blob: a46e95ef35210c080be47c42f8e73350836ad545 [file] [log] [blame]
//
//
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Generic implementation of time calls.
#include <grpc/support/port_platform.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include "absl/log/check.h"
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include "src/core/lib/gprpp/crash.h"
int gpr_time_cmp(gpr_timespec a, gpr_timespec b) {
int cmp = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
CHECK(a.clock_type == b.clock_type);
if (cmp == 0 && a.tv_sec != INT64_MAX && a.tv_sec != INT64_MIN) {
cmp = (a.tv_nsec > b.tv_nsec) - (a.tv_nsec < b.tv_nsec);
}
return cmp;
}
gpr_timespec gpr_time_min(gpr_timespec a, gpr_timespec b) {
return gpr_time_cmp(a, b) < 0 ? a : b;
}
gpr_timespec gpr_time_max(gpr_timespec a, gpr_timespec b) {
return gpr_time_cmp(a, b) > 0 ? a : b;
}
gpr_timespec gpr_time_0(gpr_clock_type type) {
gpr_timespec out;
out.tv_sec = 0;
out.tv_nsec = 0;
out.clock_type = type;
return out;
}
gpr_timespec gpr_inf_future(gpr_clock_type type) {
gpr_timespec out;
out.tv_sec = INT64_MAX;
out.tv_nsec = 0;
out.clock_type = type;
return out;
}
gpr_timespec gpr_inf_past(gpr_clock_type type) {
gpr_timespec out;
out.tv_sec = INT64_MIN;
out.tv_nsec = 0;
out.clock_type = type;
return out;
}
static gpr_timespec to_seconds_from_sub_second_time(int64_t time_in_units,
int64_t units_per_sec,
gpr_clock_type type) {
gpr_timespec out;
if (time_in_units == INT64_MAX) {
out = gpr_inf_future(type);
} else if (time_in_units == INT64_MIN) {
out = gpr_inf_past(type);
} else {
DCHECK_EQ(GPR_NS_PER_SEC % units_per_sec, 0);
out.tv_sec = time_in_units / units_per_sec;
out.tv_nsec =
static_cast<int32_t>((time_in_units - (out.tv_sec * units_per_sec)) *
(GPR_NS_PER_SEC / units_per_sec));
/// `out.tv_nsec` should always be positive.
if (out.tv_nsec < 0) {
out.tv_nsec += GPR_NS_PER_SEC;
out.tv_sec--;
}
out.clock_type = type;
}
return out;
}
static gpr_timespec to_seconds_from_above_second_time(int64_t time_in_units,
int64_t secs_per_unit,
gpr_clock_type type) {
gpr_timespec out;
if (time_in_units >= INT64_MAX / secs_per_unit) {
out = gpr_inf_future(type);
} else if (time_in_units <= INT64_MIN / secs_per_unit) {
out = gpr_inf_past(type);
} else {
out.tv_sec = time_in_units * secs_per_unit;
out.tv_nsec = 0;
out.clock_type = type;
}
return out;
}
gpr_timespec gpr_time_from_nanos(int64_t ns, gpr_clock_type clock_type) {
return to_seconds_from_sub_second_time(ns, GPR_NS_PER_SEC, clock_type);
}
gpr_timespec gpr_time_from_micros(int64_t us, gpr_clock_type clock_type) {
return to_seconds_from_sub_second_time(us, GPR_US_PER_SEC, clock_type);
}
gpr_timespec gpr_time_from_millis(int64_t ms, gpr_clock_type clock_type) {
return to_seconds_from_sub_second_time(ms, GPR_MS_PER_SEC, clock_type);
}
gpr_timespec gpr_time_from_seconds(int64_t s, gpr_clock_type clock_type) {
return to_seconds_from_sub_second_time(s, 1, clock_type);
}
gpr_timespec gpr_time_from_minutes(int64_t m, gpr_clock_type clock_type) {
return to_seconds_from_above_second_time(m, 60, clock_type);
}
gpr_timespec gpr_time_from_hours(int64_t h, gpr_clock_type clock_type) {
return to_seconds_from_above_second_time(h, 3600, clock_type);
}
gpr_timespec gpr_time_add(gpr_timespec a, gpr_timespec b) {
gpr_timespec sum;
int64_t inc = 0;
CHECK(b.clock_type == GPR_TIMESPAN);
// tv_nsec in a timespan is always +ve. -ve timespan is represented as (-ve
// tv_sec, +ve tv_nsec). For example, timespan = -2.5 seconds is represented
// as {-3, 5e8, GPR_TIMESPAN}
