| /* GLIB sliced memory - fast concurrent memory chunk allocator |
| * Copyright (C) 2005 Tim Janik |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| */ |
| /* MT safe */ |
| #define _XOPEN_SOURCE 600 /* posix_memalign() */ |
| #include <stdlib.h> /* posix_memalign() */ |
| #include <unistd.h> /* sysconf() */ |
| #include <assert.h> /* assert() for nomessage phase */ |
| #include <string.h> |
| #include <errno.h> |
| #include "config.h" |
| #include "gmem.h" /* gslice.h */ |
| #include "gthreadinit.h" |
| #include "galias.h" |
| #include "glib.h" |
| |
| /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab |
| * allocator and magazine extensions as outlined in: |
| * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel |
| * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html |
| * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the |
| * slab allocator to many cpu's and arbitrary resources. |
| * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html |
| * the layers are: |
| * - the thread magazines. for each (aligned) chunk size, a magazine (a list) |
| * of recently freed and soon to be allocated chunks is maintained per thread. |
| * this way, most alloc/free requests can be quickly satisfied from per-thread |
| * free lists which only require one g_private_get() call to retrive the |
| * thread handle. |
| * - the magazine cache. allocating and freeing chunks to/from threads only |
| * occours at magazine sizes from a global depot of magazines. the depot |
| * maintaines a 15 second working set of allocated magazines, so full |
| * magazines are not allocated and released too often. |
| * the chunk size dependent magazine sizes automatically adapt (within limits, |
| * see [3]) to lock contention to properly scale performance across a variety |
| * of SMP systems. |
| * - the slab allocator. this allocator allocates slabs (blocks of memory) close |
| * to the system page size or multiples thereof which have to be page aligned. |
| * the blocks are divided into smaller chunks which are used to satisfy |
| * allocations from the upper layers. the space provided by the reminder of |
| * the chunk size division is used for cache colorization (random distribution |
| * of chunk addresses) to improve processor cache utilization. multiple slabs |
| * with the same chunk size are kept in a partially sorted ring to allow O(1) |
| * freeing and allocation of chunks (as long as the allocation of an entirely |
| * new slab can be avoided). |
| * - the page allocator. on most modern systems, posix_memalign(3) or |
| * memalign(3) should be available, so this is used to allocate blocks with |
| * system page size based alignments and sizes or multiples thereof. |
| * if no memalign variant is provided, valloc() is used instead and |
| * block sizes are limited to the system page size (no multiples thereof). |
| * as a fallback, on system without even valloc(), a malloc(3)-based page |
| * allocator with alloc-only behaviour is used. |
| * |
| * NOTES: |
| * [1] some systems memalign(3) implementations may rely on boundary tagging for |
| * the handed out memory chunks. to avoid excessive page-wise fragmentation, |
| * we reserve 2 * sizeof (void*) per block size for the systems memalign(3), |
| * specified in NATIVE_MALLOC_PADDING. |
| * [2] using the slab allocator alone already provides for a fast and efficient |
| * allocator, it doesn't properly scale beyond single-threaded uses though. |
| * also, the slab allocator implements eager free(3)-ing, i.e. does not |
| * provide any form of caching or working set maintenance. so if used alone, |
| * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs |
| * at certain thresholds. |
| * [3] magazine sizes are bound by an implementation specific minimum size and |
| * a chunk size specific maximum to limit magazine storage sizes to roughly |
| * 16KB. |
| * [4] allocating ca. 8 chunks per block/page keeps a good balance between |
