| /* GLIB - Library of useful routines for C programming |
| * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| /* |
| * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
| * file for a list of people on the GLib Team. See the ChangeLog |
| * files for a list of changes. These files are distributed with |
| * GLib at ftp://ftp.gtk.org/pub/gtk/. |
| */ |
| |
| /* |
| * MT safe |
| */ |
| |
| #include "config.h" |
| #include "glibconfig.h" |
| |
| #define DEBUG_MSG(x) /* */ |
| #ifdef G_ENABLE_DEBUG |
| /* #define DEBUG_MSG(args) g_message args ; */ |
| #endif |
| |
| #include <time.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <locale.h> |
| |
| #ifdef G_OS_WIN32 |
| #include <windows.h> |
| #endif |
| |
| #include "gdate.h" |
| |
| #include "gconvert.h" |
| #include "gmem.h" |
| #include "gstrfuncs.h" |
| #include "gtestutils.h" |
| #include "gthread.h" |
| #include "gunicode.h" |
| |
| #ifdef G_OS_WIN32 |
| #include "garray.h" |
| #endif |
| |
| /** |
| * SECTION:date |
| * @title: Date and Time Functions |
| * @short_description: calendrical calculations and miscellaneous time stuff |
| * |
| * The #GDate data structure represents a day between January 1, Year 1, |
| * and sometime a few thousand years in the future (right now it will go |
| * to the year 65535 or so, but g_date_set_parse() only parses up to the |
| * year 8000 or so - just count on "a few thousand"). #GDate is meant to |
| * represent everyday dates, not astronomical dates or historical dates |
| * or ISO timestamps or the like. It extrapolates the current Gregorian |
| * calendar forward and backward in time; there is no attempt to change |
| * the calendar to match time periods or locations. #GDate does not store |
| * time information; it represents a day. |
| * |
| * The #GDate implementation has several nice features; it is only a |
| * 64-bit struct, so storing large numbers of dates is very efficient. It |
| * can keep both a Julian and day-month-year representation of the date, |
| * since some calculations are much easier with one representation or the |
| * other. A Julian representation is simply a count of days since some |
| * fixed day in the past; for #GDate the fixed day is January 1, 1 AD. |
| * ("Julian" dates in the #GDate API aren't really Julian dates in the |
| * technical sense; technically, Julian dates count from the start of the |
| * Julian period, Jan 1, 4713 BC). |
| * |
| * #GDate is simple to use. First you need a "blank" date; you can get a |
| * dynamically allocated date from g_date_new(), or you can declare an |
| * automatic variable or array and initialize it to a sane state by |
| * calling g_date_clear(). A cleared date is sane; it's safe to call |
| * g_date_set_dmy() and the other mutator functions to initialize the |
| * value of a cleared date. However, a cleared date is initially |
| * invalid, meaning that it doesn't represent a day that exists. |
| * It is undefined to call any of the date calculation routines on an |
| * invalid date. If you obtain a date from a user or other |
| * unpredictable source, you should check its validity with the |
| * g_date_valid() predicate. g_date_valid() is also used to check for |
| * errors with g_date_set_parse() and other functions that can |
| * fail. Dates can be invalidated by calling g_date_clear() again. |
| * |
| * It is very important to use the API to access the #GDate |
| * struct. Often only the day-month-year or only the Julian |
| * representation is valid. Sometimes neither is valid. Use the API. |
| * |
| * GLib also features #GDateTime which represents a precise time. |
| */ |
| |
| /** |
| * G_USEC_PER_SEC: |
| * |
| * Number of microseconds in one second (1 million). |
| * This macro is provided for code readability. |
| */ |
| |
| /** |
| * GTimeVal: |
| * @tv_sec: seconds |
| * @tv_usec: microseconds |
| * |
| * Represents a precise time, with seconds and microseconds. |
| * Similar to the struct timeval returned by the gettimeofday() |
| * UNIX system call. |
| * |
| * GLib is attempting to unify around the use of 64bit integers to |
| * represent microsecond-precision time. As such, this type will be |
| * removed from a future version of GLib. |
| */ |
| |
| /** |
| * GDate: |
| * @julian_days: the Julian representation of the date |
| * @julian: this bit is set if @julian_days is valid |
| * @dmy: this is set if @day, @month and @year are valid |
| * @day: the day of the day-month-year representation of the date, |
| * as a number between 1 and 31 |
| * @month: the day of the day-month-year representation of the date, |
| * as a number between 1 and 12 |
| * @year: the day of the day-month-year representation of the date |
| * |
| * Represents a day between January 1, Year 1 and a few thousand years in |
| * the future. None of its members should be accessed directly. |
| * |
| * If the #GDate-struct is obtained from g_date_new(), it will be safe |
| * to mutate but invalid and thus not safe for calendrical computations. |
| * |
| * If it's declared on the stack, it will contain garbage so must be |
| * initialized with g_date_clear(). g_date_clear() makes the date invalid |
| * but sane. An invalid date doesn't represent a day, it's "empty." A date |
| * becomes valid after you set it to a Julian day or you set a day, month, |
| * and year. |
| */ |
| |
| /** |
| * GTime: |
| * |
| * Simply a replacement for time_t. It has been deprecated |
| * since it is not equivalent to time_t on 64-bit platforms |
| * with a 64-bit time_t. Unrelated to #GTimer. |
| * |
| * Note that #GTime is defined to always be a 32-bit integer, |
| * unlike time_t which may be 64-bit on some systems. Therefore, |
| * #GTime will overflow in the year 2038, and you cannot use the |
| * address of a #GTime variable as argument to the UNIX time() |
| * function. |
| * |
| * Instead, do the following: |
| * |[<!-- language="C" --> |
| * time_t ttime; |
| * GTime gtime; |
| * |
| * time (&ttime); |
| * gtime = (GTime)ttime; |
| * ]| |
| */ |
| |
| /** |
| * GDateDMY: |
| * @G_DATE_DAY: a day |
| * @G_DATE_MONTH: a month |
| * @G_DATE_YEAR: a year |
| * |
| * This enumeration isn't used in the API, but may be useful if you need |
| * to mark a number as a day, month, or year. |
| */ |
| |
| /** |
| * GDateDay: |
| * |
| * Integer representing a day of the month; between 1 and 31. |
| * #G_DATE_BAD_DAY represents an invalid day of the month. |
| */ |
| |
| /** |
| * GDateMonth: |
| * @G_DATE_BAD_MONTH: invalid value |
| * @G_DATE_JANUARY: January |
| * @G_DATE_FEBRUARY: February |
| * @G_DATE_MARCH: March |
| * @G_DATE_APRIL: April |
| * @G_DATE_MAY: May |
| * @G_DATE_JUNE: June |
| * @G_DATE_JULY: July |
| * @G_DATE_AUGUST: August |
| * @G_DATE_SEPTEMBER: September |
| * @G_DATE_OCTOBER: October |
| * @G_DATE_NOVEMBER: November |
| * @G_DATE_DECEMBER: December |
| * |
| * Enumeration representing a month; values are #G_DATE_JANUARY, |
| * #G_DATE_FEBRUARY, etc. #G_DATE_BAD_MONTH is the invalid value. |
| */ |
| |
| /** |
| * GDateYear: |
| * |
| * Integer representing a year; #G_DATE_BAD_YEAR is the invalid |
| * value. The year must be 1 or higher; negative (BC) years are not |
| * allowed. The year is represented with four digits. |
| */ |
| |
| /** |
| * GDateWeekday: |
| * @G_DATE_BAD_WEEKDAY: invalid value |
| * @G_DATE_MONDAY: Monday |
| * @G_DATE_TUESDAY: Tuesday |
| * @G_DATE_WEDNESDAY: Wednesday |
| * @G_DATE_THURSDAY: Thursday |
| * @G_DATE_FRIDAY: Friday |
| * @G_DATE_SATURDAY: Saturday |
| * @G_DATE_SUNDAY: Sunday |
| * |
| * Enumeration representing a day of the week; #G_DATE_MONDAY, |
| * #G_DATE_TUESDAY, etc. #G_DATE_BAD_WEEKDAY is an invalid weekday. |
| */ |
| |
| /** |
| * G_DATE_BAD_DAY: |
| * |
| * Represents an invalid #GDateDay. |
| */ |
| |
| /** |
| * G_DATE_BAD_JULIAN: |
| * |
| * Represents an invalid Julian day number. |
| */ |
| |
| /** |
| * G_DATE_BAD_YEAR: |
| * |
| * Represents an invalid year. |
| */ |
| |
| /** |
| * g_date_new: |
| * |
| * Allocates a #GDate and initializes |
| * it to a sane state. The new date will |
| * be cleared (as if you'd called g_date_clear()) but invalid (it won't |
| * represent an existing day). Free the return value with g_date_free(). |
| * |
| * Returns: a newly-allocated #GDate |
| */ |
| GDate* |
| g_date_new (void) |
| { |
| GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */ |
| |
| return d; |
| } |
| |
| /** |
| * g_date_new_dmy: |
| * @day: day of the month |
| * @month: month of the year |
| * @year: year |
| * |
| * Like g_date_new(), but also sets the value of the date. Assuming the |