CHECK_GE(b.tv_nsec, 0);
sum.clock_type = a.clock_type;
sum.tv_nsec = a.tv_nsec + b.tv_nsec;
if (sum.tv_nsec >= GPR_NS_PER_SEC) {
sum.tv_nsec -= GPR_NS_PER_SEC;
inc++;
}
if (a.tv_sec == INT64_MAX || a.tv_sec == INT64_MIN) {
sum = a;
} else if (b.tv_sec == INT64_MAX ||
(b.tv_sec >= 0 && a.tv_sec >= INT64_MAX - b.tv_sec)) {
sum = gpr_inf_future(sum.clock_type);
} else if (b.tv_sec == INT64_MIN ||
(b.tv_sec <= 0 && a.tv_sec <= INT64_MIN - b.tv_sec)) {
sum = gpr_inf_past(sum.clock_type);
} else {
sum.tv_sec = a.tv_sec + b.tv_sec;
if (inc != 0 && sum.tv_sec == INT64_MAX - 1) {
sum = gpr_inf_future(sum.clock_type);
} else {
sum.tv_sec += inc;
}
}
return sum;
}
gpr_timespec gpr_time_sub(gpr_timespec a, gpr_timespec b) {
gpr_timespec diff;
int64_t dec = 0;
if (b.clock_type == GPR_TIMESPAN) {
diff.clock_type = a.clock_type;
// tv_nsec in a timespan is always +ve. -ve timespan is represented as (-ve
// tv_sec, +ve tv_nsec). For example, timespan = -2.5 seconds is represented
// as {-3, 5e8, GPR_TIMESPAN}
CHECK_GE(b.tv_nsec, 0);
} else {
CHECK(a.clock_type == b.clock_type);
diff.clock_type = GPR_TIMESPAN;
}
diff.tv_nsec = a.tv_nsec - b.tv_nsec;
if (diff.tv_nsec < 0) {
diff.tv_nsec += GPR_NS_PER_SEC;
dec++;
}
if (a.tv_sec == INT64_MAX || a.tv_sec == INT64_MIN) {
diff.tv_sec = a.tv_sec;
diff.tv_nsec = a.tv_nsec;
} else if (b.tv_sec == INT64_MIN ||
(b.tv_sec <= 0 && a.tv_sec >= INT64_MAX + b.tv_sec)) {
diff = gpr_inf_future(GPR_CLOCK_REALTIME);
} else if (b.tv_sec == INT64_MAX ||
(b.tv_sec >= 0 && a.tv_sec <= INT64_MIN + b.tv_sec)) {
diff = gpr_inf_past(GPR_CLOCK_REALTIME);
} else {
diff.tv_sec = a.tv_sec - b.tv_sec;
if (dec != 0 && diff.tv_sec == INT64_MIN + 1) {
diff = gpr_inf_past(GPR_CLOCK_REALTIME);
} else {
diff.tv_sec -= dec;
}
}
return diff;
}
int gpr_time_similar(gpr_timespec a, gpr_timespec b, gpr_timespec threshold) {
int cmp_ab;
CHECK(a.clock_type == b.clock_type);
CHECK(threshold.clock_type == GPR_TIMESPAN);
cmp_ab = gpr_time_cmp(a, b);
if (cmp_ab == 0) return 1;
if (cmp_ab < 0) {
return gpr_time_cmp(gpr_time_sub(b, a), threshold) <= 0;
} else {
return gpr_time_cmp(gpr_time_sub(a, b), threshold) <= 0;
}
}
int32_t gpr_time_to_millis(gpr_timespec t) {
if (t.tv_sec >= 2147483) {
if (t.tv_sec == 2147483 && t.tv_nsec < 648 * GPR_NS_PER_MS) {
return 2147483 * GPR_MS_PER_SEC + t.tv_nsec / GPR_NS_PER_MS;
}
return 2147483647;
} else if (t.tv_sec <= -2147483) {
// TODO(ctiller): correct handling here (it's so far in the past do we
// care?)
return -2147483647;
} else {
return static_cast<int32_t>(t.tv_sec * GPR_MS_PER_SEC +
t.tv_nsec / GPR_NS_PER_MS);
}
}
double gpr_timespec_to_micros(gpr_timespec t) {
return static_cast<double>(t.tv_sec) * GPR_US_PER_SEC + t.tv_nsec * 1e-3;
}
gpr_timespec gpr_convert_clock_type(gpr_timespec t, gpr_clock_type clock_type) {
if (t.clock_type == clock_type) {
return t;
}
if (t.tv_sec == INT64_MAX || t.tv_sec == INT64_MIN) {
t.clock_type = clock_type;
return t;
}
if (clock_type == GPR_TIMESPAN) {
return gpr_time_sub(t, gpr_now(t.clock_type));
}
if (t.clock_type == GPR_TIMESPAN) {
return gpr_time_add(gpr_now(clock_type), t);
}
// If the given input hits this code, the same result is not guaranteed for
// the same input because it relies on `gpr_now` to calculate the difference
// between two different clocks. Please be careful when you want to use this
// function in unit tests. (e.g. https://github.com/grpc/grpc/pull/22655)
return gpr_time_add(gpr_now(clock_type),
gpr_time_sub(t, gpr_now(t.clock_type)));
}