blob: da098b58b7aba0fc65e9f43573dc261c7cda9d9f [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import "sync"
// TODO(gri) Clean up Named struct below; specifically the fromRHS field (can we use underlying?).
// A Named represents a named (defined) type.
type Named struct {
check *Checker // for Named.under implementation; nilled once under has been called
info typeInfo // for cycle detection
obj *TypeName // corresponding declared object
orig *Named // original, uninstantiated type
fromRHS Type // type (on RHS of declaration) this *Named type is derived from (for cycle reporting)
underlying Type // possibly a *Named during setup; never a *Named once set up completely
tparams []*TypeName // type parameters, or nil
targs []Type // type arguments (after instantiation), or nil
methods []*Func // methods declared for this type (not the method set of this type); signatures are type-checked lazily
resolve func(*Named) ([]*TypeName, Type, []*Func)
once sync.Once
}
// NewNamed returns a new named type for the given type name, underlying type, and associated methods.
// If the given type name obj doesn't have a type yet, its type is set to the returned named type.
// The underlying type must not be a *Named.
func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
if _, ok := underlying.(*Named); ok {
panic("types2.NewNamed: underlying type must not be *Named")
}
return (*Checker)(nil).newNamed(obj, nil, underlying, nil, methods)
}
func (t *Named) expand() *Named {
if t.resolve == nil {
return t
}
t.once.Do(func() {
// TODO(mdempsky): Since we're passing t to resolve anyway
// (necessary because types2 expects the receiver type for methods
// on defined interface types to be the Named rather than the
// underlying Interface), maybe it should just handle calling
// SetTParams, SetUnderlying, and AddMethod instead? Those
// methods would need to support reentrant calls though. It would
// also make the API more future-proof towards further extensions
// (like SetTParams).
tparams, underlying, methods := t.resolve(t)
switch underlying.(type) {
case nil, *Named:
panic("invalid underlying type")
}
t.tparams = tparams
t.underlying = underlying
t.methods = methods
})
return t
}
// newNamed is like NewNamed but with a *Checker receiver and additional orig argument.
func (check *Checker) newNamed(obj *TypeName, orig *Named, underlying Type, tparams []*TypeName, methods []*Func) *Named {
typ := &Named{check: check, obj: obj, orig: orig, fromRHS: underlying, underlying: underlying, tparams: tparams, methods: methods}
if typ.orig == nil {
typ.orig = typ
}
if obj.typ == nil {
obj.typ = typ
}
// Ensure that typ is always expanded, at which point the check field can be
// nilled out.
//
// Note that currently we cannot nil out check inside typ.under(), because
// it's possible that typ is expanded multiple times.
//
// TODO(gri): clean this up so that under is the only function mutating
// named types.
if check != nil {
check.later(func() {
switch typ.under().(type) {
case *Named, *instance:
panic("internal error: unexpanded underlying type")
}
typ.check = nil
})
}
return typ
}
// Obj returns the type name for the named type t.
func (t *Named) Obj() *TypeName { return t.obj }
// Orig returns the original generic type an instantiated type is derived from.
// If t is not an instantiated type, the result is t.
func (t *Named) Orig() *Named { return t.orig }
// TODO(gri) Come up with a better representation and API to distinguish
// between parameterized instantiated and non-instantiated types.
// TParams returns the type parameters of the named type t, or nil.
// The result is non-nil for an (originally) parameterized type even if it is instantiated.
func (t *Named) TParams() []*TypeName { return t.expand().tparams }
// SetTParams sets the type parameters of the named type t.
func (t *Named) SetTParams(tparams []*TypeName) { t.expand().tparams = tparams }
// TArgs returns the type arguments after instantiation of the named type t, or nil if not instantiated.
func (t *Named) TArgs() []Type { return t.targs }
// SetTArgs sets the type arguments of the named type t.
func (t *Named) SetTArgs(args []Type) { t.targs = args }
// NumMethods returns the number of explicit methods whose receiver is named type t.
func (t *Named) NumMethods() int { return len(t.expand().methods) }
// Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
func (t *Named) Method(i int) *Func { return t.expand().methods[i] }
// SetUnderlying sets the underlying type and marks t as complete.
func (t *Named) SetUnderlying(underlying Type) {
if underlying == nil {
panic("types2.Named.SetUnderlying: underlying type must not be nil")
}
if _, ok := underlying.(*Named); ok {
panic("types2.Named.SetUnderlying: underlying type must not be *Named")
}
t.expand().underlying = underlying
}
// AddMethod adds method m unless it is already in the method list.
func (t *Named) AddMethod(m *Func) {
t.expand()
if i, _ := lookupMethod(t.methods, m.pkg, m.name); i < 0 {
t.methods = append(t.methods, m)
}
}
func (t *Named) Underlying() Type { return t.expand().underlying }
func (t *Named) String() string { return TypeString(t, nil) }
// ----------------------------------------------------------------------------
// Implementation
// under returns the expanded underlying type of n0; possibly by following
// forward chains of named types. If an underlying type is found, resolve
// the chain by setting the underlying type for each defined type in the
// chain before returning it. If no underlying type is found or a cycle
// is detected, the result is Typ[Invalid]. If a cycle is detected and
// n0.check != nil, the cycle is reported.
func (n0 *Named) under() Type {
u := n0.Underlying()
if u == Typ[Invalid] {
return u
}
// If the underlying type of a defined type is not a defined
// (incl. instance) type, then that is the desired underlying
// type.
switch u.(type) {
case nil:
return Typ[Invalid]
default:
// common case
return u
case *Named, *instance:
// handled below
}
if n0.check == nil {
panic("internal error: Named.check == nil but type is incomplete")
}
// Invariant: after this point n0 as well as any named types in its
// underlying chain should be set up when this function exits.
check := n0.check
// If we can't expand u at this point, it is invalid.
n := asNamed(u)
if n == nil {
n0.underlying = Typ[Invalid]
return n0.underlying
}
// Otherwise, follow the forward chain.
seen := map[*Named]int{n0: 0}
path := []Object{n0.obj}
for {
u = n.Underlying()
if u == nil {
u = Typ[Invalid]
break
}
var n1 *Named
switch u1 := u.(type) {
case *Named:
n1 = u1
case *instance:
n1, _ = u1.expand().(*Named)
if n1 == nil {
u = Typ[Invalid]
}
}
if n1 == nil {
break // end of chain
}
seen[n] = len(seen)
path = append(path, n.obj)
n = n1
if i, ok := seen[n]; ok {
// cycle
check.cycleError(path[i:])
u = Typ[Invalid]
break
}
}
for n := range seen {
// We should never have to update the underlying type of an imported type;
// those underlying types should have been resolved during the import.
// Also, doing so would lead to a race condition (was issue #31749).
// Do this check always, not just in debug mode (it's cheap).
if n.obj.pkg != check.pkg {
panic("internal error: imported type with unresolved underlying type")
}
n.underlying = u
}
return u
}
func (n *Named) setUnderlying(typ Type) {
if n != nil {
n.underlying = typ
}
}