| * day-month-year triplet you pass in represents an existing day, the |
| * returned date will be valid. |
| * |
| * Returns: a newly-allocated #GDate initialized with @day, @month, and @year |
| */ |
| GDate* |
| g_date_new_dmy (GDateDay day, |
| GDateMonth m, |
| GDateYear y) |
| { |
| GDate *d; |
| g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL); |
| |
| d = g_new (GDate, 1); |
| |
| d->julian = FALSE; |
| d->dmy = TRUE; |
| |
| d->month = m; |
| d->day = day; |
| d->year = y; |
| |
| g_assert (g_date_valid (d)); |
| |
| return d; |
| } |
| |
| /** |
| * g_date_new_julian: |
| * @julian_day: days since January 1, Year 1 |
| * |
| * Like g_date_new(), but also sets the value of the date. Assuming the |
| * Julian day number you pass in is valid (greater than 0, less than an |
| * unreasonably large number), the returned date will be valid. |
| * |
| * Returns: a newly-allocated #GDate initialized with @julian_day |
| */ |
| GDate* |
| g_date_new_julian (guint32 julian_day) |
| { |
| GDate *d; |
| g_return_val_if_fail (g_date_valid_julian (julian_day), NULL); |
| |
| d = g_new (GDate, 1); |
| |
| d->julian = TRUE; |
| d->dmy = FALSE; |
| |
| d->julian_days = julian_day; |
| |
| g_assert (g_date_valid (d)); |
| |
| return d; |
| } |
| |
| /** |
| * g_date_free: |
| * @date: a #GDate to free |
| * |
| * Frees a #GDate returned from g_date_new(). |
| */ |
| void |
| g_date_free (GDate *date) |
| { |
| g_return_if_fail (date != NULL); |
| |
| g_free (date); |
| } |
| |
| /** |
| * g_date_copy: |
| * @date: a #GDate to copy |
| * |
| * Copies a GDate to a newly-allocated GDate. If the input was invalid |
| * (as determined by g_date_valid()), the invalid state will be copied |
| * as is into the new object. |
| * |
| * Returns: (transfer full): a newly-allocated #GDate initialized from @date |
| * |
| * Since: 2.56 |
| */ |
| GDate * |
| g_date_copy (const GDate *date) |
| { |
| GDate *res; |
| g_return_val_if_fail (date != NULL, NULL); |
| |
| if (g_date_valid (date)) |
| res = g_date_new_julian (g_date_get_julian (date)); |
| else |
| { |
| res = g_date_new (); |
| *res = *date; |
| } |
| |
| return res; |
| } |
| |
| /** |
| * g_date_valid: |
| * @date: a #GDate to check |
| * |
| * Returns %TRUE if the #GDate represents an existing day. The date must not |
| * contain garbage; it should have been initialized with g_date_clear() |
| * if it wasn't allocated by one of the g_date_new() variants. |
| * |
| * Returns: Whether the date is valid |
| */ |
| gboolean |
| g_date_valid (const GDate *d) |
| { |
| g_return_val_if_fail (d != NULL, FALSE); |
| |
| return (d->julian || d->dmy); |
| } |
| |
| static const guint8 days_in_months[2][13] = |
| { /* error, jan feb mar apr may jun jul aug sep oct nov dec */ |
| { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
| { 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */ |
| }; |
| |
| static const guint16 days_in_year[2][14] = |
| { /* 0, jan feb mar apr may jun jul aug sep oct nov dec */ |
| { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, |
| { 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } |
| }; |
| |
| /** |
| * g_date_valid_month: |
| * @month: month |
| * |
| * Returns %TRUE if the month value is valid. The 12 #GDateMonth |
| * enumeration values are the only valid months. |
| * |
| * Returns: %TRUE if the month is valid |
| */ |
| gboolean |
| g_date_valid_month (GDateMonth m) |
| { |
| return ( (m > G_DATE_BAD_MONTH) && (m < 13) ); |
| } |
| |
| /** |
| * g_date_valid_year: |
| * @year: year |
| * |
| * Returns %TRUE if the year is valid. Any year greater than 0 is valid, |
| * though there is a 16-bit limit to what #GDate will understand. |
| * |
| * Returns: %TRUE if the year is valid |
| */ |
| gboolean |
| g_date_valid_year (GDateYear y) |
| { |
| return ( y > G_DATE_BAD_YEAR ); |
| } |
| |
| /** |
| * g_date_valid_day: |
| * @day: day to check |
| * |
| * Returns %TRUE if the day of the month is valid (a day is valid if it's |
| * between 1 and 31 inclusive). |
| * |
| * Returns: %TRUE if the day is valid |
| */ |
| |
| gboolean |
| g_date_valid_day (GDateDay d) |
| { |
| return ( (d > G_DATE_BAD_DAY) && (d < 32) ); |
| } |
| |
| /** |
| * g_date_valid_weekday: |
| * @weekday: weekday |
| * |
| * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration |
| * values are the only valid weekdays. |
| * |
| * Returns: %TRUE if the weekday is valid |
| */ |
| gboolean |
| g_date_valid_weekday (GDateWeekday w) |
| { |
| return ( (w > G_DATE_BAD_WEEKDAY) && (w < 8) ); |
| } |
| |
| /** |
| * g_date_valid_julian: |
| * @julian_date: Julian day to check |
| * |
| * Returns %TRUE if the Julian day is valid. Anything greater than zero |
| * is basically a valid Julian, though there is a 32-bit limit. |
| * |
| * Returns: %TRUE if the Julian day is valid |
| */ |
| gboolean |
| g_date_valid_julian (guint32 j) |
| { |
| return (j > G_DATE_BAD_JULIAN); |
| } |
| |
| /** |
| * g_date_valid_dmy: |
| * @day: day |
| * @month: month |
| * @year: year |
| * |
| * Returns %TRUE if the day-month-year triplet forms a valid, existing day |
| * in the range of days #GDate understands (Year 1 or later, no more than |
| * a few thousand years in the future). |
| * |
| * Returns: %TRUE if the date is a valid one |
| */ |
| gboolean |
| g_date_valid_dmy (GDateDay d, |
| GDateMonth m, |
| GDateYear y) |
| { |
| /* No need to check the upper bound of @y, because #GDateYear is 16 bits wide, |
| * just like #GDate.year. */ |
| return ( (m > G_DATE_BAD_MONTH) && |
| (m < 13) && |
| (d > G_DATE_BAD_DAY) && |
| (y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */ |
| (d <= (g_date_is_leap_year (y) ? |
| days_in_months[1][m] : days_in_months[0][m])) ); |
| } |
| |
| |
| /* "Julian days" just means an absolute number of days, where Day 1 == |
| * Jan 1, Year 1 |
| */ |
| static void |
| g_date_update_julian (const GDate *const_d) |
| { |
| GDate *d = (GDate *) const_d; |
| GDateYear year; |
| gint idx; |
| |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (d->dmy != 0); |
| g_return_if_fail (!d->julian); |
| g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year)); |
| |
| /* What we actually do is: multiply years * 365 days in the year, |
| * add the number of years divided by 4, subtract the number of |
| * years divided by 100 and add the number of years divided by 400, |
| * which accounts for leap year stuff. Code from Steffen Beyer's |
| * DateCalc. |
| */ |
| |
| year = d->year - 1; /* we know d->year > 0 since it's valid */ |
| |
| d->julian_days = year * 365U; |
| d->julian_days += (year >>= 2); /* divide by 4 and add */ |
| d->julian_days -= (year /= 25); /* divides original # years by 100 */ |
| d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */ |
| |
| idx = g_date_is_leap_year (d->year) ? 1 : 0; |
| |
| d->julian_days += days_in_year[idx][d->month] + d->day; |
| |
| g_return_if_fail (g_date_valid_julian (d->julian_days)); |
| |
| d->julian = TRUE; |
| } |
| |
| static void |
| g_date_update_dmy (const GDate *const_d) |
| { |
| GDate *d = (GDate *) const_d; |
| GDateYear y; |
| GDateMonth m; |
| GDateDay day; |
| |
| guint32 A, B, C, D, E, M; |
| |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (d->julian); |
| g_return_if_fail (!d->dmy); |
| g_return_if_fail (g_date_valid_julian (d->julian_days)); |
| |
| /* Formula taken from the Calendar FAQ; the formula was for the |
| * Julian Period which starts on 1 January 4713 BC, so we add |
| * 1,721,425 to the number of days before doing the formula. |
| * |
| * I'm sure this can be simplified for our 1 January 1 AD period |
| * start, but I can't figure out how to unpack the formula. |
| */ |
| |
| A = d->julian_days + 1721425 + 32045; |
| B = ( 4 *(A + 36524) )/ 146097 - 1; |
| C = A - (146097 * B)/4; |
| D = ( 4 * (C + 365) ) / 1461 - 1; |
| E = C - ((1461*D) / 4); |
| M = (5 * (E - 1) + 2)/153; |
| |
| m = M + 3 - (12*(M/10)); |
| day = E - (153*M + 2)/5; |
| y = 100 * B + D - 4800 + (M/10); |
| |
| #ifdef G_ENABLE_DEBUG |
| if (!g_date_valid_dmy (day, m, y)) |
| g_warning ("OOPS julian: %u computed dmy: %u %u %u", |
| d->julian_days, day, m, y); |
| #endif |
| |
| d->month = m; |
| d->day = day; |
| d->year = y; |
| |
| d->dmy = TRUE; |
| } |
| |
| /** |
| * g_date_get_weekday: |
| * @date: a #GDate |
| * |
| * Returns the day of the week for a #GDate. The date must be valid. |
| * |
| * Returns: day of the week as a #GDateWeekday. |
| */ |
| GDateWeekday |
| g_date_get_weekday (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY); |
| |
| if (!d->julian) |
| g_date_update_julian (d); |
| |
| g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY); |
