blob: b574e0a680ec503f382756e06f7d8ca06791c7a6 [file] [log] [blame]
/*
*
* Copyright 2015 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "src/core/lib/iomgr/port.h"
#include "src/core/lib/iomgr/timer_heap.h"
#include <stdlib.h>
#include <string.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include "src/core/lib/gpr/useful.h"
#include "test/core/util/test_config.h"
static gpr_atm random_deadline(void) { return rand(); }
static grpc_timer* create_test_elements(size_t num_elements) {
grpc_timer* elems =
static_cast<grpc_timer*>(gpr_malloc(num_elements * sizeof(grpc_timer)));
size_t i;
for (i = 0; i < num_elements; i++) {
elems[i].deadline = random_deadline();
}
return elems;
}
static int contains(grpc_timer_heap* pq, grpc_timer* el) {
size_t i;
for (i = 0; i < pq->timer_count; i++) {
if (pq->timers[i] == el) return 1;
}
return 0;
}
static void check_valid(grpc_timer_heap* pq) {
size_t i;
for (i = 0; i < pq->timer_count; ++i) {
size_t left_child = 1u + 2u * i;
size_t right_child = left_child + 1u;
if (left_child < pq->timer_count) {
GPR_ASSERT(pq->timers[i]->deadline <= pq->timers[left_child]->deadline);
}
if (right_child < pq->timer_count) {
GPR_ASSERT(pq->timers[i]->deadline <= pq->timers[right_child]->deadline);
}
}
}
/*******************************************************************************
* test1
*/
static void test1(void) {
grpc_timer_heap pq;
const size_t num_test_elements = 200;
const size_t num_test_operations = 10000;
size_t i;
grpc_timer* test_elements = create_test_elements(num_test_elements);
uint8_t* inpq = static_cast<uint8_t*>(gpr_malloc(num_test_elements));
gpr_log(GPR_INFO, "test1");
grpc_timer_heap_init(&pq);
memset(inpq, 0, num_test_elements);
GPR_ASSERT(grpc_timer_heap_is_empty(&pq));
check_valid(&pq);
for (i = 0; i < num_test_elements; ++i) {
GPR_ASSERT(!contains(&pq, &test_elements[i]));
grpc_timer_heap_add(&pq, &test_elements[i]);
check_valid(&pq);
GPR_ASSERT(contains(&pq, &test_elements[i]));
inpq[i] = 1;
}
for (i = 0; i < num_test_elements; ++i) {
/* Test that check still succeeds even for element that wasn't just
inserted. */
GPR_ASSERT(contains(&pq, &test_elements[i]));
}
GPR_ASSERT(pq.timer_count == num_test_elements);
check_valid(&pq);
for (i = 0; i < num_test_operations; ++i) {
size_t elem_num = static_cast<size_t>(rand()) % num_test_elements;
grpc_timer* el = &test_elements[elem_num];
if (!inpq[elem_num]) { /* not in pq */
GPR_ASSERT(!contains(&pq, el));
el->deadline = random_deadline();
grpc_timer_heap_add(&pq, el);
GPR_ASSERT(contains(&pq, el));
inpq[elem_num] = 1;
check_valid(&pq);
} else {
GPR_ASSERT(contains(&pq, el));
grpc_timer_heap_remove(&pq, el);
GPR_ASSERT(!contains(&pq, el));
inpq[elem_num] = 0;
check_valid(&pq);
}
}
grpc_timer_heap_destroy(&pq);
gpr_free(test_elements);
gpr_free(inpq);
}
/*******************************************************************************
* test2
*/
typedef struct {
grpc_timer elem;
bool inserted;
} elem_struct;
static elem_struct* search_elems(elem_struct* elems, size_t count,
bool inserted) {
size_t* search_order =
static_cast<size_t*>(gpr_malloc(count * sizeof(*search_order)));
for (size_t i = 0; i < count; i++) {
search_order[i] = i;
}
for (size_t i = 0; i < count * 2; i++) {
size_t a = static_cast<size_t>(rand()) % count;
size_t b = static_cast<size_t>(rand()) % count;
GPR_SWAP(size_t, search_order[a], search_order[b]);
}
elem_struct* out = nullptr;
for (size_t i = 0; out == nullptr && i < count; i++) {
if (elems[search_order[i]].inserted == inserted) {
out = &elems[search_order[i]];
}
}
gpr_free(search_order);
