blob: f45dccd87e65975bd620cbf84982a27f90c7a643 [file] [log] [blame] [edit]
#version 450
#extension GL_EXT_shader_explicit_arithmetic_types: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
#extension GL_EXT_shader_explicit_arithmetic_types_int32: require
#extension GL_EXT_shader_explicit_arithmetic_types_int64: require
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#extension GL_EXT_shader_explicit_arithmetic_types_float32: require
#extension GL_EXT_shader_explicit_arithmetic_types_float64: require
void main()
{
}
// Single float literals
void literal()
{
const float32_t f32c = 0.000001f;
const f32vec2 f32cv = f32vec2(-0.25F, 0.03f);
f32vec2 f32v;
f32v.x = f32c;
f32v += f32cv;
}
// Block memory layout
struct S
{
float32_t x;
f32vec2 y;
f32vec3 z;
};
layout(column_major, std140) uniform B1
{
float32_t a;
f32vec2 b;
f32vec3 c;
float32_t d[2];
f32mat2x3 e;
f32mat2x3 f[2];
S g;
S h[2];
};
// Specialization constant
layout(constant_id = 100) const float16_t sf16 = 0.125hf;
layout(constant_id = 101) const float32_t sf = 0.25;
layout(constant_id = 102) const float64_t sd = 0.5lf;
const float f16_to_f = float(sf16);
const double f16_to_d = float(sf16);
const float16_t f_to_f16 = float16_t(sf);
const float16_t d_to_f16 = float16_t(sd);
void operators()
{
float32_t f32;
f32vec2 f32v;
f32mat2x2 f32m;
bool b;
// Arithmetic
f32v += f32v;
f32v -= f32v;
f32v *= f32v;
f32v /= f32v;
f32v++;
f32v--;
++f32m;
--f32m;
f32v = -f32v;
f32m = -f32m;
f32 = f32v.x + f32v.y;
f32 = f32v.x - f32v.y;
f32 = f32v.x * f32v.y;
f32 = f32v.x / f32v.y;
// Relational
b = (f32v.x != f32);
b = (f32v.y == f32);
b = (f32v.x > f32);
b = (f32v.y < f32);
b = (f32v.x >= f32);
b = (f32v.y <= f32);
// Vector/matrix operations
f32v = f32v * f32;
f32m = f32m * f32;
f32v = f32m * f32v;
f32v = f32v * f32m;
f32m = f32m * f32m;
}
void typeCast()
{
bvec3 bv;
f32vec3 f32v;
f64vec3 f64v;
i8vec3 i8v;
u8vec3 u8v;
i16vec3 i16v;
u16vec3 u16v;
i32vec3 i32v;
u32vec3 u32v;
i64vec3 i64v;
u64vec3 u64v;
f16vec3 f16v;
f64v = f32v; // float32_t -> float64_t
f32v = f32vec3(bv); // bool -> float32
bv = bvec3(f32v); // float32 -> bool
f32v = f32vec3(f64v); // double -> float32
f64v = f64vec3(f32v); // float32 -> double
f32v = f32vec3(f16v); // float16 -> float32
f16v = f16vec3(f32v); // float32 -> float16
i8v = i8vec3(f32v); // float32 -> int8
i16v = i16vec3(f32v); // float32 -> int16
i32v = i32vec3(f32v); // float32 -> int32
i64v = i64vec3(f32v); // float32 -> int64
u8v = u8vec3(f32v); // float32 -> uint8
u16v = u16vec3(f32v); // float32 -> uint16
u32v = u32vec3(f32v); // float32 -> uint32
u64v = u64vec3(f32v); // float32 -> uint64
}
void builtinAngleTrigFuncs()
{
f32vec4 f32v1, f32v2;
f32v2 = radians(f32v1);
f32v2 = degrees(f32v1);