| |
| return ((d->julian_days - 1) % 7) + 1; |
| } |
| |
| /** |
| * g_date_get_month: |
| * @date: a #GDate to get the month from |
| * |
| * Returns the month of the year. The date must be valid. |
| * |
| * Returns: month of the year as a #GDateMonth |
| */ |
| GDateMonth |
| g_date_get_month (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH); |
| |
| return d->month; |
| } |
| |
| /** |
| * g_date_get_year: |
| * @date: a #GDate |
| * |
| * Returns the year of a #GDate. The date must be valid. |
| * |
| * Returns: year in which the date falls |
| */ |
| GDateYear |
| g_date_get_year (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR); |
| |
| return d->year; |
| } |
| |
| /** |
| * g_date_get_day: |
| * @date: a #GDate to extract the day of the month from |
| * |
| * Returns the day of the month. The date must be valid. |
| * |
| * Returns: day of the month |
| */ |
| GDateDay |
| g_date_get_day (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY); |
| |
| return d->day; |
| } |
| |
| /** |
| * g_date_get_julian: |
| * @date: a #GDate to extract the Julian day from |
| * |
| * Returns the Julian day or "serial number" of the #GDate. The |
| * Julian day is simply the number of days since January 1, Year 1; i.e., |
| * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2, |
| * etc. The date must be valid. |
| * |
| * Returns: Julian day |
| */ |
| guint32 |
| g_date_get_julian (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN); |
| |
| if (!d->julian) |
| g_date_update_julian (d); |
| |
| g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN); |
| |
| return d->julian_days; |
| } |
| |
| /** |
| * g_date_get_day_of_year: |
| * @date: a #GDate to extract day of year from |
| * |
| * Returns the day of the year, where Jan 1 is the first day of the |
| * year. The date must be valid. |
| * |
| * Returns: day of the year |
| */ |
| guint |
| g_date_get_day_of_year (const GDate *d) |
| { |
| gint idx; |
| |
| g_return_val_if_fail (g_date_valid (d), 0); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, 0); |
| |
| idx = g_date_is_leap_year (d->year) ? 1 : 0; |
| |
| return (days_in_year[idx][d->month] + d->day); |
| } |
| |
| /** |
| * g_date_get_monday_week_of_year: |
| * @date: a #GDate |
| * |
| * Returns the week of the year, where weeks are understood to start on |
| * Monday. If the date is before the first Monday of the year, return 0. |
| * The date must be valid. |
| * |
| * Returns: week of the year |
| */ |
| guint |
| g_date_get_monday_week_of_year (const GDate *d) |
| { |
| GDateWeekday wd; |
| guint day; |
| GDate first; |
| |
| g_return_val_if_fail (g_date_valid (d), 0); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, 0); |
| |
| g_date_clear (&first, 1); |
| |
| g_date_set_dmy (&first, 1, 1, d->year); |
| |
| wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */ |
| day = g_date_get_day_of_year (d) - 1; |
| |
| return ((day + wd)/7U + (wd == 0 ? 1 : 0)); |
| } |
| |
| /** |
| * g_date_get_sunday_week_of_year: |
| * @date: a #GDate |
| * |
| * Returns the week of the year during which this date falls, if |
| * weeks are understood to begin on Sunday. The date must be valid. |
| * Can return 0 if the day is before the first Sunday of the year. |
| * |
| * Returns: week number |
| */ |
| guint |
| g_date_get_sunday_week_of_year (const GDate *d) |
| { |
| GDateWeekday wd; |
| guint day; |
| GDate first; |
| |
| g_return_val_if_fail (g_date_valid (d), 0); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, 0); |
| |
| g_date_clear (&first, 1); |
| |
| g_date_set_dmy (&first, 1, 1, d->year); |
| |
| wd = g_date_get_weekday (&first); |
| if (wd == 7) wd = 0; /* make Sunday day 0 */ |
| day = g_date_get_day_of_year (d) - 1; |
| |
| return ((day + wd)/7U + (wd == 0 ? 1 : 0)); |
| } |
| |
| /** |
| * g_date_get_iso8601_week_of_year: |
| * @date: a valid #GDate |
| * |
| * Returns the week of the year, where weeks are interpreted according |
| * to ISO 8601. |
| * |
| * Returns: ISO 8601 week number of the year. |
| * |
| * Since: 2.6 |
| **/ |
| guint |
| g_date_get_iso8601_week_of_year (const GDate *d) |
| { |
| guint j, d4, L, d1, w; |
| |
| g_return_val_if_fail (g_date_valid (d), 0); |
| |
| if (!d->julian) |
| g_date_update_julian (d); |
| |
| g_return_val_if_fail (d->julian, 0); |
| |
| /* Formula taken from the Calendar FAQ; the formula was for the |
| * Julian Period which starts on 1 January 4713 BC, so we add |
| * 1,721,425 to the number of days before doing the formula. |
| */ |
| j = d->julian_days + 1721425; |
| d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461; |
| L = d4 / 1460; |
| d1 = ((d4 - L) % 365) + L; |
| w = d1 / 7 + 1; |
| |
| return w; |
| } |
| |
| /** |
| * g_date_days_between: |
| * @date1: the first date |
| * @date2: the second date |
| * |
| * Computes the number of days between two dates. |
| * If @date2 is prior to @date1, the returned value is negative. |
| * Both dates must be valid. |
| * |
| * Returns: the number of days between @date1 and @date2 |
| */ |
| gint |
| g_date_days_between (const GDate *d1, |
| const GDate *d2) |
| { |
| g_return_val_if_fail (g_date_valid (d1), 0); |
| g_return_val_if_fail (g_date_valid (d2), 0); |
| |
| return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1); |
| } |
| |
| /** |
| * g_date_clear: |
| * @date: pointer to one or more dates to clear |
| * @n_dates: number of dates to clear |
| * |
| * Initializes one or more #GDate structs to a sane but invalid |
| * state. The cleared dates will not represent an existing date, but will |
| * not contain garbage. Useful to init a date declared on the stack. |
| * Validity can be tested with g_date_valid(). |
| */ |
| void |
| g_date_clear (GDate *d, guint ndates) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (ndates != 0); |
| |
| memset (d, 0x0, ndates*sizeof (GDate)); |
| } |
| |
| G_LOCK_DEFINE_STATIC (g_date_global); |
| |
| /* These are for the parser, output to the user should use * |
| * g_date_strftime () - this creates more never-freed memory to annoy |
| * all those memory debugger users. :-) |
| */ |
| |
| static gchar *long_month_names[13] = |
| { |
| NULL, |
| }; |
| |
| static gchar *long_month_names_alternative[13] = |
| { |
| NULL, |
| }; |
| |
| static gchar *short_month_names[13] = |
| { |
| NULL, |
| }; |
| |
| static gchar *short_month_names_alternative[13] = |
| { |
| NULL, |
| }; |
| |
| /* This tells us if we need to update the parse info */ |
| static gchar *current_locale = NULL; |
| |
| /* order of these in the current locale */ |
| static GDateDMY dmy_order[3] = |
| { |
| G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR |
| }; |
| |
| /* Where to chop two-digit years: i.e., for the 1930 default, numbers |
| * 29 and below are counted as in the year 2000, numbers 30 and above |
| * are counted as in the year 1900. |
| */ |
| |
| static const GDateYear twodigit_start_year = 1930; |
| |
| /* It is impossible to enter a year between 1 AD and 99 AD with this |
| * in effect. |
| */ |
| static gboolean using_twodigit_years = FALSE; |
| |
| /* Adjustment of locale era to AD, non-zero means using locale era |
| */ |
| static gint locale_era_adjust = 0; |
| |
| struct _GDateParseTokens { |
| gint num_ints; |
| gint n[3]; |
| guint month; |
| }; |
| |
| typedef struct _GDateParseTokens GDateParseTokens; |
| |
| #define NUM_LEN 10 |
| |
| /* HOLDS: g_date_global_lock */ |
| static void |
| g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt) |
| { |
| gchar num[4][NUM_LEN+1]; |
| gint i; |
| const guchar *s; |
| |
| /* We count 4, but store 3; so we can give an error |
| * if there are 4. |
| */ |
| num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0'; |
| |
| s = (const guchar *) str; |
| pt->num_ints = 0; |
| while (*s && pt->num_ints < 4) |
| { |
| |
| i = 0; |
| while (*s && g_ascii_isdigit (*s) && i < NUM_LEN) |
| { |
| num[pt->num_ints][i] = *s; |
| ++s; |
| ++i; |
| } |
| |
| if (i > 0) |
| { |
| num[pt->num_ints][i] = '\0'; |
| ++(pt->num_ints); |
| } |
| |
| if (*s == '\0') break; |
| |
| ++s; |
| } |
| |
| pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0; |
| pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0; |
| pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0; |
| |
| pt->month = G_DATE_BAD_MONTH; |
| |
| if (pt->num_ints < 3) |
| { |
| gchar *casefold; |
| gchar *normalized; |
| |
| casefold = g_utf8_casefold (str, -1); |
| normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); |
| g_free (casefold); |
| |
| i = 1; |
| while (i < 13) |
| { |
| /* Here month names may be in a genitive case if the language |
