get a deprecation event first, we should get an invalidation
// event almost immediately after.
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr2, invalidatedAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(defaultAsyncEventTimeout):
t.Fatal("timed out waiting for addr auto gen event")
}
} else if diff := checkAutoGenAddrEvent(e, addr2, invalidatedAddr); diff == "" {
// If we get an invalidation event first, we should not get a deprecation
// event after.
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto-generated event")
case <-time.After(defaultTimeout):
}
} else {
t.Fatalf("got unexpected auto-generated event")
}
case <-time.After(newMinVLDuration + defaultAsyncEventTimeout):
t.Fatal("timed out waiting for addr auto gen event")
}
if containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should not have %s in the list of addresses", addr1)
}
if containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should not have %s in the list of addresses", addr2)
}
// Should not have any primary endpoints.
if got, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber); err != nil {
t.Fatalf("s.GetMainNICAddress(%d, %d): %s", nicID, header.IPv6ProtocolNumber, err)
} else if want := (tcpip.AddressWithPrefix{}); got != want {
t.Errorf("got s.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, got, want)
}
wq := waiter.Queue{}
we, ch := waiter.NewChannelEntry(nil)
wq.EventRegister(&we, waiter.EventIn)
defer wq.EventUnregister(&we)
defer close(ch)
ep, err := s.NewEndpoint(header.UDPProtocolNumber, header.IPv6ProtocolNumber, &wq)
if err != nil {
t.Fatalf("s.NewEndpoint(%d, %d, _): %s", header.UDPProtocolNumber, header.IPv6ProtocolNumber, err)
}
defer ep.Close()
if err := ep.SetSockOptBool(tcpip.V6OnlyOption, true); err != nil {
t.Fatalf("SetSockOpt(tcpip.V6OnlyOption, true): %s", err)
}
if err := ep.Connect(dstAddr); err != tcpip.ErrNoRoute {
t.Errorf("got ep.Connect(%+v) = %v, want = %s", dstAddr, err, tcpip.ErrNoRoute)
}
}
// Tests transitioning a SLAAC address's valid lifetime between finite and
// infinite values.
func TestAutoGenAddrFiniteToInfiniteToFiniteVL(t *testing.T) {
const infiniteVLSeconds = 2
const minVLSeconds = 1
savedIL := header.NDPInfiniteLifetime
savedMinVL := stack.MinPrefixInformationValidLifetimeForUpdate
defer func() {
stack.MinPrefixInformationValidLifetimeForUpdate = savedMinVL
header.NDPInfiniteLifetime = savedIL
}()
stack.MinPrefixInformationValidLifetimeForUpdate = minVLSeconds * time.Second
header.NDPInfiniteLifetime = infiniteVLSeconds * time.Second
prefix, _, addr := prefixSubnetAddr(0, linkAddr1)
tests := []struct {
name string
infiniteVL uint32
}{
{
name: "EqualToInfiniteVL",
infiniteVL: infiniteVLSeconds,
},
// Our implementation supports changing header.NDPInfiniteLifetime for tests
// such that a packet can be received where the lifetime field has a value
// greater than header.NDPInfiniteLifetime. Because of this, we test to make
// sure that receiving a value greater than header.NDPInfiniteLifetime is
// handled the same as when receiving a value equal to
// header.NDPInfiniteLifetime.
{
name: "MoreThanInfiniteVL",
infiniteVL: infiniteVLSeconds + 1,
},
}
// This Run will not return until the parallel tests finish.
//
// We need this because we need to do some teardown work after the
// parallel tests complete.
//
// See https://godoc.org/testing#hdr-Subtests_and_Sub_benchmarks for
// more details.
t.Run("group", func(t *testing.T) {
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Receive an RA with finite prefix.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, minVLSeconds, 0))
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, newAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
// Receive an new RA with prefix with infinite VL.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, test.infiniteVL, 0))
// Receive a new RA with prefix with finite VL.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, minVLSeconds, 0))
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, invalidatedAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(minVLSeconds*time.Second + defaultAsyncEventTimeout):
t.Fatal("timeout waiting for addr auto gen event")
}
})
}
})
}
// TestAutoGenAddrValidLifetimeUpdates tests that the valid lifetime of an
// auto-generated address only gets updated when required to, as specified in
// RFC 4862 section 5.5.3.e.
func TestAutoGenAddrValidLifetimeUpdates(t *testing.T) {
const infiniteVL = 4294967295
const newMinVL = 4
saved := stack.MinPrefixInformationValidLifetimeForUpdate
defer func() {
stack.MinPrefixInformationValidLifetimeForUpdate = saved
}()
stack.MinPrefixInformationValidLifetimeForUpdate = newMinVL * time.Second
prefix, _, addr := prefixSubnetAddr(0, linkAddr1)
tests := []struct {
name string
ovl uint32
nvl uint32
evl uint32
}{
// Should update the VL to the minimum VL for updating if the
// new VL is less than newMinVL but was originally greater than
// it.
{
"LargeVLToVLLessThanMinVLForUpdate",
9999,
1,
newMinVL,
},
{
"LargeVLTo0",
9999,
0,
newMinVL,
},
{
"InfiniteVLToVLLessThanMinVLForUpdate",
infiniteVL,
1,
newMinVL,
},
{
"InfiniteVLTo0",
infiniteVL,
0,
newMinVL,
},
// Should not update VL if original VL was less than newMinVL
// and the new VL is also less than newMinVL.
{
"ShouldNotUpdateWhenBothOldAndNewAreLessThanMinVLForUpdate",
newMinVL - 1,
newMinVL - 3,
newMinVL - 1,
},
// Should take the new VL if the new VL is greater than the
// remaining time or is greater than newMinVL.
{
"MorethanMinVLToLesserButStillMoreThanMinVLForUpdate",
newMinVL + 5,
newMinVL + 3,
newMinVL + 3,
},
{
"SmallVLToGreaterVLButStillLessThanMinVLForUpdate",
newMinVL - 3,
newMinVL - 1,
newMinVL - 1,
},
{
"SmallVLToGreaterVLThatIsMoreThaMinVLForUpdate",
newMinVL - 3,
newMinVL + 1,
newMinVL + 1,
},
}
// This Run will not return until the parallel tests finish.
