blob: 768f96d093fc8b9162f3180368010e7a70bf3224 [file] [log] [blame]
/*
*
* Copyright 2015 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/* Test of gpr synchronization support. */
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/sync.h>
#include <grpc/support/thd.h>
#include <grpc/support/time.h>
#include <stdio.h>
#include <stdlib.h>
#include "test/core/util/test_config.h"
/* ==================Example use of interface===================
A producer-consumer queue of up to N integers,
illustrating the use of the calls in this interface. */
#define N 4
typedef struct queue {
gpr_cv non_empty; /* Signalled when length becomes non-zero. */
gpr_cv non_full; /* Signalled when length becomes non-N. */
gpr_mu mu; /* Protects all fields below.
(That is, except during initialization or
destruction, the fields below should be accessed
only by a thread that holds mu.) */
int head; /* Index of head of queue 0..N-1. */
int length; /* Number of valid elements in queue 0..N. */
int elem[N]; /* elem[head .. head+length-1] are queue elements. */
} queue;
/* Initialize *q. */
void queue_init(queue* q) {
gpr_mu_init(&q->mu);
gpr_cv_init(&q->non_empty);
gpr_cv_init(&q->non_full);
q->head = 0;
q->length = 0;
}
/* Free storage associated with *q. */
void queue_destroy(queue* q) {
gpr_mu_destroy(&q->mu);
gpr_cv_destroy(&q->non_empty);
gpr_cv_destroy(&q->non_full);
}
/* Wait until there is room in *q, then append x to *q. */
void queue_append(queue* q, int x) {
gpr_mu_lock(&q->mu);
/* To wait for a predicate without a deadline, loop on the negation of the
predicate, and use gpr_cv_wait(..., gpr_inf_future(GPR_CLOCK_REALTIME))
inside the loop
to release the lock, wait, and reacquire on each iteration. Code that
makes the condition true should use gpr_cv_broadcast() on the
corresponding condition variable. The predicate must be on state
protected by the lock. */
while (q->length == N) {
gpr_cv_wait(&q->non_full, &q->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
if (q->length == 0) { /* Wake threads blocked in queue_remove(). */
/* It's normal to use gpr_cv_broadcast() or gpr_signal() while
holding the lock. */
gpr_cv_broadcast(&q->non_empty);
}
q->elem[(q->head + q->length) % N] = x;
q->length++;
gpr_mu_unlock(&q->mu);
}
/* If it can be done without blocking, append x to *q and return non-zero.
Otherwise return 0. */
int queue_try_append(queue* q, int x) {
int result = 0;
if (gpr_mu_trylock(&q->mu)) {
if (q->length != N) {
if (q->length == 0) { /* Wake threads blocked in queue_remove(). */
gpr_cv_broadcast(&q->non_empty);
}
q->elem[(q->head + q->length) % N] = x;
q->length++;
result = 1;
}
gpr_mu_unlock(&q->mu);
}
return result;
}
/* Wait until the *q is non-empty or deadline abs_deadline passes. If the
queue is non-empty, remove its head entry, place it in *head, and return
non-zero. Otherwise return 0. */
int queue_remove(queue* q, int* head, gpr_timespec abs_deadline) {
int result = 0;
gpr_mu_lock(&q->mu);
/* To wait for a predicate with a deadline, loop on the negation of the
predicate or until gpr_cv_wait() returns true. Code that makes
the condition true should use gpr_cv_broadcast() on the corresponding
condition variable. The predicate must be on state protected by the
lock. */
while (q->length == 0 && !gpr_cv_wait(&q->non_empty, &q->mu, abs_deadline)) {
}
if (q->length != 0) { /* Queue is non-empty. */
result = 1;
if (q->length == N) { /* Wake threads blocked in queue_append(). */
gpr_cv_broadcast(&q->non_full);
}
*head = q->elem[q->head];
q->head = (q->head + 1) % N;
q->length--;
} /* else deadline exceeded */
gpr_mu_unlock(&q->mu);
return result;
}
/* ------------------------------------------------- */
/* Tests for gpr_mu and gpr_cv, and the queue example. */
struct test {
int threads; /* number of threads */
int64_t iterations; /* number of iterations per thread */
int64_t counter;
int thread_count; /* used to allocate thread ids */
int done; /* threads not yet completed */
int incr_step; /* how much to increment/decrement refcount each time */
gpr_mu mu; /* protects iterations, counter, thread_count, done */
gpr_cv cv; /* signalling depends on test */
gpr_cv done_cv; /* signalled when done == 0 */
queue q;
gpr_stats_counter stats_counter;
gpr_refcount refcount;
gpr_refcount thread_refcount;
gpr_event event;
};
/* Return pointer to a new struct test. */
static struct test* test_new(int threads, int64_t iterations, int incr_step) {
struct test* m = static_cast<struct test*>(gpr_malloc(sizeof(*m)));
m->threads = threads;
m->iterations = iterations;
m->counter = 0;
m->thread_count = 0;
m->done = threads;
m->incr_step = incr_step;
gpr_mu_init(&m->mu);
gpr_cv_init(&m->cv);
gpr_cv_init(&m->done_cv);
queue_init(&m->q);