| * grammatical rules require it. |
| * Examples of how January may look in some languages: |
| * Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia", |
| * Upper Sorbian: "januara". |
| * Note that most of the languages can't or don't use the the |
| * genitive case here so they use nominative everywhere. |
| * For example, English always uses "January". |
| */ |
| if (long_month_names[i] != NULL) |
| { |
| const gchar *found = strstr (normalized, long_month_names[i]); |
| |
| if (found != NULL) |
| { |
| pt->month = i; |
| break; |
| } |
| } |
| |
| /* Here month names will be in a nominative case. |
| * Examples of how January may look in some languages: |
| * Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń", |
| * Upper Sorbian: "Januar". |
| */ |
| if (long_month_names_alternative[i] != NULL) |
| { |
| const gchar *found = strstr (normalized, long_month_names_alternative[i]); |
| |
| if (found != NULL) |
| { |
| pt->month = i; |
| break; |
| } |
| } |
| |
| /* Differences between abbreviated nominative and abbreviated |
| * genitive month names are visible in very few languages but |
| * let's handle them. |
| */ |
| if (short_month_names[i] != NULL) |
| { |
| const gchar *found = strstr (normalized, short_month_names[i]); |
| |
| if (found != NULL) |
| { |
| pt->month = i; |
| break; |
| } |
| } |
| |
| if (short_month_names_alternative[i] != NULL) |
| { |
| const gchar *found = strstr (normalized, short_month_names_alternative[i]); |
| |
| if (found != NULL) |
| { |
| pt->month = i; |
| break; |
| } |
| } |
| |
| ++i; |
| } |
| |
| g_free (normalized); |
| } |
| } |
| |
| /* HOLDS: g_date_global_lock */ |
| static void |
| g_date_prepare_to_parse (const gchar *str, |
| GDateParseTokens *pt) |
| { |
| const gchar *locale = setlocale (LC_TIME, NULL); |
| gboolean recompute_localeinfo = FALSE; |
| GDate d; |
| |
| g_return_if_fail (locale != NULL); /* should not happen */ |
| |
| g_date_clear (&d, 1); /* clear for scratch use */ |
| |
| if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) ) |
| recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */ |
| |
| if (recompute_localeinfo) |
| { |
| int i = 1; |
| GDateParseTokens testpt; |
| gchar buf[128]; |
| |
| g_free (current_locale); /* still works if current_locale == NULL */ |
| |
| current_locale = g_strdup (locale); |
| |
| short_month_names[0] = "Error"; |
| long_month_names[0] = "Error"; |
| |
| while (i < 13) |
| { |
| gchar *casefold; |
| |
| g_date_set_dmy (&d, 1, i, 1976); |
| |
| g_return_if_fail (g_date_valid (&d)); |
| |
| g_date_strftime (buf, 127, "%b", &d); |
| |
| casefold = g_utf8_casefold (buf, -1); |
| g_free (short_month_names[i]); |
| short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); |
| g_free (casefold); |
| |
| g_date_strftime (buf, 127, "%B", &d); |
| casefold = g_utf8_casefold (buf, -1); |
| g_free (long_month_names[i]); |
| long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); |
| g_free (casefold); |
| |
| g_date_strftime (buf, 127, "%Ob", &d); |
| casefold = g_utf8_casefold (buf, -1); |
| g_free (short_month_names_alternative[i]); |
| short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); |
| g_free (casefold); |
| |
| g_date_strftime (buf, 127, "%OB", &d); |
| casefold = g_utf8_casefold (buf, -1); |
| g_free (long_month_names_alternative[i]); |
| long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); |
| g_free (casefold); |
| |
| ++i; |
| } |
| |
| /* Determine DMY order */ |
| |
| /* had to pick a random day - don't change this, some strftimes |
| * are broken on some days, and this one is good so far. */ |
| g_date_set_dmy (&d, 4, 7, 1976); |
| |
| g_date_strftime (buf, 127, "%x", &d); |
| |
| g_date_fill_parse_tokens (buf, &testpt); |
| |
| i = 0; |
| while (i < testpt.num_ints) |
| { |
| switch (testpt.n[i]) |
| { |
| case 7: |
| dmy_order[i] = G_DATE_MONTH; |
| break; |
| case 4: |
| dmy_order[i] = G_DATE_DAY; |
| break; |
| case 76: |
| using_twodigit_years = TRUE; /* FALL THRU */ |
| case 1976: |
| dmy_order[i] = G_DATE_YEAR; |
| break; |
| default: |
| /* assume locale era */ |
| locale_era_adjust = 1976 - testpt.n[i]; |
| dmy_order[i] = G_DATE_YEAR; |
| break; |
| } |
| ++i; |
| } |
| |
| #if defined(G_ENABLE_DEBUG) && 0 |
| DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules.")); |
| i = 1; |
| while (i < 13) |
| { |
| DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i])); |
| ++i; |
| } |
| DEBUG_MSG (("Alternative month names:")); |
| i = 1; |
| while (i < 13) |
| { |
| DEBUG_MSG ((" %s %s", long_month_names_alternative[i], short_month_names_alternative[i])); |
| ++i; |
| } |
| if (using_twodigit_years) |
| { |
| DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year)); |
| } |
| { |
| gchar *strings[3]; |
| i = 0; |
| while (i < 3) |
| { |
| switch (dmy_order[i]) |
| { |
| case G_DATE_MONTH: |
| strings[i] = "Month"; |
| break; |
| case G_DATE_YEAR: |
| strings[i] = "Year"; |
| break; |
| case G_DATE_DAY: |
| strings[i] = "Day"; |
| break; |
| default: |
| strings[i] = NULL; |
| break; |
| } |
| ++i; |
| } |
| DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2])); |
| DEBUG_MSG (("**Sample date in this locale: '%s'", buf)); |
| } |
| #endif |
| } |
| |
| g_date_fill_parse_tokens (str, pt); |
| } |
| |
| /** |
| * g_date_set_parse: |
| * @date: a #GDate to fill in |
| * @str: string to parse |
| * |
| * Parses a user-inputted string @str, and try to figure out what date it |
| * represents, taking the [current locale][setlocale] into account. If the |
| * string is successfully parsed, the date will be valid after the call. |
| * Otherwise, it will be invalid. You should check using g_date_valid() |
| * to see whether the parsing succeeded. |
| * |
| * This function is not appropriate for file formats and the like; it |
| * isn't very precise, and its exact behavior varies with the locale. |
| * It's intended to be a heuristic routine that guesses what the user |
| * means by a given string (and it does work pretty well in that |
| * capacity). |
| */ |
| void |
| g_date_set_parse (GDate *d, |
| const gchar *str) |
| { |
| GDateParseTokens pt; |
| guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR; |
| |
| g_return_if_fail (d != NULL); |
| |
| /* set invalid */ |
| g_date_clear (d, 1); |
| |
| G_LOCK (g_date_global); |
| |
| g_date_prepare_to_parse (str, &pt); |
| |
| DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d", |
| pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month)); |
| |
| |
| if (pt.num_ints == 4) |
| { |
| G_UNLOCK (g_date_global); |
| return; /* presumably a typo; bail out. */ |
| } |
| |
| if (pt.num_ints > 1) |
| { |
| int i = 0; |
| int j = 0; |
| |
| g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */ |
| |
| while (i < pt.num_ints && j < 3) |
| { |
| switch (dmy_order[j]) |
| { |
| case G_DATE_MONTH: |
| { |
| if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH) |
| { |
| m = pt.month; |
| ++j; /* skip months, but don't skip this number */ |
| continue; |
| } |
| else |
| m = pt.n[i]; |
| } |
| break; |
| case G_DATE_DAY: |
| { |
| if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH) |
| { |
| day = 1; |
| ++j; /* skip days, since we may have month/year */ |
| continue; |
| } |
| day = pt.n[i]; |
| } |
| break; |
| case G_DATE_YEAR: |
| { |
| y = pt.n[i]; |
| |
| if (locale_era_adjust != 0) |
| { |
| y += locale_era_adjust; |
| } |
| else if (using_twodigit_years && y < 100) |
| { |
| guint two = twodigit_start_year % 100; |
| guint century = (twodigit_start_year / 100) * 100; |
| |
| if (y < two) |
| century += 100; |
| |
| y += century; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| |
| ++i; |
| ++j; |
| } |
| |
| |
| if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y)) |
| { |
| /* Try YYYY MM DD */ |
| y = pt.n[0]; |
| m = pt.n[1]; |
| day = pt.n[2]; |
| |
| if (using_twodigit_years && y < 100) |
| y = G_DATE_BAD_YEAR; /* avoids ambiguity */ |
| } |
| else if (pt.num_ints == 2) |
| { |
| if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH) |
| m = pt.month; |
| } |
| } |
| else if (pt.num_ints == 1) |
| { |
| if (pt.month != G_DATE_BAD_MONTH) |
| { |
| /* Month name and year? */ |
| m = pt.month; |
| day = 1; |
| y = pt.n[0]; |
| } |
| else |
| { |
| /* Try yyyymmdd and yymmdd */ |
| |
| m = (pt.n[0]/100) % 100; |
| day = pt.n[0] % 100; |
| y = pt.n[0]/10000; |
| |
| /* FIXME move this into a separate function */ |
| if (using_twodigit_years && y < 100) |
| { |
| guint two = twodigit_start_year % 100; |
| guint century = (twodigit_start_year / 100) * 100; |
| |
| if (y < two) |
| century += 100; |