//
// We need this because we need to do some teardown work after the
// parallel tests complete.
//
// See https://godoc.org/testing#hdr-Subtests_and_Sub_benchmarks for
// more details.
t.Run("group", func(t *testing.T) {
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 10),
}
e := channel.New(10, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Receive an RA with prefix with initial VL,
// test.ovl.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, test.ovl, 0))
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, newAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
// Receive an new RA with prefix with new VL,
// test.nvl.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, test.nvl, 0))
//
// Validate that the VL for the address got set
// to test.evl.
//
// The address should not be invalidated until the effective valid
// lifetime has passed.
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly received an auto gen addr event")
case <-time.After(time.Duration(test.evl)*time.Second - defaultAsyncEventTimeout):
}
// Wait for the invalidation event.
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, invalidatedAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(2 * defaultAsyncEventTimeout):
t.Fatal("timeout waiting for addr auto gen event")
}
})
}
})
}
// TestAutoGenAddrRemoval tests that when auto-generated addresses are removed
// by the user, its resources will be cleaned up and an invalidation event will
// be sent to the integrator.
func TestAutoGenAddrRemoval(t *testing.T) {
prefix, _, addr := prefixSubnetAddr(0, linkAddr1)
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
// Receive a PI to auto-generate an address.
const lifetimeSeconds = 1
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, lifetimeSeconds, 0))
expectAutoGenAddrEvent(addr, newAddr)
// Removing the address should result in an invalidation event
// immediately.
if err := s.RemoveAddress(1, addr.Address); err != nil {
t.Fatalf("RemoveAddress(_, %s) = %s", addr.Address, err)
}
expectAutoGenAddrEvent(addr, invalidatedAddr)
// Wait for the original valid lifetime to make sure the original timer
// got stopped/cleaned up.
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly received an auto gen addr event")
case <-time.After(lifetimeSeconds*time.Second + defaultTimeout):
}
}
// TestAutoGenAddrAfterRemoval tests adding a SLAAC address that was previously
// assigned to the NIC but is in the permanentExpired state.
func TestAutoGenAddrAfterRemoval(t *testing.T) {
const nicID = 1
prefix1, _, addr1 := prefixSubnetAddr(0, linkAddr1)
prefix2, _, addr2 := prefixSubnetAddr(1, linkAddr1)
ndpDisp, e, s := stackAndNdpDispatcherWithDefaultRoute(t, nicID)
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
expectPrimaryAddr := func(addr tcpip.AddressWithPrefix) {
t.Helper()
if got, err := s.GetMainNICAddress(nicID, header.IPv6ProtocolNumber); err != nil {
t.Fatalf("s.GetMainNICAddress(%d, %d): %s", nicID, header.IPv6ProtocolNumber, err)
} else if got != addr {
t.Errorf("got s.GetMainNICAddress(%d, %d) = %s, want = %s", nicID, header.IPv6ProtocolNumber, got, addr)
}
if got := addrForNewConnection(t, s); got != addr.Address {
t.Errorf("got addrForNewConnection = %s, want = %s", got, addr.Address)
}
}
// Receive a PI to auto-generate addr1 with a large valid and preferred
// lifetime.
const largeLifetimeSeconds = 999
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, 0, prefix1, true, true, largeLifetimeSeconds, largeLifetimeSeconds))
expectAutoGenAddrEvent(addr1, newAddr)
expectPrimaryAddr(addr1)
// Add addr2 as a static address.
protoAddr2 := tcpip.ProtocolAddress{
Protocol: header.IPv6ProtocolNumber,
AddressWithPrefix: addr2,
}
if err := s.AddProtocolAddressWithOptions(nicID, protoAddr2, stack.FirstPrimaryEndpoint); err != nil {
t.Fatalf("AddProtocolAddressWithOptions(%d, %+v, %d, %s) = %s", nicID, protoAddr2, stack.FirstPrimaryEndpoint, err)
}
// addr2 should be more preferred now since it is at the front of the primary
// list.
expectPrimaryAddr(addr2)
// Get a route using addr2 to increment its reference count then remove it
// to leave it in the permanentExpired state.
r, err := s.FindRoute(nicID, addr2.Address, addr3, header.IPv6ProtocolNumber, false)
if err != nil {
t.Fatalf("FindRoute(%d, %s, %s, %d, false): %s", nicID, addr2.Address, addr3, header.IPv6ProtocolNumber, err)
}
defer r.Release()
if err := s.RemoveAddress(nicID, addr2.Address); err != nil {
t.Fatalf("s.RemoveAddress(%d, %s): %s", nicID, addr2.Address, err)
}
// addr1 should be preferred again since addr2 is in the expired state.
expectPrimaryAddr(addr1)
// Receive a PI to auto-generate addr2 as valid and preferred.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, 0, prefix2, true, true, largeLifetimeSeconds, largeLifetimeSeconds))
expectAutoGenAddrEvent(addr2, newAddr)
// addr2 should be more preferred now that it is closer to the front of the
// primary list and not deprecated.
expectPrimaryAddr(addr2)
// Removing the address should result in an invalidation event immediately.
// It should still be in the permanentExpired state because r is still held.
//
// We remove addr2 here to make sure addr2 was marked as a SLAAC address
// (it was previously marked as a static address).
if err := s.RemoveAddress(1, addr2.Address); err != nil {
t.Fatalf("RemoveAddress(_, %s) = %s", addr2.Address, err)
}
expectAutoGenAddrEvent(addr2, invalidatedAddr)
// addr1 should be more preferred since addr2 is in the expired state.
expectPrimaryAddr(addr1)
// Receive a PI to auto-generate addr2 as valid and deprecated.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, 0, prefix2, true, true, largeLifetimeSeconds, 0))
expectAutoGenAddrEvent(addr2, newAddr)
// addr1 should still be more preferred since addr2 is deprecated, even though
// it is closer to the front of the primary list.
expectPrimaryAddr(addr1)
// Receive a PI to refresh addr2's preferred lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, 0, prefix2, true, true, largeLifetimeSeconds, largeLifetimeSeconds))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly got an auto gen addr event")
default:
}
// addr2 should be more preferred now that it is not deprecated.