gpr_stats_init(&m->stats_counter, 0);
gpr_ref_init(&m->refcount, 0);
gpr_ref_init(&m->thread_refcount, threads);
gpr_event_init(&m->event);
return m;
}
/* Return pointer to a new struct test. */
static void test_destroy(struct test* m) {
gpr_mu_destroy(&m->mu);
gpr_cv_destroy(&m->cv);
gpr_cv_destroy(&m->done_cv);
queue_destroy(&m->q);
gpr_free(m);
}
/* Create m->threads threads, each running (*body)(m) */
static void test_create_threads(struct test* m, void (*body)(void* arg)) {
gpr_thd_id id;
int i;
for (i = 0; i != m->threads; i++) {
GPR_ASSERT(gpr_thd_new(&id, "grpc_create_threads", body, m, nullptr));
}
}
/* Wait until all threads report done. */
static void test_wait(struct test* m) {
gpr_mu_lock(&m->mu);
while (m->done != 0) {
gpr_cv_wait(&m->done_cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
gpr_mu_unlock(&m->mu);
}
/* Get an integer thread id in the raneg 0..threads-1 */
static int thread_id(struct test* m) {
int id;
gpr_mu_lock(&m->mu);
id = m->thread_count++;
gpr_mu_unlock(&m->mu);
return id;
}
/* Indicate that a thread is done, by decrementing m->done
and signalling done_cv if m->done==0. */
static void mark_thread_done(struct test* m) {
gpr_mu_lock(&m->mu);
GPR_ASSERT(m->done != 0);
m->done--;
if (m->done == 0) {
gpr_cv_signal(&m->done_cv);
}
gpr_mu_unlock(&m->mu);
}
/* Test several threads running (*body)(struct test *m) for increasing settings
of m->iterations, until about timeout_s to 2*timeout_s seconds have elapsed.
If extra!=NULL, run (*extra)(m) in an additional thread.
incr_step controls by how much m->refcount should be incremented/decremented
(if at all) each time in the tests.
*/
static void test(const char* name, void (*body)(void* m),
void (*extra)(void* m), int timeout_s, int incr_step) {
int64_t iterations = 256;
struct test* m;
gpr_timespec start = gpr_now(GPR_CLOCK_REALTIME);
gpr_timespec time_taken;
gpr_timespec deadline = gpr_time_add(
start, gpr_time_from_micros((int64_t)timeout_s * 1000000, GPR_TIMESPAN));
fprintf(stderr, "%s:", name);
fflush(stderr);
while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0) {
fprintf(stderr, " %ld", (long)iterations);
fflush(stderr);
m = test_new(10, iterations, incr_step);
if (extra != nullptr) {
gpr_thd_id id;
GPR_ASSERT(gpr_thd_new(&id, name, extra, m, nullptr));
m->done++; /* one more thread to wait for */
}
test_create_threads(m, body);
test_wait(m);
if (m->counter != m->threads * m->iterations * m->incr_step) {
fprintf(stderr, "counter %ld threads %d iterations %ld\n",
(long)m->counter, m->threads, (long)m->iterations);
fflush(stderr);
GPR_ASSERT(0);
}
test_destroy(m);
iterations <<= 1;
}
time_taken = gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), start);
fprintf(stderr, " done %lld.%09d s\n", (long long)time_taken.tv_sec,
(int)time_taken.tv_nsec);
fflush(stderr);
}
/* Increment m->counter on each iteration; then mark thread as done. */
static void inc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_mu_lock(&m->mu);
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
/* Increment m->counter under lock acquired with trylock, m->iterations times;
then mark thread as done. */
static void inctry(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations;) {
if (gpr_mu_trylock(&m->mu)) {
m->counter++;
gpr_mu_unlock(&m->mu);
i++;
}
}
mark_thread_done(m);
}
/* Increment counter only when (m->counter%m->threads)==m->thread_id; then mark
thread as done. */
static void inc_by_turns(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
int id = thread_id(m);
for (i = 0; i != m->iterations; i++) {
gpr_mu_lock(&m->mu);
while ((m->counter % m->threads) != id) {
gpr_cv_wait(&m->cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
m->counter++;
gpr_cv_broadcast(&m->cv);
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
/* Wait a millisecond and increment counter on each iteration;
then mark thread as done. */
static void inc_with_1ms_delay(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_timespec deadline;
gpr_mu_lock(&m->mu);
deadline = gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_micros(1000, GPR_TIMESPAN));
while (!gpr_cv_wait(&m->cv, &m->mu, deadline)) {
}
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
/* Wait a millisecond and increment counter on each iteration, using an event
for timing; then mark thread as done. */
static void inc_with_1ms_delay_event(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_timespec deadline;
deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_micros(1000, GPR_TIMESPAN));
GPR_ASSERT(gpr_event_wait(&m->event, deadline) == nullptr);
gpr_mu_lock(&m->mu);
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
/* Produce m->iterations elements on queue m->q, then mark thread as done.