| |
| y += century; |
| } |
| } |
| } |
| |
| /* See if we got anything valid out of all this. */ |
| /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */ |
| if (y < 8000 && g_date_valid_dmy (day, m, y)) |
| { |
| d->month = m; |
| d->day = day; |
| d->year = y; |
| d->dmy = TRUE; |
| } |
| #ifdef G_ENABLE_DEBUG |
| else |
| { |
| DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y)); |
| } |
| #endif |
| G_UNLOCK (g_date_global); |
| } |
| |
| /** |
| * g_date_set_time_t: |
| * @date: a #GDate |
| * @timet: time_t value to set |
| * |
| * Sets the value of a date to the date corresponding to a time |
| * specified as a time_t. The time to date conversion is done using |
| * the user's current timezone. |
| * |
| * To set the value of a date to the current day, you could write: |
| * |[<!-- language="C" --> |
| * time_t now = time (NULL); |
| * if (now == (time_t) -1) |
| * // handle the error |
| * g_date_set_time_t (date, now); |
| * ]| |
| * |
| * Since: 2.10 |
| */ |
| void |
| g_date_set_time_t (GDate *date, |
| time_t timet) |
| { |
| struct tm tm; |
| |
| g_return_if_fail (date != NULL); |
| |
| #ifdef HAVE_LOCALTIME_R |
| localtime_r (&timet, &tm); |
| #else |
| { |
| struct tm *ptm = localtime (&timet); |
| |
| if (ptm == NULL) |
| { |
| /* Happens at least in Microsoft's C library if you pass a |
| * negative time_t. Use 2000-01-01 as default date. |
| */ |
| #ifndef G_DISABLE_CHECKS |
| g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL"); |
| #endif |
| |
| tm.tm_mon = 0; |
| tm.tm_mday = 1; |
| tm.tm_year = 100; |
| } |
| else |
| memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm)); |
| } |
| #endif |
| |
| date->julian = FALSE; |
| |
| date->month = tm.tm_mon + 1; |
| date->day = tm.tm_mday; |
| date->year = tm.tm_year + 1900; |
| |
| g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year)); |
| |
| date->dmy = TRUE; |
| } |
| |
| |
| /** |
| * g_date_set_time: |
| * @date: a #GDate. |
| * @time_: #GTime value to set. |
| * |
| * Sets the value of a date from a #GTime value. |
| * The time to date conversion is done using the user's current timezone. |
| * |
| * Deprecated: 2.10: Use g_date_set_time_t() instead. |
| */ |
| void |
| g_date_set_time (GDate *date, |
| GTime time_) |
| { |
| g_date_set_time_t (date, (time_t) time_); |
| } |
| |
| /** |
| * g_date_set_time_val: |
| * @date: a #GDate |
| * @timeval: #GTimeVal value to set |
| * |
| * Sets the value of a date from a #GTimeVal value. Note that the |
| * @tv_usec member is ignored, because #GDate can't make use of the |
| * additional precision. |
| * |
| * The time to date conversion is done using the user's current timezone. |
| * |
| * Since: 2.10 |
| */ |
| void |
| g_date_set_time_val (GDate *date, |
| GTimeVal *timeval) |
| { |
| g_date_set_time_t (date, (time_t) timeval->tv_sec); |
| } |
| |
| /** |
| * g_date_set_month: |
| * @date: a #GDate |
| * @month: month to set |
| * |
| * Sets the month of the year for a #GDate. If the resulting |
| * day-month-year triplet is invalid, the date will be invalid. |
| */ |
| void |
| g_date_set_month (GDate *d, |
| GDateMonth m) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (g_date_valid_month (m)); |
| |
| if (d->julian && !d->dmy) g_date_update_dmy(d); |
| d->julian = FALSE; |
| |
| d->month = m; |
| |
| if (g_date_valid_dmy (d->day, d->month, d->year)) |
| d->dmy = TRUE; |
| else |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_set_day: |
| * @date: a #GDate |
| * @day: day to set |
| * |
| * Sets the day of the month for a #GDate. If the resulting |
| * day-month-year triplet is invalid, the date will be invalid. |
| */ |
| void |
| g_date_set_day (GDate *d, |
| GDateDay day) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (g_date_valid_day (day)); |
| |
| if (d->julian && !d->dmy) g_date_update_dmy(d); |
| d->julian = FALSE; |
| |
| d->day = day; |
| |
| if (g_date_valid_dmy (d->day, d->month, d->year)) |
| d->dmy = TRUE; |
| else |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_set_year: |
| * @date: a #GDate |
| * @year: year to set |
| * |
| * Sets the year for a #GDate. If the resulting day-month-year |
| * triplet is invalid, the date will be invalid. |
| */ |
| void |
| g_date_set_year (GDate *d, |
| GDateYear y) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (g_date_valid_year (y)); |
| |
| if (d->julian && !d->dmy) g_date_update_dmy(d); |
| d->julian = FALSE; |
| |
| d->year = y; |
| |
| if (g_date_valid_dmy (d->day, d->month, d->year)) |
| d->dmy = TRUE; |
| else |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_set_dmy: |
| * @date: a #GDate |
| * @day: day |
| * @month: month |
| * @y: year |
| * |
| * Sets the value of a #GDate from a day, month, and year. |
| * The day-month-year triplet must be valid; if you aren't |
| * sure it is, call g_date_valid_dmy() to check before you |
| * set it. |
| */ |
| void |
| g_date_set_dmy (GDate *d, |
| GDateDay day, |
| GDateMonth m, |
| GDateYear y) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (g_date_valid_dmy (day, m, y)); |
| |
| d->julian = FALSE; |
| |
| d->month = m; |
| d->day = day; |
| d->year = y; |
| |
| d->dmy = TRUE; |
| } |
| |
| /** |
| * g_date_set_julian: |
| * @date: a #GDate |
| * @julian_date: Julian day number (days since January 1, Year 1) |
| * |
| * Sets the value of a #GDate from a Julian day number. |
| */ |
| void |
| g_date_set_julian (GDate *d, |
| guint32 j) |
| { |
| g_return_if_fail (d != NULL); |
| g_return_if_fail (g_date_valid_julian (j)); |
| |
| d->julian_days = j; |
| d->julian = TRUE; |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_is_first_of_month: |
| * @date: a #GDate to check |
| * |
| * Returns %TRUE if the date is on the first of a month. |
| * The date must be valid. |
| * |
| * Returns: %TRUE if the date is the first of the month |
| */ |
| gboolean |
| g_date_is_first_of_month (const GDate *d) |
| { |
| g_return_val_if_fail (g_date_valid (d), FALSE); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, FALSE); |
| |
| if (d->day == 1) return TRUE; |
| else return FALSE; |
| } |
| |
| /** |
| * g_date_is_last_of_month: |
| * @date: a #GDate to check |
| * |
| * Returns %TRUE if the date is the last day of the month. |
| * The date must be valid. |
| * |
| * Returns: %TRUE if the date is the last day of the month |
| */ |
| gboolean |
| g_date_is_last_of_month (const GDate *d) |
| { |
| gint idx; |
| |
| g_return_val_if_fail (g_date_valid (d), FALSE); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_val_if_fail (d->dmy, FALSE); |
| |
| idx = g_date_is_leap_year (d->year) ? 1 : 0; |
| |
| if (d->day == days_in_months[idx][d->month]) return TRUE; |
| else return FALSE; |
| } |
| |
| /** |
| * g_date_add_days: |
| * @date: a #GDate to increment |
| * @n_days: number of days to move the date forward |
| * |
| * Increments a date some number of days. |
| * To move forward by weeks, add weeks*7 days. |
| * The date must be valid. |
| */ |
| void |
| g_date_add_days (GDate *d, |
| guint ndays) |
| { |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->julian) |
| g_date_update_julian (d); |
| |
| g_return_if_fail (d->julian); |
| g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days); |
| |
| d->julian_days += ndays; |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_subtract_days: |
| * @date: a #GDate to decrement |
| * @n_days: number of days to move |
| * |
| * Moves a date some number of days into the past. |
| * To move by weeks, just move by weeks*7 days. |
| * The date must be valid. |
| */ |
| void |
| g_date_subtract_days (GDate *d, |
| guint ndays) |
| { |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->julian) |
| g_date_update_julian (d); |
| |
| g_return_if_fail (d->julian); |
| g_return_if_fail (d->julian_days > ndays); |
| |
| d->julian_days -= ndays; |
| d->dmy = FALSE; |
| } |
| |
| /** |
| * g_date_add_months: |
| * @date: a #GDate to increment |
| * @n_months: number of months to move forward |
| * |
| * Increments a date by some number of months. |
| * If the day of the month is greater than 28, |
| * this routine may change the day of the month |
| * (because the destination month may not have |
| * the current day in it). The date must be valid. |
| */ |
| void |
| g_date_add_months (GDate *d, |
| guint nmonths) |
| { |
| guint years, months; |
| gint idx; |
| |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_if_fail (d->dmy != 0); |
| g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1)); |
| |
| nmonths += d->month - 1; |
| |
| years = nmonths/12; |
| months = nmonths%12; |
| |
| g_return_if_fail (years <= G_MAXUINT16 - d->year); |