expectPrimaryAddr(addr2)
if err := s.RemoveAddress(1, addr2.Address); err != nil {
t.Fatalf("RemoveAddress(_, %s) = %s", addr2.Address, err)
}
expectAutoGenAddrEvent(addr2, invalidatedAddr)
expectPrimaryAddr(addr1)
}
// TestAutoGenAddrStaticConflict tests that if SLAAC generates an address that
// is already assigned to the NIC, the static address remains.
func TestAutoGenAddrStaticConflict(t *testing.T) {
prefix, _, addr := prefixSubnetAddr(0, linkAddr1)
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
// Add the address as a static address before SLAAC tries to add it.
if err := s.AddProtocolAddress(1, tcpip.ProtocolAddress{Protocol: header.IPv6ProtocolNumber, AddressWithPrefix: addr}); err != nil {
t.Fatalf("AddAddress(_, %d, %s) = %s", header.IPv6ProtocolNumber, addr.Address, err)
}
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr) {
t.Fatalf("Should have %s in the list of addresses", addr1)
}
// Receive a PI where the generated address will be the same as the one
// that we already have assigned statically.
const lifetimeSeconds = 1
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix, true, true, lifetimeSeconds, 0))
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly received an auto gen addr event for an address we already have statically")
default:
}
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr) {
t.Fatalf("Should have %s in the list of addresses", addr1)
}
// Should not get an invalidation event after the PI's invalidation
// time.
select {
case <-ndpDisp.autoGenAddrC:
t.Fatal("unexpectedly received an auto gen addr event")
case <-time.After(lifetimeSeconds*time.Second + defaultTimeout):
}
if !containsV6Addr(s.NICInfo()[1].ProtocolAddresses, addr) {
t.Fatalf("Should have %s in the list of addresses", addr1)
}
}
// TestAutoGenAddrWithOpaqueIID tests that SLAAC generated addresses will use
// opaque interface identifiers when configured to do so.
func TestAutoGenAddrWithOpaqueIID(t *testing.T) {
const nicID = 1
const nicName = "nic1"
var secretKeyBuf [header.OpaqueIIDSecretKeyMinBytes]byte
secretKey := secretKeyBuf[:]
n, err := rand.Read(secretKey)
if err != nil {
t.Fatalf("rand.Read(_): %s", err)
}
if n != header.OpaqueIIDSecretKeyMinBytes {
t.Fatalf("got rand.Read(_) = (%d, _), want = (%d, _)", n, header.OpaqueIIDSecretKeyMinBytes)
}
prefix1, subnet1, _ := prefixSubnetAddr(0, linkAddr1)
prefix2, subnet2, _ := prefixSubnetAddr(1, linkAddr1)
// addr1 and addr2 are the addresses that are expected to be generated when
// stack.Stack is configured to generate opaque interface identifiers as
// defined by RFC 7217.
addrBytes := []byte(subnet1.ID())
addr1 := tcpip.AddressWithPrefix{
Address: tcpip.Address(header.AppendOpaqueInterfaceIdentifier(addrBytes[:header.IIDOffsetInIPv6Address], subnet1, nicName, 0, secretKey)),
PrefixLen: 64,
}
addrBytes = []byte(subnet2.ID())
addr2 := tcpip.AddressWithPrefix{
Address: tcpip.Address(header.AppendOpaqueInterfaceIdentifier(addrBytes[:header.IIDOffsetInIPv6Address], subnet2, nicName, 0, secretKey)),
PrefixLen: 64,
}
ndpDisp := ndpDispatcher{
autoGenAddrC: make(chan ndpAutoGenAddrEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
OpaqueIIDOpts: stack.OpaqueInterfaceIdentifierOptions{
NICNameFromID: func(_ tcpip.NICID, nicName string) string {
return nicName
},
SecretKey: secretKey,
},
})
opts := stack.NICOptions{Name: nicName}
if err := s.CreateNICWithOptions(nicID, e, opts); err != nil {
t.Fatalf("CreateNICWithOptions(%d, _, %+v, _) = %s", nicID, opts, err)
}
expectAutoGenAddrEvent := func(addr tcpip.AddressWithPrefix, eventType ndpAutoGenAddrEventType) {
t.Helper()
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr, eventType); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected addr auto gen event")
}
}
// Receive an RA with prefix1 in a PI.
const validLifetimeSecondPrefix1 = 1
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix1, true, true, validLifetimeSecondPrefix1, 0))
expectAutoGenAddrEvent(addr1, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should have %s in the list of addresses", addr1)
}
// Receive an RA with prefix2 in a PI with a large valid lifetime.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr2, 0, prefix2, true, true, 100, 0))
expectAutoGenAddrEvent(addr2, newAddr)
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
// Wait for addr of prefix1 to be invalidated.
select {
case e := <-ndpDisp.autoGenAddrC:
if diff := checkAutoGenAddrEvent(e, addr1, invalidatedAddr); diff != "" {
t.Errorf("auto-gen addr event mismatch (-want +got):\n%s", diff)
}
case <-time.After(validLifetimeSecondPrefix1*time.Second + defaultAsyncEventTimeout):
t.Fatal("timed out waiting for addr auto gen event")
}
if containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr1) {
t.Fatalf("should not have %s in the list of addresses", addr1)
}
if !containsV6Addr(s.NICInfo()[nicID].ProtocolAddresses, addr2) {
t.Fatalf("should have %s in the list of addresses", addr2)
}
}
// TestNDPRecursiveDNSServerDispatch tests that we properly dispatch an event
// to the integrator when an RA is received with the NDP Recursive DNS Server
// option with at least one valid address.