| * external and internal fragmentation (<= 12.5%) [Bonwick94] |
| */ |
| |
| /* --- macros and constants --- */ |
| #define LARGEALIGNMENT (256) |
| #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */ |
| #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base))) |
| #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */ |
| #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING) |
| #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */ |
| #define MIN_MAGAZINE_SIZE (4) |
| #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */ |
| #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */ |
| #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1) |
| #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */ |
| #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT) |
| #define SLAB_PAGE_SIZE(al,csz) (ALIGN (8 * (csz) + SLAB_INFO_SIZE, (al)->min_page_size)) |
| |
| /* optimized version of ALIGN (size, P2ALIGNMENT) */ |
| #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */ |
| #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7) |
| #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */ |
| #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf) |
| #else |
| #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT) |
| #endif |
| |
| /* --- structures --- */ |
| typedef struct _ChunkLink ChunkLink; |
| typedef struct _SlabInfo SlabInfo; |
| typedef struct _CachedMagazine CachedMagazine; |
| struct _ChunkLink { |
| ChunkLink *next; |
| ChunkLink *data; |
| }; |
| struct _SlabInfo { |
| ChunkLink *chunks; |
| guint n_allocated; |
| SlabInfo *next, *prev; |
| }; |
| typedef struct { |
| ChunkLink *chunks; |
| gsize count; /* approximative chunks list length */ |
| } Magazine; |
| typedef struct { |
| Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */ |
| Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */ |
| } ThreadMemory; |
| typedef struct { |
| gboolean always_malloc; |
| gboolean bypass_magazines; |
| gboolean always_free; |
| gsize working_set_msecs; |
| } SliceConfig; |
| typedef struct { |
| /* const after initialization */ |
| gsize min_page_size, max_page_size; |
| SliceConfig config; |
| guint max_slab_chunk_size_for_magazine_cache; |
| /* magazine cache */ |
| GMutex *magazine_mutex; |
| ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */ |
| guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */ |
| gint mutex_counter; |
| guint stamp_counter; |
| guint last_stamp; |
| /* slab allocator */ |
| GMutex *slab_mutex; |
| SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */ |
| guint color_accu; |
| } Allocator; |
| |
| /* --- prototypes --- */ |
| static gpointer slab_allocator_alloc_chunk (guint chunk_size); |
| static void slab_allocator_free_chunk (guint chunk_size, |
| gpointer mem); |
| static void private_thread_memory_cleanup (gpointer data); |
| static gpointer allocator_memalign (gsize alignment, |
| gsize memsize); |
| static void allocator_memfree (gsize memsize, |
| gpointer mem); |
| static inline void magazine_cache_update_stamp (void); |
| static inline guint allocator_get_magazine_threshold (Allocator *allocator, |
| guint ix); |
| |
| /* --- variables --- */ |
| static GPrivate *private_thread_memory = NULL; |
| static gsize sys_page_size = 0; |
| static Allocator allocator[1] = { { 0, }, }; |
| static SliceConfig slice_config = { |
| FALSE, /* always_malloc */ |
| FALSE, /* bypass_magazines */ |
| FALSE, /* always_free */ |
| 15 * 1000, /* working_set_msecs */ |
| }; |
| |
| /* --- auxillary funcitons --- */ |
| void |
| g_slice_set_config (GSliceConfig ckey, |
| gint64 value) |
| { |
| g_return_if_fail (sys_page_size == 0); |
| switch (ckey) |
| { |
| case G_SLICE_CONFIG_ALWAYS_MALLOC: |
| slice_config.always_malloc = value != 0; |
| break; |
| case G_SLICE_CONFIG_BYPASS_MAGAZINES: |
| slice_config.bypass_magazines = value != 0; |
| break; |
| case G_SLICE_CONFIG_ALWAYS_FREE: |
| slice_config.always_free = value != 0; |