| |
| d->month = months + 1; |
| d->year += years; |
| |
| idx = g_date_is_leap_year (d->year) ? 1 : 0; |
| |
| if (d->day > days_in_months[idx][d->month]) |
| d->day = days_in_months[idx][d->month]; |
| |
| d->julian = FALSE; |
| |
| g_return_if_fail (g_date_valid (d)); |
| } |
| |
| /** |
| * g_date_subtract_months: |
| * @date: a #GDate to decrement |
| * @n_months: number of months to move |
| * |
| * Moves a date some number of months into the past. |
| * If the current day of the month doesn't exist in |
| * the destination month, the day of the month |
| * may change. The date must be valid. |
| */ |
| void |
| g_date_subtract_months (GDate *d, |
| guint nmonths) |
| { |
| guint years, months; |
| gint idx; |
| |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_if_fail (d->dmy != 0); |
| |
| years = nmonths/12; |
| months = nmonths%12; |
| |
| g_return_if_fail (d->year > years); |
| |
| d->year -= years; |
| |
| if (d->month > months) d->month -= months; |
| else |
| { |
| months -= d->month; |
| d->month = 12 - months; |
| d->year -= 1; |
| } |
| |
| idx = g_date_is_leap_year (d->year) ? 1 : 0; |
| |
| if (d->day > days_in_months[idx][d->month]) |
| d->day = days_in_months[idx][d->month]; |
| |
| d->julian = FALSE; |
| |
| g_return_if_fail (g_date_valid (d)); |
| } |
| |
| /** |
| * g_date_add_years: |
| * @date: a #GDate to increment |
| * @n_years: number of years to move forward |
| * |
| * Increments a date by some number of years. |
| * If the date is February 29, and the destination |
| * year is not a leap year, the date will be changed |
| * to February 28. The date must be valid. |
| */ |
| void |
| g_date_add_years (GDate *d, |
| guint nyears) |
| { |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_if_fail (d->dmy != 0); |
| g_return_if_fail (nyears <= G_MAXUINT16 - d->year); |
| |
| d->year += nyears; |
| |
| if (d->month == 2 && d->day == 29) |
| { |
| if (!g_date_is_leap_year (d->year)) |
| d->day = 28; |
| } |
| |
| d->julian = FALSE; |
| } |
| |
| /** |
| * g_date_subtract_years: |
| * @date: a #GDate to decrement |
| * @n_years: number of years to move |
| * |
| * Moves a date some number of years into the past. |
| * If the current day doesn't exist in the destination |
| * year (i.e. it's February 29 and you move to a non-leap-year) |
| * then the day is changed to February 29. The date |
| * must be valid. |
| */ |
| void |
| g_date_subtract_years (GDate *d, |
| guint nyears) |
| { |
| g_return_if_fail (g_date_valid (d)); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_if_fail (d->dmy != 0); |
| g_return_if_fail (d->year > nyears); |
| |
| d->year -= nyears; |
| |
| if (d->month == 2 && d->day == 29) |
| { |
| if (!g_date_is_leap_year (d->year)) |
| d->day = 28; |
| } |
| |
| d->julian = FALSE; |
| } |
| |
| /** |
| * g_date_is_leap_year: |
| * @year: year to check |
| * |
| * Returns %TRUE if the year is a leap year. |
| * |
| * For the purposes of this function, leap year is every year |
| * divisible by 4 unless that year is divisible by 100. If it |
| * is divisible by 100 it would be a leap year only if that year |
| * is also divisible by 400. |
| * |
| * Returns: %TRUE if the year is a leap year |
| */ |
| gboolean |
| g_date_is_leap_year (GDateYear year) |
| { |
| g_return_val_if_fail (g_date_valid_year (year), FALSE); |
| |
| return ( (((year % 4) == 0) && ((year % 100) != 0)) || |
| (year % 400) == 0 ); |
| } |
| |
| /** |
| * g_date_get_days_in_month: |
| * @month: month |
| * @year: year |
| * |
| * Returns the number of days in a month, taking leap |
| * years into account. |
| * |
| * Returns: number of days in @month during the @year |
| */ |
| guint8 |
| g_date_get_days_in_month (GDateMonth month, |
| GDateYear year) |
| { |
| gint idx; |
| |
| g_return_val_if_fail (g_date_valid_year (year), 0); |
| g_return_val_if_fail (g_date_valid_month (month), 0); |
| |
| idx = g_date_is_leap_year (year) ? 1 : 0; |
| |
| return days_in_months[idx][month]; |
| } |
| |
| /** |
| * g_date_get_monday_weeks_in_year: |
| * @year: a year |
| * |
| * Returns the number of weeks in the year, where weeks |
| * are taken to start on Monday. Will be 52 or 53. The |
| * date must be valid. (Years always have 52 7-day periods, |
| * plus 1 or 2 extra days depending on whether it's a leap |
| * year. This function is basically telling you how many |
| * Mondays are in the year, i.e. there are 53 Mondays if |
| * one of the extra days happens to be a Monday.) |
| * |
| * Returns: number of Mondays in the year |
| */ |
| guint8 |
| g_date_get_monday_weeks_in_year (GDateYear year) |
| { |
| GDate d; |
| |
| g_return_val_if_fail (g_date_valid_year (year), 0); |
| |
| g_date_clear (&d, 1); |
| g_date_set_dmy (&d, 1, 1, year); |
| if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; |
| g_date_set_dmy (&d, 31, 12, year); |
| if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; |
| if (g_date_is_leap_year (year)) |
| { |
| g_date_set_dmy (&d, 2, 1, year); |
| if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; |
| g_date_set_dmy (&d, 30, 12, year); |
| if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; |
| } |
| return 52; |
| } |
| |
| /** |
| * g_date_get_sunday_weeks_in_year: |
| * @year: year to count weeks in |
| * |
| * Returns the number of weeks in the year, where weeks |
| * are taken to start on Sunday. Will be 52 or 53. The |
| * date must be valid. (Years always have 52 7-day periods, |
| * plus 1 or 2 extra days depending on whether it's a leap |
| * year. This function is basically telling you how many |
| * Sundays are in the year, i.e. there are 53 Sundays if |
| * one of the extra days happens to be a Sunday.) |
| * |
| * Returns: the number of weeks in @year |
| */ |
| guint8 |
| g_date_get_sunday_weeks_in_year (GDateYear year) |
| { |
| GDate d; |
| |
| g_return_val_if_fail (g_date_valid_year (year), 0); |
| |
| g_date_clear (&d, 1); |
| g_date_set_dmy (&d, 1, 1, year); |
| if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; |
| g_date_set_dmy (&d, 31, 12, year); |
| if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; |
| if (g_date_is_leap_year (year)) |
| { |
| g_date_set_dmy (&d, 2, 1, year); |
| if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; |
| g_date_set_dmy (&d, 30, 12, year); |
| if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; |
| } |
| return 52; |
| } |
| |
| /** |
| * g_date_compare: |
| * @lhs: first date to compare |
| * @rhs: second date to compare |
| * |
| * qsort()-style comparison function for dates. |
| * Both dates must be valid. |
| * |
| * Returns: 0 for equal, less than zero if @lhs is less than @rhs, |
| * greater than zero if @lhs is greater than @rhs |
| */ |
| gint |
| g_date_compare (const GDate *lhs, |
| const GDate *rhs) |
| { |
| g_return_val_if_fail (lhs != NULL, 0); |
| g_return_val_if_fail (rhs != NULL, 0); |
| g_return_val_if_fail (g_date_valid (lhs), 0); |
| g_return_val_if_fail (g_date_valid (rhs), 0); |
| |
| /* Remember the self-comparison case! I think it works right now. */ |
| |
| while (TRUE) |
| { |
| if (lhs->julian && rhs->julian) |
| { |
| if (lhs->julian_days < rhs->julian_days) return -1; |
| else if (lhs->julian_days > rhs->julian_days) return 1; |
| else return 0; |
| } |
| else if (lhs->dmy && rhs->dmy) |
| { |
| if (lhs->year < rhs->year) return -1; |
| else if (lhs->year > rhs->year) return 1; |
| else |
| { |
| if (lhs->month < rhs->month) return -1; |
| else if (lhs->month > rhs->month) return 1; |
| else |
| { |
| if (lhs->day < rhs->day) return -1; |
| else if (lhs->day > rhs->day) return 1; |
| else return 0; |
| } |
| |
| } |
| |
| } |
| else |
| { |
| if (!lhs->julian) g_date_update_julian (lhs); |
| if (!rhs->julian) g_date_update_julian (rhs); |
| g_return_val_if_fail (lhs->julian, 0); |
| g_return_val_if_fail (rhs->julian, 0); |
| } |
| |
| } |
| return 0; /* warnings */ |
| } |
| |
| /** |
| * g_date_to_struct_tm: |
| * @date: a #GDate to set the struct tm from |
| * @tm: (not nullable): struct tm to fill |
| * |
| * Fills in the date-related bits of a struct tm using the @date value. |
| * Initializes the non-date parts with something sane but meaningless. |
| */ |
| void |
| g_date_to_struct_tm (const GDate *d, |
| struct tm *tm) |
| { |
| GDateWeekday day; |
| |
| g_return_if_fail (g_date_valid (d)); |
| g_return_if_fail (tm != NULL); |
| |
| if (!d->dmy) |
| g_date_update_dmy (d); |
| |
| g_return_if_fail (d->dmy != 0); |
| |
| /* zero all the irrelevant fields to be sure they're valid */ |
| |
| /* On Linux and maybe other systems, there are weird non-POSIX |