func TestNDPRecursiveDNSServerDispatch(t *testing.T) {
tests := []struct {
name string
opt header.NDPRecursiveDNSServer
expected *ndpRDNSS
}{
{
"Unspecified",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}),
nil,
},
{
"Multicast",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 2,
255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
}),
nil,
},
{
"OptionTooSmall",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 2,
1, 2, 3, 4, 5, 6, 7, 8,
}),
nil,
},
{
"0Addresses",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 2,
}),
nil,
},
{
"Valid1Address",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 2,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 1,
}),
&ndpRDNSS{
[]tcpip.Address{
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x01",
},
2 * time.Second,
},
},
{
"Valid2Addresses",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 1,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 1,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 2,
}),
&ndpRDNSS{
[]tcpip.Address{
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x01",
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x02",
},
time.Second,
},
},
{
"Valid3Addresses",
header.NDPRecursiveDNSServer([]byte{
0, 0,
0, 0, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 1,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 2,
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 3,
}),
&ndpRDNSS{
[]tcpip.Address{
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x01",
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x02",
"\x01\x02\x03\x04\x05\x06\x07\x08\x00\x00\x00\x00\x00\x00\x00\x03",
},
0,
},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
ndpDisp := ndpDispatcher{
// We do not expect more than a single RDNSS
// event at any time for this test.
rdnssC: make(chan ndpRDNSSEvent, 1),
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(1, e); err != nil {
t.Fatalf("CreateNIC(1) = %s", err)
}
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithOpts(llAddr1, 0, header.NDPOptionsSerializer{test.opt}))
if test.expected != nil {
select {
case e := <-ndpDisp.rdnssC:
if e.nicID != 1 {
t.Errorf("got rdnss nicID = %d, want = 1", e.nicID)
}
if diff := cmp.Diff(e.rdnss.addrs, test.expected.addrs); diff != "" {
t.Errorf("rdnss addrs mismatch (-want +got):\n%s", diff)
}
if e.rdnss.lifetime != test.expected.lifetime {
t.Errorf("got rdnss lifetime = %s, want = %s", e.rdnss.lifetime, test.expected.lifetime)
}
default:
t.Fatal("expected an RDNSS option event")
}
}
// Should have no more RDNSS options.
select {
case e := <-ndpDisp.rdnssC:
t.Fatalf("unexpectedly got a new RDNSS option event: %+v", e)
default:
}
})
}
}
// TestCleanupNDPState tests that all discovered routers and prefixes, and
// auto-generated addresses are invalidated when a NIC becomes a router.
func TestCleanupNDPState(t *testing.T) {
const (
lifetimeSeconds = 5
maxRouterAndPrefixEvents = 4
nicID1 = 1
nicID2 = 2
)
prefix1, subnet1, e1Addr1 := prefixSubnetAddr(0, linkAddr1)
prefix2, subnet2, e1Addr2 := prefixSubnetAddr(1, linkAddr1)
e2Addr1 := addrForSubnet(subnet1, linkAddr2)
e2Addr2 := addrForSubnet(subnet2, linkAddr2)
llAddrWithPrefix1 := tcpip.AddressWithPrefix{
Address: llAddr1,
PrefixLen: 64,
}
llAddrWithPrefix2 := tcpip.AddressWithPrefix{
Address: llAddr2,
PrefixLen: 64,
}
tests := []struct {
name string
cleanupFn func(t *testing.T, s *stack.Stack)
keepAutoGenLinkLocal bool
maxAutoGenAddrEvents int
skipFinalAddrCheck bool
}{
// A NIC should still keep its auto-generated link-local address when
// becoming a router.
{
name: "Enable forwarding",
cleanupFn: func(t *testing.T, s *stack.Stack) {
t.Helper()
s.SetForwarding(true)
},
keepAutoGenLinkLocal: true,
maxAutoGenAddrEvents: 4,
},
// A NIC should cleanup all NDP state when it is disabled.
{
name: "Disable NIC",
cleanupFn: func(t *testing.T, s *stack.Stack) {
t.Helper()
if err := s.DisableNIC(nicID1); err != nil {
t.Fatalf("s.DisableNIC(%d): %s", nicID1, err)
}
if err := s.DisableNIC(nicID2); err != nil {
t.Fatalf("s.DisableNIC(%d): %s", nicID2, err)
}
},
keepAutoGenLinkLocal: false,
maxAutoGenAddrEvents: 6,
},
// A NIC should cleanup all NDP state when it is removed.
{
name: "Remove NIC",
cleanupFn: func(t *testing.T, s *stack.Stack) {
t.Helper()
if err := s.RemoveNIC(nicID1); err != nil {
t.Fatalf("s.RemoveNIC(%d): %s", nicID1, err)
}
if err := s.RemoveNIC(nicID2); err != nil {
t.Fatalf("s.RemoveNIC(%d): %s", nicID2, err)
}
},
keepAutoGenLinkLocal: false,
maxAutoGenAddrEvents: 6,
// The NICs are removed so we can't check their addresses after calling
// stopFn.
skipFinalAddrCheck: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
ndpDisp := ndpDispatcher{
routerC: make(chan ndpRouterEvent, maxRouterAndPrefixEvents),
rememberRouter: true,
prefixC: make(chan ndpPrefixEvent, maxRouterAndPrefixEvents),
rememberPrefix: true,
autoGenAddrC: make(chan ndpAutoGenAddrEvent, test.maxAutoGenAddrEvents),
}
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
AutoGenIPv6LinkLocal: true,
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
DiscoverDefaultRouters: true,
DiscoverOnLinkPrefixes: true,
AutoGenGlobalAddresses: true,
},
NDPDisp: &ndpDisp,
})
expectRouterEvent := func() (bool, ndpRouterEvent) {
select {
case e := <-ndpDisp.routerC:
return true, e
default:
}
return false, ndpRouterEvent{}
}
expectPrefixEvent := func() (bool, ndpPrefixEvent) {
select {
case e := <-ndpDisp.prefixC:
return true, e
default:
}
return false, ndpPrefixEvent{}
}
expectAutoGenAddrEvent := func() (bool, ndpAutoGenAddrEvent) {
select {
case e := <-ndpDisp.autoGenAddrC:
return true, e
default:
}
return false, ndpAutoGenAddrEvent{}
}
e1 := channel.New(0, 1280, linkAddr1)
if err := s.CreateNIC(nicID1, e1); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID1, err)
}
// We have other tests that make sure we receive the *correct* events
// on normal discovery of routers/prefixes, and auto-generated
// addresses. Here we just make sure we get an event and let other tests
// handle the correctness check.