| break; |
| case G_SLICE_CONFIG_WORKING_SET_MSECS: |
| slice_config.working_set_msecs = value; |
| break; |
| default: ; |
| } |
| } |
| |
| gint64 |
| g_slice_get_config (GSliceConfig ckey) |
| { |
| switch (ckey) |
| { |
| case G_SLICE_CONFIG_ALWAYS_MALLOC: |
| return slice_config.always_malloc; |
| case G_SLICE_CONFIG_BYPASS_MAGAZINES: |
| return slice_config.bypass_magazines; |
| case G_SLICE_CONFIG_ALWAYS_FREE: |
| return slice_config.always_free; |
| case G_SLICE_CONFIG_WORKING_SET_MSECS: |
| return slice_config.working_set_msecs; |
| case G_SLICE_CONFIG_CHUNK_SIZES: |
| return MAX_SLAB_INDEX (allocator); |
| default: |
| return 0; |
| } |
| } |
| |
| gint64* |
| g_slice_get_config_state (GSliceConfig ckey, |
| gint64 address, |
| guint *n_values) |
| { |
| guint i = 0; |
| g_return_val_if_fail (n_values != NULL, NULL); |
| *n_values = 0; |
| switch (ckey) |
| { |
| gint64 array[64]; |
| case G_SLICE_CONFIG_CONTENTION_COUNTER: |
| array[i++] = SLAB_CHUNK_SIZE (allocator, address); |
| array[i++] = allocator->contention_counters[address]; |
| array[i++] = allocator_get_magazine_threshold (allocator, address); |
| *n_values = i; |
| return g_memdup (array, sizeof (array[0]) * *n_values); |
| default: |
| return NULL; |
| } |
| } |
| |
| static void |
| g_slice_init_nomessage (void) |
| { |
| /* we may not use g_error() or friends here */ |
| assert (sys_page_size == 0); |
| |
| sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */ |
| assert (sys_page_size >= 2 * LARGEALIGNMENT); |
| allocator->config = slice_config; |
| allocator->min_page_size = sys_page_size; |
| #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN |
| /* allow allocation of pages up to 8KB (with 8KB alignment). |
| * this is useful because many medium to large sized structures |
| * fit less than 8 times (see [4]) into 4KB pages. |
| */ |
| allocator->min_page_size = MAX (allocator->min_page_size, 4096); |
| allocator->max_page_size = MAX (allocator->min_page_size, 8192); |
| #else |
| /* we can only align to system page size */ |
| allocator->max_page_size = sys_page_size; |
| #endif |
| allocator->magazine_mutex = NULL; /* _g_slice_thread_init_nomessage() */ |
| allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator)); |
| allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator)); |
| allocator->mutex_counter = 0; |
| allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */ |
| allocator->last_stamp = 0; |
| allocator->slab_mutex = NULL; /* _g_slice_thread_init_nomessage() */ |
| allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator)); |
| allocator->color_accu = 0; |
| magazine_cache_update_stamp(); |
| /* values cached for performance reasons */ |
| allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator); |
| if (allocator->config.always_malloc || allocator->config.bypass_magazines) |
| allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */ |
| } |
| |
| static inline guint |
| allocator_categorize (guint aligned_chunk_size) |
| { |
| /* speed up the likely path */ |
| if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache)) |
| return 1; /* use magazine cache */ |
| |
| /* the above will fail (max_slab_chunk_size_for_magazine_cache == 0) if the |
| * allocator is still uninitialized, or if we are not configured to use the |
| * magazine cache. |
| */ |
| if (!sys_page_size) |
| g_slice_init_nomessage (); |
| if (!allocator->config.always_malloc && |
| aligned_chunk_size && |
| aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator)) |
| { |
| if (allocator->config.bypass_magazines) |
| return 2; /* use slab allocator, see [2] */ |
| return 1; /* use magazine cache */ |
| } |
| return 0; /* use malloc() */ |
| } |
| |
| void |
| _g_slice_thread_init_nomessage (void) |
| { |
| /* we may not use g_error() or friends here */ |
| if (!sys_page_size) |
| g_slice_init_nomessage(); |
| private_thread_memory = g_private_new (private_thread_memory_cleanup); |