return out;
}
static void test2(void) {
gpr_log(GPR_INFO, "test2");
grpc_timer_heap pq;
static const size_t elems_size = 1000;
elem_struct* elems =
static_cast<elem_struct*>(gpr_malloc(elems_size * sizeof(elem_struct)));
size_t num_inserted = 0;
grpc_timer_heap_init(&pq);
memset(elems, 0, elems_size * sizeof(elems[0]));
for (size_t round = 0; round < 10000; round++) {
int r = rand() % 1000;
if (r <= 550) {
/* 55% of the time we try to add something */
elem_struct* el = search_elems(elems, elems_size, false);
if (el != nullptr) {
el->elem.deadline = random_deadline();
grpc_timer_heap_add(&pq, &el->elem);
el->inserted = true;
num_inserted++;
check_valid(&pq);
}
} else if (r <= 650) {
/* 10% of the time we try to remove something */
elem_struct* el = search_elems(elems, elems_size, true);
if (el != nullptr) {
grpc_timer_heap_remove(&pq, &el->elem);
el->inserted = false;
num_inserted--;
check_valid(&pq);
}
} else {
/* the remaining times we pop */
if (num_inserted > 0) {
grpc_timer* top = grpc_timer_heap_top(&pq);
grpc_timer_heap_pop(&pq);
for (size_t i = 0; i < elems_size; i++) {
if (top == &elems[i].elem) {
GPR_ASSERT(elems[i].inserted);
elems[i].inserted = false;
}
}
num_inserted--;
check_valid(&pq);
}
}
if (num_inserted) {
grpc_millis* min_deadline = nullptr;
for (size_t i = 0; i < elems_size; i++) {
if (elems[i].inserted) {
if (min_deadline == nullptr) {
min_deadline = &elems[i].elem.deadline;
} else {
if (elems[i].elem.deadline < *min_deadline) {
min_deadline = &elems[i].elem.deadline;
}
}
}
}
GPR_ASSERT(grpc_timer_heap_top(&pq)->deadline == *min_deadline);
}
}
grpc_timer_heap_destroy(&pq);
gpr_free(elems);
}
static void shrink_test(void) {
gpr_log(GPR_INFO, "shrink_test");
grpc_timer_heap pq;
size_t i;
size_t expected_size;
/* A large random number to allow for multiple shrinkages, at least 512. */
const size_t num_elements = static_cast<size_t>(rand()) % 2000 + 512;
grpc_timer_heap_init(&pq);
/* Create a priority queue with many elements. Make sure the Size() is
correct. */
for (i = 0; i < num_elements; ++i) {
GPR_ASSERT(i == pq.timer_count);
grpc_timer_heap_add(&pq, create_test_elements(1));
}
GPR_ASSERT(num_elements == pq.timer_count);
/* Remove elements until the Size is 1/4 the original size. */
while (pq.timer_count > num_elements / 4) {
grpc_timer* const te = pq.timers[pq.timer_count - 1];
grpc_timer_heap_remove(&pq, te);
gpr_free(te);
}
GPR_ASSERT(num_elements / 4 == pq.timer_count);
/* Expect that Capacity is in the right range:
Size * 2 <= Capacity <= Size * 4 */
GPR_ASSERT(pq.timer_count * 2 <= pq.timer_capacity);
GPR_ASSERT(pq.timer_capacity <= pq.timer_count * 4);
check_valid(&pq);
/* Remove the rest of the elements. Check that the Capacity is not more than
4 times the Size and not less than 2 times, but never goes below 16. */
expected_size = pq.timer_count;
while (pq.timer_count > 0) {
const size_t which = static_cast<size_t>(rand()) % pq.timer_count;
grpc_timer* te = pq.timers[which];
grpc_timer_heap_remove(&pq, te);
gpr_free(te);
expected_size--;
GPR_ASSERT(expected_size == pq.timer_count);
GPR_ASSERT(pq.timer_count * 2 <= pq.timer_capacity);
if (pq.timer_count >= 8) {
GPR_ASSERT(pq.timer_capacity <= pq.timer_count * 4);
} else {
GPR_ASSERT(16 <= pq.timer_capacity);
}
check_valid(&pq);
}
GPR_ASSERT(0 == pq.timer_count);
GPR_ASSERT(pq.timer_capacity >= 16 && pq.timer_capacity < 32);
grpc_timer_heap_destroy(&pq);
}
int main(int argc, char** argv) {
int i;
grpc::testing::TestEnvironment env(argc, argv);
for (i = 0; i < 5; i++) {
test1();
test2();
shrink_test();
}
return 0;
}