expectAutoGenAddrEvent()
e2 := channel.New(0, 1280, linkAddr2)
if err := s.CreateNIC(nicID2, e2); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID2, err)
}
expectAutoGenAddrEvent()
// Receive RAs on NIC(1) and NIC(2) from default routers (llAddr3 and
// llAddr4) w/ PI (for prefix1 in RA from llAddr3 and prefix2 in RA from
// llAddr4) to discover multiple routers and prefixes, and auto-gen
// multiple addresses.
e1.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, lifetimeSeconds, prefix1, true, true, lifetimeSeconds, lifetimeSeconds))
if ok, _ := expectRouterEvent(); !ok {
t.Errorf("expected router event for %s on NIC(%d)", llAddr3, nicID1)
}
if ok, _ := expectPrefixEvent(); !ok {
t.Errorf("expected prefix event for %s on NIC(%d)", prefix1, nicID1)
}
if ok, _ := expectAutoGenAddrEvent(); !ok {
t.Errorf("expected auto-gen addr event for %s on NIC(%d)", e1Addr1, nicID1)
}
e1.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr4, lifetimeSeconds, prefix2, true, true, lifetimeSeconds, lifetimeSeconds))
if ok, _ := expectRouterEvent(); !ok {
t.Errorf("expected router event for %s on NIC(%d)", llAddr4, nicID1)
}
if ok, _ := expectPrefixEvent(); !ok {
t.Errorf("expected prefix event for %s on NIC(%d)", prefix2, nicID1)
}
if ok, _ := expectAutoGenAddrEvent(); !ok {
t.Errorf("expected auto-gen addr event for %s on NIC(%d)", e1Addr2, nicID1)
}
e2.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr3, lifetimeSeconds, prefix1, true, true, lifetimeSeconds, lifetimeSeconds))
if ok, _ := expectRouterEvent(); !ok {
t.Errorf("expected router event for %s on NIC(%d)", llAddr3, nicID2)
}
if ok, _ := expectPrefixEvent(); !ok {
t.Errorf("expected prefix event for %s on NIC(%d)", prefix1, nicID2)
}
if ok, _ := expectAutoGenAddrEvent(); !ok {
t.Errorf("expected auto-gen addr event for %s on NIC(%d)", e1Addr2, nicID2)
}
e2.InjectInbound(header.IPv6ProtocolNumber, raBufWithPI(llAddr4, lifetimeSeconds, prefix2, true, true, lifetimeSeconds, lifetimeSeconds))
if ok, _ := expectRouterEvent(); !ok {
t.Errorf("expected router event for %s on NIC(%d)", llAddr4, nicID2)
}
if ok, _ := expectPrefixEvent(); !ok {
t.Errorf("expected prefix event for %s on NIC(%d)", prefix2, nicID2)
}
if ok, _ := expectAutoGenAddrEvent(); !ok {
t.Errorf("expected auto-gen addr event for %s on NIC(%d)", e2Addr2, nicID2)
}
// We should have the auto-generated addresses added.
nicinfo := s.NICInfo()
nic1Addrs := nicinfo[nicID1].ProtocolAddresses
nic2Addrs := nicinfo[nicID2].ProtocolAddresses
if !containsV6Addr(nic1Addrs, llAddrWithPrefix1) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", llAddrWithPrefix1, nicID1, nic1Addrs)
}
if !containsV6Addr(nic1Addrs, e1Addr1) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", e1Addr1, nicID1, nic1Addrs)
}
if !containsV6Addr(nic1Addrs, e1Addr2) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", e1Addr2, nicID1, nic1Addrs)
}
if !containsV6Addr(nic2Addrs, llAddrWithPrefix2) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", llAddrWithPrefix2, nicID2, nic2Addrs)
}
if !containsV6Addr(nic2Addrs, e2Addr1) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", e2Addr1, nicID2, nic2Addrs)
}
if !containsV6Addr(nic2Addrs, e2Addr2) {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", e2Addr2, nicID2, nic2Addrs)
}
// We can't proceed any further if we already failed the test (missing
// some discovery/auto-generated address events or addresses).
if t.Failed() {
t.FailNow()
}
test.cleanupFn(t, s)
// Collect invalidation events after having NDP state cleaned up.
gotRouterEvents := make(map[ndpRouterEvent]int)
for i := 0; i < maxRouterAndPrefixEvents; i++ {
ok, e := expectRouterEvent()
if !ok {
t.Errorf("expected %d router events after becoming a router; got = %d", maxRouterAndPrefixEvents, i)
break
}
gotRouterEvents[e]++
}
gotPrefixEvents := make(map[ndpPrefixEvent]int)
for i := 0; i < maxRouterAndPrefixEvents; i++ {
ok, e := expectPrefixEvent()
if !ok {
t.Errorf("expected %d prefix events after becoming a router; got = %d", maxRouterAndPrefixEvents, i)
break
}
gotPrefixEvents[e]++
}
gotAutoGenAddrEvents := make(map[ndpAutoGenAddrEvent]int)
for i := 0; i < test.maxAutoGenAddrEvents; i++ {
ok, e := expectAutoGenAddrEvent()
if !ok {
t.Errorf("expected %d auto-generated address events after becoming a router; got = %d", test.maxAutoGenAddrEvents, i)
break
}
gotAutoGenAddrEvents[e]++
}
// No need to proceed any further if we already failed the test (missing
// some invalidation events).