Even threads use queue_append(), and odd threads use queue_try_append()
until it succeeds. */
static void many_producers(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
int x = thread_id(m);
if ((x & 1) == 0) {
for (i = 0; i != m->iterations; i++) {
queue_append(&m->q, 1);
}
} else {
for (i = 0; i != m->iterations; i++) {
while (!queue_try_append(&m->q, 1)) {
}
}
}
mark_thread_done(m);
}
/* Consume elements from m->q until m->threads*m->iterations are seen,
wait an extra second to confirm that no more elements are arriving,
then mark thread as done. */
static void consumer(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t n = m->iterations * m->threads;
int64_t i;
int value;
for (i = 0; i != n; i++) {
queue_remove(&m->q, &value, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
gpr_mu_lock(&m->mu);
m->counter = n;
gpr_mu_unlock(&m->mu);
GPR_ASSERT(
!queue_remove(&m->q, &value,
gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_micros(1000000, GPR_TIMESPAN))));
mark_thread_done(m);
}
/* Increment m->stats_counter m->iterations times, transfer counter value to
m->counter, then mark thread as done. */
static void statsinc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_stats_inc(&m->stats_counter, 1);
}
gpr_mu_lock(&m->mu);
m->counter = gpr_stats_read(&m->stats_counter);
gpr_mu_unlock(&m->mu);
mark_thread_done(m);
}
/* Increment m->refcount by m->incr_step for m->iterations times. Decrement
m->thread_refcount once, and if it reaches zero, set m->event to (void*)1;
then mark thread as done. */
static void refinc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
if (m->incr_step == 1) {
gpr_ref(&m->refcount);
} else {
gpr_refn(&m->refcount, m->incr_step);
}
}
if (gpr_unref(&m->thread_refcount)) {
gpr_event_set(&m->event, (void*)1);
}
mark_thread_done(m);
}
/* Wait until m->event is set to (void *)1, then decrement m->refcount by 1
(m->threads * m->iterations * m->incr_step) times, and ensure that the last
decrement caused the counter to reach zero, then mark thread as done. */
static void refcheck(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t n = m->iterations * m->threads * m->incr_step;
int64_t i;
GPR_ASSERT(gpr_event_wait(&m->event, gpr_inf_future(GPR_CLOCK_REALTIME)) ==
(void*)1);
GPR_ASSERT(gpr_event_get(&m->event) == (void*)1);
for (i = 1; i != n; i++) {
GPR_ASSERT(!gpr_unref(&m->refcount));
m->counter++;
}
GPR_ASSERT(gpr_unref(&m->refcount));
m->counter++;
mark_thread_done(m);
}
/* ------------------------------------------------- */
int main(int argc, char* argv[]) {
grpc_test_init(argc, argv);
test("mutex", &inc, nullptr, 1, 1);
test("mutex try", &inctry, nullptr, 1, 1);
test("cv", &inc_by_turns, nullptr, 1, 1);
test("timedcv", &inc_with_1ms_delay, nullptr, 1, 1);
test("queue", &many_producers, &consumer, 10, 1);
test("stats_counter", &statsinc, nullptr, 1, 1);
test("refcount by 1", &refinc, &refcheck, 1, 1);
test("refcount by 3", &refinc, &refcheck, 1, 3); /* incr_step of 3 is an
arbitrary choice. Any
number > 1 is okay here */
test("timedevent", &inc_with_1ms_delay_event, nullptr, 1, 1);
return 0;
}