f32v2 = sin(f32v1);
f32v2 = cos(f32v1);
f32v2 = tan(f32v1);
f32v2 = asin(f32v1);
f32v2 = acos(f32v1);
f32v2 = atan(f32v1, f32v2);
f32v2 = atan(f32v1);
f32v2 = sinh(f32v1);
f32v2 = cosh(f32v1);
f32v2 = tanh(f32v1);
f32v2 = asinh(f32v1);
f32v2 = acosh(f32v1);
f32v2 = atanh(f32v1);
}
void builtinExpFuncs()
{
f32vec2 f32v1, f32v2;
f32v2 = pow(f32v1, f32v2);
f32v2 = exp(f32v1);
f32v2 = log(f32v1);
f32v2 = exp2(f32v1);
f32v2 = log2(f32v1);
f32v2 = sqrt(f32v1);
f32v2 = inversesqrt(f32v1);
}
void builtinCommonFuncs()
{
f32vec3 f32v1, f32v2, f32v3;
float32_t f32;
bool b;
bvec3 bv;
ivec3 iv;
f32v2 = abs(f32v1);
f32v2 = sign(f32v1);
f32v2 = floor(f32v1);
f32v2 = trunc(f32v1);
f32v2 = round(f32v1);
f32v2 = roundEven(f32v1);
f32v2 = ceil(f32v1);
f32v2 = fract(f32v1);
f32v2 = mod(f32v1, f32v2);
f32v2 = mod(f32v1, f32);
f32v3 = modf(f32v1, f32v2);
f32v3 = min(f32v1, f32v2);
f32v3 = min(f32v1, f32);
f32v3 = max(f32v1, f32v2);
f32v3 = max(f32v1, f32);
f32v3 = clamp(f32v1, f32, f32v2.x);
f32v3 = clamp(f32v1, f32v2, f32vec3(f32));
f32v3 = mix(f32v1, f32v2, f32);
f32v3 = mix(f32v1, f32v2, f32v3);
f32v3 = mix(f32v1, f32v2, bv);
f32v3 = step(f32v1, f32v2);
f32v3 = step(f32, f32v3);
f32v3 = smoothstep(f32v1, f32v2, f32v3);
f32v3 = smoothstep(f32, f32v1.x, f32v2);
b = isnan(f32);
bv = isinf(f32v1);
f32v3 = fma(f32v1, f32v2, f32v3);
f32v2 = frexp(f32v1, iv);
f32v2 = ldexp(f32v1, iv);
}
void builtinGeometryFuncs()
{
float32_t f32;
f32vec3 f32v1, f32v2, f32v3;
f32 = length(f32v1);
f32 = distance(f32v1, f32v2);
f32 = dot(f32v1, f32v2);
f32v3 = cross(f32v1, f32v2);
f32v2 = normalize(f32v1);
f32v3 = faceforward(f32v1, f32v2, f32v3);
f32v3 = reflect(f32v1, f32v2);
f32v3 = refract(f32v1, f32v2, f32);
}
void builtinMatrixFuncs()
{
f32mat2x3 f32m1, f32m2, f32m3;
f32mat3x2 f32m4;
f32mat3 f32m5;
f32mat4 f32m6, f32m7;
f32vec3 f32v1;
f32vec2 f32v2;
float32_t f32;
f32m3 = matrixCompMult(f32m1, f32m2);
f32m1 = outerProduct(f32v1, f32v2);
f32m4 = transpose(f32m1);
f32 = determinant(f32m5);
f32m6 = inverse(f32m7);
}
void builtinVecRelFuncs()
{
f32vec3 f32v1, f32v2;
bvec3 bv;
bv = lessThan(f32v1, f32v2);
bv = lessThanEqual(f32v1, f32v2);
bv = greaterThan(f32v1, f32v2);
bv = greaterThanEqual(f32v1, f32v2);
bv = equal(f32v1, f32v2);
bv = notEqual(f32v1, f32v2);
}
in f32vec3 if32v;
void builtinFragProcFuncs()
{
f32vec3 f32v;
// Derivative
f32v.x = dFdx(if32v.x);
f32v.y = dFdy(if32v.y);
f32v.xy = dFdxFine(if32v.xy);
f32v.xy = dFdyFine(if32v.xy);
f32v = dFdxCoarse(if32v);
f32v = dFdxCoarse(if32v);
f32v.x = fwidth(if32v.x);
f32v.xy = fwidthFine(if32v.xy);
f32v = fwidthCoarse(if32v);
// Interpolation
f32v.x = interpolateAtCentroid(if32v.x);
f32v.xy = interpolateAtSample(if32v.xy, 1);
f32v = interpolateAtOffset(if32v, f32vec2(0.5f));
}