if t.Failed() {
t.FailNow()
}
expectedRouterEvents := map[ndpRouterEvent]int{
{nicID: nicID1, addr: llAddr3, discovered: false}: 1,
{nicID: nicID1, addr: llAddr4, discovered: false}: 1,
{nicID: nicID2, addr: llAddr3, discovered: false}: 1,
{nicID: nicID2, addr: llAddr4, discovered: false}: 1,
}
if diff := cmp.Diff(expectedRouterEvents, gotRouterEvents); diff != "" {
t.Errorf("router events mismatch (-want +got):\n%s", diff)
}
expectedPrefixEvents := map[ndpPrefixEvent]int{
{nicID: nicID1, prefix: subnet1, discovered: false}: 1,
{nicID: nicID1, prefix: subnet2, discovered: false}: 1,
{nicID: nicID2, prefix: subnet1, discovered: false}: 1,
{nicID: nicID2, prefix: subnet2, discovered: false}: 1,
}
if diff := cmp.Diff(expectedPrefixEvents, gotPrefixEvents); diff != "" {
t.Errorf("prefix events mismatch (-want +got):\n%s", diff)
}
expectedAutoGenAddrEvents := map[ndpAutoGenAddrEvent]int{
{nicID: nicID1, addr: e1Addr1, eventType: invalidatedAddr}: 1,
{nicID: nicID1, addr: e1Addr2, eventType: invalidatedAddr}: 1,
{nicID: nicID2, addr: e2Addr1, eventType: invalidatedAddr}: 1,
{nicID: nicID2, addr: e2Addr2, eventType: invalidatedAddr}: 1,
}
if !test.keepAutoGenLinkLocal {
expectedAutoGenAddrEvents[ndpAutoGenAddrEvent{nicID: nicID1, addr: llAddrWithPrefix1, eventType: invalidatedAddr}] = 1
expectedAutoGenAddrEvents[ndpAutoGenAddrEvent{nicID: nicID2, addr: llAddrWithPrefix2, eventType: invalidatedAddr}] = 1
}
if diff := cmp.Diff(expectedAutoGenAddrEvents, gotAutoGenAddrEvents); diff != "" {
t.Errorf("auto-generated address events mismatch (-want +got):\n%s", diff)
}
if !test.skipFinalAddrCheck {
// Make sure the auto-generated addresses got removed.
nicinfo = s.NICInfo()
nic1Addrs = nicinfo[nicID1].ProtocolAddresses
nic2Addrs = nicinfo[nicID2].ProtocolAddresses
if containsV6Addr(nic1Addrs, llAddrWithPrefix1) != test.keepAutoGenLinkLocal {
if test.keepAutoGenLinkLocal {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", llAddrWithPrefix1, nicID1, nic1Addrs)
} else {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", llAddrWithPrefix1, nicID1, nic1Addrs)
}
}
if containsV6Addr(nic1Addrs, e1Addr1) {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", e1Addr1, nicID1, nic1Addrs)
}
if containsV6Addr(nic1Addrs, e1Addr2) {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", e1Addr2, nicID1, nic1Addrs)
}
if containsV6Addr(nic2Addrs, llAddrWithPrefix2) != test.keepAutoGenLinkLocal {
if test.keepAutoGenLinkLocal {
t.Errorf("missing %s from the list of addresses for NIC(%d): %+v", llAddrWithPrefix2, nicID2, nic2Addrs)
} else {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", llAddrWithPrefix2, nicID2, nic2Addrs)
}
}
if containsV6Addr(nic2Addrs, e2Addr1) {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", e2Addr1, nicID2, nic2Addrs)
}
if containsV6Addr(nic2Addrs, e2Addr2) {
t.Errorf("still have %s in the list of addresses for NIC(%d): %+v", e2Addr2, nicID2, nic2Addrs)
}
}
// Should not get any more events (invalidation timers should have been
// cancelled when the NDP state was cleaned up).
time.Sleep(lifetimeSeconds*time.Second + defaultTimeout)
select {
case <-ndpDisp.routerC:
t.Error("unexpected router event")
default:
}
select {
case <-ndpDisp.prefixC:
t.Error("unexpected prefix event")
default:
}
select {
case <-ndpDisp.autoGenAddrC:
t.Error("unexpected auto-generated address event")
default:
}
})
}
}
// TestDHCPv6ConfigurationFromNDPDA tests that the NDPDispatcher is properly
// informed when new information about what configurations are available via
// DHCPv6 is learned.
func TestDHCPv6ConfigurationFromNDPDA(t *testing.T) {
const nicID = 1
ndpDisp := ndpDispatcher{
dhcpv6ConfigurationC: make(chan ndpDHCPv6Event, 1),
rememberRouter: true,
}
e := channel.New(0, 1280, linkAddr1)
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
HandleRAs: true,
},
NDPDisp: &ndpDisp,
})
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
expectDHCPv6Event := func(configuration stack.DHCPv6ConfigurationFromNDPRA) {
t.Helper()
select {
case e := <-ndpDisp.dhcpv6ConfigurationC:
if diff := cmp.Diff(ndpDHCPv6Event{nicID: nicID, configuration: configuration}, e, cmp.AllowUnexported(e)); diff != "" {
t.Errorf("dhcpv6 event mismatch (-want +got):\n%s", diff)
}
default:
t.Fatal("expected DHCPv6 configuration event")
}
}
expectNoDHCPv6Event := func() {
t.Helper()
select {
case <-ndpDisp.dhcpv6ConfigurationC:
t.Fatal("unexpected DHCPv6 configuration event")
default:
}
}
// The initial DHCPv6 configuration should be stack.DHCPv6NoConfiguration.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, false))
expectNoDHCPv6Event()
// Receive an RA that updates the DHCPv6 configuration to Other
// Configurations.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, true))
expectDHCPv6Event(stack.DHCPv6OtherConfigurations)
// Receiving the same update again should not result in an event to the
// NDPDispatcher.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, true))
expectNoDHCPv6Event()
// Receive an RA that updates the DHCPv6 configuration to Managed Address.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, false))
expectDHCPv6Event(stack.DHCPv6ManagedAddress)
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, false))
expectNoDHCPv6Event()
// Receive an RA that updates the DHCPv6 configuration to none.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, false))
expectDHCPv6Event(stack.DHCPv6NoConfiguration)
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, false))
expectNoDHCPv6Event()
// Receive an RA that updates the DHCPv6 configuration to Managed Address.
//
// Note, when the M flag is set, the O flag is redundant.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, true))
expectDHCPv6Event(stack.DHCPv6ManagedAddress)
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, true))
expectNoDHCPv6Event()
// Even though the DHCPv6 flags are different, the effective configuration is
// the same so we should not receive a new event.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, false))
expectNoDHCPv6Event()
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, true, true))
expectNoDHCPv6Event()
// Receive an RA that updates the DHCPv6 configuration to Other
// Configurations.