| * fields on the end of struct tm that choke strftime if they |
| * contain garbage. So we need to 0 the entire struct, not just the |
| * fields we know to exist. |
| */ |
| |
| memset (tm, 0x0, sizeof (struct tm)); |
| |
| tm->tm_mday = d->day; |
| tm->tm_mon = d->month - 1; /* 0-11 goes in tm */ |
| tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */ |
| |
| day = g_date_get_weekday (d); |
| if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */ |
| |
| tm->tm_wday = (int)day; |
| |
| tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */ |
| tm->tm_isdst = -1; /* -1 means "information not available" */ |
| } |
| |
| /** |
| * g_date_clamp: |
| * @date: a #GDate to clamp |
| * @min_date: minimum accepted value for @date |
| * @max_date: maximum accepted value for @date |
| * |
| * If @date is prior to @min_date, sets @date equal to @min_date. |
| * If @date falls after @max_date, sets @date equal to @max_date. |
| * Otherwise, @date is unchanged. |
| * Either of @min_date and @max_date may be %NULL. |
| * All non-%NULL dates must be valid. |
| */ |
| void |
| g_date_clamp (GDate *date, |
| const GDate *min_date, |
| const GDate *max_date) |
| { |
| g_return_if_fail (g_date_valid (date)); |
| |
| if (min_date != NULL) |
| g_return_if_fail (g_date_valid (min_date)); |
| |
| if (max_date != NULL) |
| g_return_if_fail (g_date_valid (max_date)); |
| |
| if (min_date != NULL && max_date != NULL) |
| g_return_if_fail (g_date_compare (min_date, max_date) <= 0); |
| |
| if (min_date && g_date_compare (date, min_date) < 0) |
| *date = *min_date; |
| |
| if (max_date && g_date_compare (max_date, date) < 0) |
| *date = *max_date; |
| } |
| |
| /** |
| * g_date_order: |
| * @date1: the first date |
| * @date2: the second date |
| * |
| * Checks if @date1 is less than or equal to @date2, |
| * and swap the values if this is not the case. |
| */ |
| void |
| g_date_order (GDate *date1, |
| GDate *date2) |
| { |
| g_return_if_fail (g_date_valid (date1)); |
| g_return_if_fail (g_date_valid (date2)); |
| |
| if (g_date_compare (date1, date2) > 0) |
| { |
| GDate tmp = *date1; |
| *date1 = *date2; |
| *date2 = tmp; |
| } |
| } |
| |
| #ifdef G_OS_WIN32 |
| static void |
| append_month_name (GArray *result, |
| LCID lcid, |
| SYSTEMTIME *systemtime, |
| gboolean abbreviated, |
| gboolean alternative) |
| { |
| int n; |
| WORD base; |
| LPCWSTR lpFormat; |
| |
| if (alternative) |
| { |
| base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1; |
| n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0); |
| g_array_set_size (result, result->len + n); |
| GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, |
| ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| else |
| { |
| /* According to MSDN, this is the correct method to obtain |
| * the form of the month name used when formatting a full |
| * date; it must be a genitive case in some languages. |
| */ |
| lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM"; |
| n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0); |
| g_array_set_size (result, result->len + n); |
| GetDateFormatW (lcid, 0, systemtime, lpFormat, |
| ((wchar_t *) result->data) + result->len - n, n); |
| /* We have obtained a day number as two digits and the month name. |
| * Now let's get rid of those two digits: overwrite them with the |
| * month name. |
| */ |
| memmove (((wchar_t *) result->data) + result->len - n, |
| ((wchar_t *) result->data) + result->len - n + 2, |
| (n - 2) * sizeof (wchar_t)); |
| g_array_set_size (result, result->len - 3); |
| } |
| } |
| |
| static gsize |
| win32_strftime_helper (const GDate *d, |
| const gchar *format, |
| const struct tm *tm, |
| gchar *s, |
| gsize slen) |
| { |
| SYSTEMTIME systemtime; |
| TIME_ZONE_INFORMATION tzinfo; |
| LCID lcid; |
| int n, k; |
| GArray *result; |
| const gchar *p; |
| gunichar c, modifier; |
| const wchar_t digits[] = L"0123456789"; |
| gchar *convbuf; |
| glong convlen = 0; |
| gsize retval; |
| |
| systemtime.wYear = tm->tm_year + 1900; |
| systemtime.wMonth = tm->tm_mon + 1; |
| systemtime.wDayOfWeek = tm->tm_wday; |
| systemtime.wDay = tm->tm_mday; |
| systemtime.wHour = tm->tm_hour; |
| systemtime.wMinute = tm->tm_min; |
| systemtime.wSecond = tm->tm_sec; |
| systemtime.wMilliseconds = 0; |
| |
| lcid = GetThreadLocale (); |
| result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2)); |
| |
| p = format; |
| while (*p) |
| { |
| c = g_utf8_get_char (p); |
| if (c == '%') |
| { |
| p = g_utf8_next_char (p); |
| if (!*p) |
| { |
| s[0] = '\0'; |
| g_array_free (result, TRUE); |
| |
| return 0; |
| } |
| |
| modifier = '\0'; |
| c = g_utf8_get_char (p); |
| if (c == 'E' || c == 'O') |
| { |
| /* "%OB", "%Ob", and "%Oh" are supported, ignore other modified |
| * conversion specifiers for now. |
| */ |
| modifier = c; |
| p = g_utf8_next_char (p); |
| if (!*p) |
| { |
| s[0] = '\0'; |
| g_array_free (result, TRUE); |
| |
| return 0; |
| } |
| |
| c = g_utf8_get_char (p); |
| } |
| |
| switch (c) |
| { |
| case 'a': |
| if (systemtime.wDayOfWeek == 0) |
| k = 6; |
| else |
| k = systemtime.wDayOfWeek - 1; |
| n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0); |
| g_array_set_size (result, result->len + n); |
| GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| break; |
| case 'A': |
| if (systemtime.wDayOfWeek == 0) |
| k = 6; |
| else |
| k = systemtime.wDayOfWeek - 1; |
| n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0); |
| g_array_set_size (result, result->len + n); |
| GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| break; |
| case 'b': |
| case 'h': |
| append_month_name (result, lcid, &systemtime, TRUE, |
| modifier == 'O'); |
| break; |
| case 'B': |
| append_month_name (result, lcid, &systemtime, FALSE, |
| modifier == 'O'); |
| break; |
| case 'c': |
| n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| g_array_append_vals (result, L" ", 1); |
| n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| break; |
| case 'C': |
| g_array_append_vals (result, digits + systemtime.wYear/1000, 1); |
| g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1); |
| break; |
| case 'd': |
| g_array_append_vals (result, digits + systemtime.wDay/10, 1); |
| g_array_append_vals (result, digits + systemtime.wDay%10, 1); |
| break; |
| case 'D': |
| g_array_append_vals (result, digits + systemtime.wMonth/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMonth%10, 1); |
| g_array_append_vals (result, L"/", 1); |
| g_array_append_vals (result, digits + systemtime.wDay/10, 1); |
| g_array_append_vals (result, digits + systemtime.wDay%10, 1); |
| g_array_append_vals (result, L"/", 1); |
| g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); |
| g_array_append_vals (result, digits + systemtime.wYear%10, 1); |
| break; |
| case 'e': |
| if (systemtime.wDay >= 10) |
| g_array_append_vals (result, digits + systemtime.wDay/10, 1); |
| else |
| g_array_append_vals (result, L" ", 1); |
| g_array_append_vals (result, digits + systemtime.wDay%10, 1); |
| break; |
| |
| /* A GDate has no time fields, so for now we can |
| * hardcode all time conversions into zeros (or 12 for |
| * %I). The alternative code snippets in the #else |
| * branches are here ready to be taken into use when |
| * needed by a g_strftime() or g_date_and_time_format() |
| * or whatever. |
| */ |
| case 'H': |
| #if 1 |
| g_array_append_vals (result, L"00", 2); |
| #else |
| g_array_append_vals (result, digits + systemtime.wHour/10, 1); |
| g_array_append_vals (result, digits + systemtime.wHour%10, 1); |
| #endif |
| break; |
| case 'I': |
| #if 1 |
| g_array_append_vals (result, L"12", 2); |
| #else |
| if (systemtime.wHour == 0) |
| g_array_append_vals (result, L"12", 2); |
| else |
| { |
| g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1); |
| g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1); |
| } |
| #endif |
| break; |
| case 'j': |
| g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1); |
| g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1); |
| g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1); |
| break; |
| case 'm': |
| g_array_append_vals (result, digits + systemtime.wMonth/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMonth%10, 1); |
| break; |
| case 'M': |
| #if 1 |
| g_array_append_vals (result, L"00", 2); |
| #else |
| g_array_append_vals (result, digits + systemtime.wMinute/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMinute%10, 1); |
| #endif |
| break; |
| case 'n': |
| g_array_append_vals (result, L"\n", 1); |
| break; |
| case 'p': |
| n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| break; |