| allocator->magazine_mutex = g_mutex_new(); |
| allocator->slab_mutex = g_mutex_new(); |
| } |
| |
| static inline void |
| g_mutex_lock_a (GMutex *mutex, |
| guint *threshold) |
| { |
| gboolean contention = FALSE; |
| if (!g_mutex_trylock (mutex)) |
| { |
| g_mutex_lock (mutex); |
| contention = TRUE; |
| } |
| if (contention) |
| { |
| allocator->mutex_counter++; |
| if (allocator->mutex_counter >= 1) /* quickly adapt to contention */ |
| { |
| allocator->mutex_counter = 0; |
| *threshold = MIN (*threshold + 1, MAX_MAGAZINE_SIZE); |
| } |
| } |
| else /* !contention */ |
| { |
| allocator->mutex_counter--; |
| if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */ |
| { |
| allocator->mutex_counter = 0; |
| *threshold = MAX (*threshold, 1) - 1; |
| } |
| } |
| } |
| |
| static inline ThreadMemory* |
| thread_memory_from_self (void) |
| { |
| ThreadMemory *tmem = g_private_get (private_thread_memory); |
| if (G_UNLIKELY (!tmem)) |
| { |
| const guint n_magazines = MAX_SLAB_INDEX (allocator); |
| tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines); |
| tmem->magazine1 = (Magazine*) (tmem + 1); |
| tmem->magazine2 = &tmem->magazine1[n_magazines]; |
| g_private_set (private_thread_memory, tmem); |
| } |
| return tmem; |
| } |
| |
| static inline ChunkLink* |
| magazine_chain_pop_head (ChunkLink **magazine_chunks) |
| { |
| /* magazine chains are linked via ChunkLink->next. |
| * each ChunkLink->data of the toplevel chain may point to a subchain, |
| * linked via ChunkLink->next. ChunkLink->data of the subchains just |
| * contains uninitialized junk. |
| */ |
| ChunkLink *chunk = (*magazine_chunks)->data; |
| if (G_UNLIKELY (chunk)) |
| { |
| /* allocating from freed list */ |
| (*magazine_chunks)->data = chunk->next; |
| } |
| else |
| { |
| chunk = *magazine_chunks; |
| *magazine_chunks = chunk->next; |
| } |
| return chunk; |
| } |
| |
| static guint |
| magazine_count (ChunkLink *head) |
| { |
| guint count = 0; |
| if (!head) |
| return 0; |
| while (head) |
| { |
| ChunkLink *child = head->data; |
| count += 1; |
| for (child = head->data; child; child = child->next) |
| count += 1; |
| head = head->next; |
| } |
| return count; |
| } |
| |
| static inline guint |
| allocator_get_magazine_threshold (Allocator *allocator, |
| guint ix) |
| { |
| /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE, |
| * which is required by the implementation. also, for moderately sized chunks |
| * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number |
| * of chunks available per page/2 to avoid excessive traffic in the magazine |
| * cache for small to medium sized structures. |
| * the upper bound of the magazine size is effectively provided by |
| * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that |
| * the content of a single magazine doesn't exceed ca. 16KB. |
| */ |
| guint chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32)); |
| guint contention_counter = allocator->contention_counters[ix]; |
| if (G_UNLIKELY (contention_counter)) /* single CPU bias */ |
| { |
| /* adapt contention counter thresholds to chunk sizes */ |
| contention_counter = contention_counter * 64 / chunk_size; |
| threshold = MAX (threshold, contention_counter); |
| } |
| return threshold; |
| } |
| |
| /* --- magazine cache --- */ |
| static inline void |
| magazine_cache_update_stamp (void) |
| { |
| if (allocator->stamp_counter >= MAX_STAMP_COUNTER) |
| { |
| GTimeVal tv; |
| g_get_current_time (&tv); |
| allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */ |
| allocator->stamp_counter = 0; |
| } |
| else |
| allocator->stamp_counter++; |
| } |
| |
| static inline ChunkLink* |
| magazine_chain_prepare_fields (ChunkLink *magazine_chunks) |
| { |
| g_assert (MIN_MAGAZINE_SIZE >= 4); |
| /* ensure a magazine with at least 4 unused data pointers */ |
| ChunkLink *chunk1 = magazine_chain_pop_head (&magazine_chunks); |
| ChunkLink *chunk2 = magazine_chain_pop_head (&magazine_chunks); |