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, true))
expectDHCPv6Event(stack.DHCPv6OtherConfigurations)
e.InjectInbound(header.IPv6ProtocolNumber, raBufWithDHCPv6(llAddr2, false, true))
expectNoDHCPv6Event()
}
// TestRouterSolicitation tests the initial Router Solicitations that are sent
// when a NIC newly becomes enabled.
func TestRouterSolicitation(t *testing.T) {
const nicID = 1
tests := []struct {
name string
linkHeaderLen uint16
linkAddr tcpip.LinkAddress
nicAddr tcpip.Address
expectedSrcAddr tcpip.Address
expectedNDPOpts []header.NDPOption
maxRtrSolicit uint8
rtrSolicitInt time.Duration
effectiveRtrSolicitInt time.Duration
maxRtrSolicitDelay time.Duration
effectiveMaxRtrSolicitDelay time.Duration
}{
{
name: "Single RS with 2s delay and interval",
expectedSrcAddr: header.IPv6Any,
maxRtrSolicit: 1,
rtrSolicitInt: 2 * time.Second,
effectiveRtrSolicitInt: 2 * time.Second,
maxRtrSolicitDelay: 2 * time.Second,
effectiveMaxRtrSolicitDelay: 2 * time.Second,
},
{
name: "Single RS with 4s delay and interval",
expectedSrcAddr: header.IPv6Any,
maxRtrSolicit: 1,
rtrSolicitInt: 4 * time.Second,
effectiveRtrSolicitInt: 4 * time.Second,
maxRtrSolicitDelay: 4 * time.Second,
effectiveMaxRtrSolicitDelay: 4 * time.Second,
},
{
name: "Two RS with delay",
linkHeaderLen: 1,
nicAddr: llAddr1,
expectedSrcAddr: llAddr1,
maxRtrSolicit: 2,
rtrSolicitInt: 2 * time.Second,
effectiveRtrSolicitInt: 2 * time.Second,
maxRtrSolicitDelay: 500 * time.Millisecond,
effectiveMaxRtrSolicitDelay: 500 * time.Millisecond,
},
{
name: "Single RS without delay",
linkHeaderLen: 2,
linkAddr: linkAddr1,
nicAddr: llAddr1,
expectedSrcAddr: llAddr1,
expectedNDPOpts: []header.NDPOption{
header.NDPSourceLinkLayerAddressOption(linkAddr1),
},
maxRtrSolicit: 1,
rtrSolicitInt: 2 * time.Second,
effectiveRtrSolicitInt: 2 * time.Second,
maxRtrSolicitDelay: 0,
effectiveMaxRtrSolicitDelay: 0,
},
{
name: "Two RS without delay and invalid zero interval",
linkHeaderLen: 3,
linkAddr: linkAddr1,
expectedSrcAddr: header.IPv6Any,
maxRtrSolicit: 2,
rtrSolicitInt: 0,
effectiveRtrSolicitInt: 4 * time.Second,
maxRtrSolicitDelay: 0,
effectiveMaxRtrSolicitDelay: 0,
},
{
name: "Three RS without delay",
linkAddr: linkAddr1,
expectedSrcAddr: header.IPv6Any,
maxRtrSolicit: 3,
rtrSolicitInt: 500 * time.Millisecond,
effectiveRtrSolicitInt: 500 * time.Millisecond,
maxRtrSolicitDelay: 0,
effectiveMaxRtrSolicitDelay: 0,
},
{
name: "Two RS with invalid negative delay",
linkAddr: linkAddr1,
expectedSrcAddr: header.IPv6Any,
maxRtrSolicit: 2,
rtrSolicitInt: time.Second,
effectiveRtrSolicitInt: time.Second,
maxRtrSolicitDelay: -3 * time.Second,
effectiveMaxRtrSolicitDelay: time.Second,
},
}
// This Run will not return until the parallel tests finish.
//
// We need this because we need to do some teardown work after the
// parallel tests complete.
//
// See https://godoc.org/testing#hdr-Subtests_and_Sub_benchmarks for
// more details.
t.Run("group", func(t *testing.T) {
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
e := channelLinkWithHeaderLength{
Endpoint: channel.New(int(test.maxRtrSolicit), 1280, test.linkAddr),
headerLength: test.linkHeaderLen,
}
e.Endpoint.LinkEPCapabilities |= stack.CapabilityResolutionRequired
waitForPkt := func(timeout time.Duration) {
t.Helper()
ctx, _ := context.WithTimeout(context.Background(), timeout)
p, ok := e.ReadContext(ctx)
if !ok {
t.Fatal("timed out waiting for packet")
return
}
if p.Proto != header.IPv6ProtocolNumber {
t.Fatalf("got Proto = %d, want = %d", p.Proto, header.IPv6ProtocolNumber)
}
// Make sure the right remote link address is used.
if want := header.EthernetAddressFromMulticastIPv6Address(header.IPv6AllRoutersMulticastAddress); p.Route.RemoteLinkAddress != want {
t.Errorf("got remote link address = %s, want = %s", p.Route.RemoteLinkAddress, want)
}
checker.IPv6(t,
p.Pkt.Header.View(),
checker.SrcAddr(test.expectedSrcAddr),
checker.DstAddr(header.IPv6AllRoutersMulticastAddress),
checker.TTL(header.NDPHopLimit),
checker.NDPRS(checker.NDPRSOptions(test.expectedNDPOpts)),
)
if l, want := p.Pkt.Header.AvailableLength(), int(test.linkHeaderLen); l != want {
t.Errorf("got p.Pkt.Header.AvailableLength() = %d; want = %d", l, want)
}
}
waitForNothing := func(timeout time.Duration) {
t.Helper()
ctx, _ := context.WithTimeout(context.Background(), timeout)
if _, ok := e.ReadContext(ctx); ok {
t.Fatal("unexpectedly got a packet")
}
}
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
MaxRtrSolicitations: test.maxRtrSolicit,
RtrSolicitationInterval: test.rtrSolicitInt,
MaxRtrSolicitationDelay: test.maxRtrSolicitDelay,
},
})
if err := s.CreateNIC(nicID, &e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
if addr := test.nicAddr; addr != "" {
if err := s.AddAddress(nicID, header.IPv6ProtocolNumber, addr); err != nil {
t.Fatalf("AddAddress(%d, %d, %s) = %s", nicID, header.IPv6ProtocolNumber, addr, err)
}
}
// Make sure each RS is sent at the right time.