| case 'r': |
| /* This is a rather odd format. Hard to say what to do. |
| * Let's always use the POSIX %I:%M:%S %p |
| */ |
| #if 1 |
| g_array_append_vals (result, L"12:00:00", 8); |
| #else |
| if (systemtime.wHour == 0) |
| g_array_append_vals (result, L"12", 2); |
| else |
| { |
| g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1); |
| g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1); |
| } |
| g_array_append_vals (result, L":", 1); |
| g_array_append_vals (result, digits + systemtime.wMinute/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMinute%10, 1); |
| g_array_append_vals (result, L":", 1); |
| g_array_append_vals (result, digits + systemtime.wSecond/10, 1); |
| g_array_append_vals (result, digits + systemtime.wSecond%10, 1); |
| g_array_append_vals (result, L" ", 1); |
| #endif |
| n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| break; |
| case 'R': |
| #if 1 |
| g_array_append_vals (result, L"00:00", 5); |
| #else |
| g_array_append_vals (result, digits + systemtime.wHour/10, 1); |
| g_array_append_vals (result, digits + systemtime.wHour%10, 1); |
| g_array_append_vals (result, L":", 1); |
| g_array_append_vals (result, digits + systemtime.wMinute/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMinute%10, 1); |
| #endif |
| break; |
| case 'S': |
| #if 1 |
| g_array_append_vals (result, L"00", 2); |
| #else |
| g_array_append_vals (result, digits + systemtime.wSecond/10, 1); |
| g_array_append_vals (result, digits + systemtime.wSecond%10, 1); |
| #endif |
| break; |
| case 't': |
| g_array_append_vals (result, L"\t", 1); |
| break; |
| case 'T': |
| #if 1 |
| g_array_append_vals (result, L"00:00:00", 8); |
| #else |
| g_array_append_vals (result, digits + systemtime.wHour/10, 1); |
| g_array_append_vals (result, digits + systemtime.wHour%10, 1); |
| g_array_append_vals (result, L":", 1); |
| g_array_append_vals (result, digits + systemtime.wMinute/10, 1); |
| g_array_append_vals (result, digits + systemtime.wMinute%10, 1); |
| g_array_append_vals (result, L":", 1); |
| g_array_append_vals (result, digits + systemtime.wSecond/10, 1); |
| g_array_append_vals (result, digits + systemtime.wSecond%10, 1); |
| #endif |
| break; |
| case 'u': |
| if (systemtime.wDayOfWeek == 0) |
| g_array_append_vals (result, L"7", 1); |
| else |
| g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1); |
| break; |
| case 'U': |
| n = g_date_get_sunday_week_of_year (d); |
| g_array_append_vals (result, digits + n/10, 1); |
| g_array_append_vals (result, digits + n%10, 1); |
| break; |
| case 'V': |
| n = g_date_get_iso8601_week_of_year (d); |
| g_array_append_vals (result, digits + n/10, 1); |
| g_array_append_vals (result, digits + n%10, 1); |
| break; |
| case 'w': |
| g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1); |
| break; |
| case 'W': |
| n = g_date_get_monday_week_of_year (d); |
| g_array_append_vals (result, digits + n/10, 1); |
| g_array_append_vals (result, digits + n%10, 1); |
| break; |
| case 'x': |
| n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| break; |
| case 'X': |
| n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0); |
| if (n > 0) |
| { |
| g_array_set_size (result, result->len + n); |
| GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); |
| g_array_set_size (result, result->len - 1); |
| } |
| break; |
| case 'y': |
| g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); |
| g_array_append_vals (result, digits + systemtime.wYear%10, 1); |
| break; |
| case 'Y': |
| g_array_append_vals (result, digits + systemtime.wYear/1000, 1); |
| g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1); |
| g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); |
| g_array_append_vals (result, digits + systemtime.wYear%10, 1); |
| break; |
| case 'Z': |
| n = GetTimeZoneInformation (&tzinfo); |
| if (n == TIME_ZONE_ID_UNKNOWN) |
| ; |
| else if (n == TIME_ZONE_ID_STANDARD) |
| g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName)); |
| else if (n == TIME_ZONE_ID_DAYLIGHT) |
| g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName)); |
| break; |
| case '%': |
| g_array_append_vals (result, L"%", 1); |
| break; |
| } |
| } |
| else if (c <= 0xFFFF) |
| { |
| wchar_t wc = c; |
| g_array_append_vals (result, &wc, 1); |
| } |
| else |
| { |
| glong nwc; |
| wchar_t *ws; |
| |
| ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL); |
| g_array_append_vals (result, ws, nwc); |
| g_free (ws); |
| } |
| p = g_utf8_next_char (p); |
| } |
| |
| convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL); |
| g_array_free (result, TRUE); |
| |
| if (!convbuf) |
| { |
| s[0] = '\0'; |
| return 0; |
| } |
| |
| if (slen <= convlen) |
| { |
| /* Ensure only whole characters are copied into the buffer. */ |
| gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen); |
| g_assert (end != NULL); |
| convlen = end - convbuf; |
| |
| /* Return 0 because the buffer isn't large enough. */ |
| retval = 0; |
| } |
| else |
| retval = convlen; |
| |
| memcpy (s, convbuf, convlen); |
| s[convlen] = '\0'; |
| g_free (convbuf); |
| |
| return retval; |
| } |
| |
| #endif |
| |
| /** |
| * g_date_strftime: |
| * @s: destination buffer |
| * @slen: buffer size |
| * @format: format string |
| * @date: valid #GDate |
| * |
| * Generates a printed representation of the date, in a |
| * [locale][setlocale]-specific way. |
| * Works just like the platform's C library strftime() function, |
| * but only accepts date-related formats; time-related formats |
| * give undefined results. Date must be valid. Unlike strftime() |
| * (which uses the locale encoding), works on a UTF-8 format |
| * string and stores a UTF-8 result. |
| * |
| * This function does not provide any conversion specifiers in |
| * addition to those implemented by the platform's C library. |
| * For example, don't expect that using g_date_strftime() would |
| * make the \%F provided by the C99 strftime() work on Windows |
| * where the C library only complies to C89. |
| * |
| * Returns: number of characters written to the buffer, or 0 the buffer was too small |
| */ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wformat-nonliteral" |
| |
| gsize |
| g_date_strftime (gchar *s, |
| gsize slen, |
| const gchar *format, |
| const GDate *d) |
| { |
| struct tm tm; |
| #ifndef G_OS_WIN32 |
| gsize locale_format_len = 0; |
| gchar *locale_format; |
| gsize tmplen; |
| gchar *tmpbuf; |
| gsize tmpbufsize; |
| gsize convlen = 0; |
| gchar *convbuf; |
| GError *error = NULL; |
| gsize retval; |
| #endif |
| |
| g_return_val_if_fail (g_date_valid (d), 0); |
| g_return_val_if_fail (slen > 0, 0); |
| g_return_val_if_fail (format != NULL, 0); |
| g_return_val_if_fail (s != NULL, 0); |
| |
| g_date_to_struct_tm (d, &tm); |
| |
| #ifdef G_OS_WIN32 |
| if (!g_utf8_validate (format, -1, NULL)) |
| { |
| s[0] = '\0'; |
| return 0; |
| } |
| return win32_strftime_helper (d, format, &tm, s, slen); |
| #else |
| |
| locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error); |
| |
| if (error) |
| { |
| g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message); |
| g_error_free (error); |
| |
| s[0] = '\0'; |
| return 0; |
| } |
| |
| tmpbufsize = MAX (128, locale_format_len * 2); |
| while (TRUE) |
| { |
| tmpbuf = g_malloc (tmpbufsize); |
| |
| /* Set the first byte to something other than '\0', to be able to |
| * recognize whether strftime actually failed or just returned "". |
| */ |
| tmpbuf[0] = '\1'; |
| tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm); |
| |
| if (tmplen == 0 && tmpbuf[0] != '\0') |
| { |
| g_free (tmpbuf); |
| tmpbufsize *= 2; |
| |
| if (tmpbufsize > 65536) |
| { |
| g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up"); |
| g_free (locale_format); |
| |
| s[0] = '\0'; |
| return 0; |
| } |
| } |
| else |
| break; |
| } |
| g_free (locale_format); |
| |
| convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error); |
| g_free (tmpbuf); |
| |
| if (error) |
| { |
| g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message); |
| g_error_free (error); |
| |
| s[0] = '\0'; |
| return 0; |
| } |
| |
| if (slen <= convlen) |
| { |
| /* Ensure only whole characters are copied into the buffer. |
| */ |
| gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen); |
| g_assert (end != NULL); |
| convlen = end - convbuf; |
| |
| /* Return 0 because the buffer isn't large enough. |
| */ |
| retval = 0; |
| } |
| else |
| retval = convlen; |
| |
| memcpy (s, convbuf, convlen); |
| s[convlen] = '\0'; |
| g_free (convbuf); |
| |
| return retval; |
| #endif |
| } |
| |
| #pragma GCC diagnostic pop |