remaining := test.maxRtrSolicit
if remaining > 0 {
waitForPkt(test.effectiveMaxRtrSolicitDelay + defaultAsyncEventTimeout)
remaining--
}
for ; remaining > 0; remaining-- {
if test.effectiveRtrSolicitInt > defaultAsyncEventTimeout {
waitForNothing(test.effectiveRtrSolicitInt - defaultAsyncEventTimeout)
waitForPkt(2 * defaultAsyncEventTimeout)
} else {
waitForPkt(test.effectiveRtrSolicitInt * defaultAsyncEventTimeout)
}
}
// Make sure no more RS.
if test.effectiveRtrSolicitInt > test.effectiveMaxRtrSolicitDelay {
waitForNothing(test.effectiveRtrSolicitInt + defaultAsyncEventTimeout)
} else {
waitForNothing(test.effectiveMaxRtrSolicitDelay + defaultAsyncEventTimeout)
}
// Make sure the counter got properly
// incremented.
if got, want := s.Stats().ICMP.V6PacketsSent.RouterSolicit.Value(), uint64(test.maxRtrSolicit); got != want {
t.Fatalf("got sent RouterSolicit = %d, want = %d", got, want)
}
})
}
})
}
func TestStopStartSolicitingRouters(t *testing.T) {
const nicID = 1
const delay = 0
const interval = 500 * time.Millisecond
const maxRtrSolicitations = 3
tests := []struct {
name string
startFn func(t *testing.T, s *stack.Stack)
// first is used to tell stopFn that it is being called for the first time
// after router solicitations were last enabled.
stopFn func(t *testing.T, s *stack.Stack, first bool)
}{
// Tests that when forwarding is enabled or disabled, router solicitations
// are stopped or started, respectively.
{
name: "Enable and disable forwarding",
startFn: func(t *testing.T, s *stack.Stack) {
t.Helper()
s.SetForwarding(false)
},
stopFn: func(t *testing.T, s *stack.Stack, _ bool) {
t.Helper()
s.SetForwarding(true)
},
},
// Tests that when a NIC is enabled or disabled, router solicitations
// are started or stopped, respectively.
{
name: "Enable and disable NIC",
startFn: func(t *testing.T, s *stack.Stack) {
t.Helper()
if err := s.EnableNIC(nicID); err != nil {
t.Fatalf("s.EnableNIC(%d): %s", nicID, err)
}
},
stopFn: func(t *testing.T, s *stack.Stack, _ bool) {
t.Helper()
if err := s.DisableNIC(nicID); err != nil {
t.Fatalf("s.DisableNIC(%d): %s", nicID, err)
}
},
},
// Tests that when a NIC is removed, router solicitations are stopped. We
// cannot start router solications on a removed NIC.
{
name: "Remove NIC",
stopFn: func(t *testing.T, s *stack.Stack, first bool) {
t.Helper()
// Only try to remove the NIC the first time stopFn is called since it's
// impossible to remove an already removed NIC.
if !first {
return
}
if err := s.RemoveNIC(nicID); err != nil {
t.Fatalf("s.RemoveNIC(%d): %s", nicID, err)
}
},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
e := channel.New(maxRtrSolicitations, 1280, linkAddr1)
waitForPkt := func(timeout time.Duration) {
t.Helper()
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
p, ok := e.ReadContext(ctx)
if !ok {
t.Fatal("timed out waiting for packet")
}
if p.Proto != header.IPv6ProtocolNumber {
t.Fatalf("got Proto = %d, want = %d", p.Proto, header.IPv6ProtocolNumber)
}
checker.IPv6(t, p.Pkt.Header.View(),
checker.SrcAddr(header.IPv6Any),
checker.DstAddr(header.IPv6AllRoutersMulticastAddress),
checker.TTL(header.NDPHopLimit),
checker.NDPRS())
}
s := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocol{ipv6.NewProtocol()},
NDPConfigs: stack.NDPConfigurations{
MaxRtrSolicitations: maxRtrSolicitations,
RtrSolicitationInterval: interval,
MaxRtrSolicitationDelay: delay,
},
})
if err := s.CreateNIC(nicID, e); err != nil {
t.Fatalf("CreateNIC(%d, _) = %s", nicID, err)
}
// Stop soliciting routers.
test.stopFn(t, s, true /* first */)
ctx, cancel := context.WithTimeout(context.Background(), delay+defaultAsyncEventTimeout)
defer cancel()
if _, ok := e.ReadContext(ctx); ok {
// A single RS may have been sent before solicitations were stopped.
ctx, cancel := context.WithTimeout(context.Background(), interval+defaultAsyncEventTimeout)
defer cancel()
if _, ok = e.ReadContext(ctx); ok {
t.Fatal("should not have sent more than one RS message")
}
}
// Stopping router solicitations after it has already been stopped should
// do nothing.
test.stopFn(t, s, false /* first */)
ctx, cancel = context.WithTimeout(context.Background(), delay+defaultAsyncEventTimeout)
defer cancel()
if _, ok := e.ReadContext(ctx); ok {
t.Fatal("unexpectedly got a packet after router solicitation has been stopepd")
}
// If test.startFn is nil, there is no way to restart router solications.
if test.startFn == nil {
return
}
// Start soliciting routers.
test.startFn(t, s)
waitForPkt(delay + defaultAsyncEventTimeout)
waitForPkt(interval + defaultAsyncEventTimeout)
waitForPkt(interval + defaultAsyncEventTimeout)
ctx, cancel = context.WithTimeout(context.Background(), interval+defaultAsyncEventTimeout)
defer cancel()
if _, ok := e.ReadContext(ctx); ok {
t.Fatal("unexpectedly got an extra packet after sending out the expected RSs")
}
// Starting router solicitations after it has already completed should do
// nothing.
test.startFn(t, s)
ctx, cancel = context.WithTimeout(context.Background(), delay+defaultAsyncEventTimeout)
defer cancel()
if _, ok := e.ReadContext(ctx); ok {
t.Fatal("unexpectedly got a packet after finishing router solicitations")
}
})
}
}