| ChunkLink *chunk3 = magazine_chain_pop_head (&magazine_chunks); |
| ChunkLink *chunk4 = magazine_chain_pop_head (&magazine_chunks); |
| chunk4->next = magazine_chunks; |
| chunk3->next = chunk4; |
| chunk2->next = chunk3; |
| chunk1->next = chunk2; |
| return chunk1; |
| } |
| |
| /* access the first 3 fields of a specially prepared magazine chain */ |
| #define magazine_chain_prev(mc) ((mc)->data) |
| #define magazine_chain_stamp(mc) ((mc)->next->data) |
| #define magazine_chain_next(mc) ((mc)->next->next->data) |
| #define magazine_chain_count(mc) ((mc)->next->next->next->data) |
| |
| static void |
| magazine_cache_trim (Allocator *allocator, |
| guint ix, |
| guint stamp) |
| { |
| /* g_mutex_lock (allocator->mutex); done by caller */ |
| /* trim magazine cache from tail */ |
| ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]); |
| ChunkLink *trash = NULL; |
| while (allocator->config.always_free || |
| ABS (stamp - (guint) magazine_chain_stamp (current)) > allocator->config.working_set_msecs) |
| { |
| /* unlink */ |
| ChunkLink *prev = magazine_chain_prev (current); |
| ChunkLink *next = magazine_chain_next (current); |
| magazine_chain_next (prev) = next; |
| magazine_chain_prev (next) = prev; |
| /* clear special fields, put on trash stack */ |
| magazine_chain_next (current) = NULL; |
| magazine_chain_count (current) = NULL; |
| magazine_chain_stamp (current) = NULL; |
| magazine_chain_prev (current) = trash; |
| trash = current; |
| /* fixup list head if required */ |
| if (current == allocator->magazines[ix]) |
| { |
| allocator->magazines[ix] = NULL; |
| break; |
| } |
| current = prev; |
| } |
| g_mutex_unlock (allocator->magazine_mutex); |
| /* free trash */ |
| if (trash) |
| { |
| const guint chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| g_mutex_lock (allocator->slab_mutex); |
| while (trash) |
| { |
| current = trash; |
| trash = magazine_chain_prev (current); |
| magazine_chain_prev (current) = NULL; /* clear special field */ |
| while (current) |
| { |
| ChunkLink *chunk = magazine_chain_pop_head (¤t); |
| slab_allocator_free_chunk (chunk_size, chunk); |
| } |
| } |
| g_mutex_unlock (allocator->slab_mutex); |
| } |
| } |
| |
| static void |
| magazine_cache_push_magazine (guint ix, |
| ChunkLink *magazine_chunks, |
| gsize count) /* must be >= MIN_MAGAZINE_SIZE */ |
| { |
| ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks); |
| ChunkLink *next, *prev; |
| g_mutex_lock (allocator->magazine_mutex); |
| /* add magazine at head */ |
| next = allocator->magazines[ix]; |
| if (next) |
| prev = magazine_chain_prev (next); |
| else |
| next = prev = current; |
| magazine_chain_next (prev) = current; |
| magazine_chain_prev (next) = current; |
| magazine_chain_prev (current) = prev; |
| magazine_chain_next (current) = next; |
| magazine_chain_count (current) = (gpointer) count; |
| /* stamp magazine */ |
| magazine_cache_update_stamp(); |
| magazine_chain_stamp (current) = (gpointer) allocator->last_stamp; |
| allocator->magazines[ix] = current; |
| /* free old magazines beyond a certain threshold */ |
| magazine_cache_trim (allocator, ix, allocator->last_stamp); |
| /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */ |
| } |
| |
| static ChunkLink* |
| magazine_cache_pop_magazine (guint ix, |
| gsize *countp) |
| { |
| g_mutex_lock_a (allocator->magazine_mutex, &allocator->contention_counters[ix]); |
| if (!allocator->magazines[ix]) |
| { |
| guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix); |
| gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| ChunkLink *current = NULL; |
| g_mutex_unlock (allocator->magazine_mutex); |
| g_mutex_lock (allocator->slab_mutex); |
| for (i = 0; i < magazine_threshold; i++) |
| { |
| ChunkLink *chunk = slab_allocator_alloc_chunk (chunk_size); |
| chunk->data = NULL; |
| chunk->next = current; |
| current = chunk; |
| } |
| g_mutex_unlock (allocator->slab_mutex); |
| *countp = i; |
| return current; |
| } |
| else |
| { |
| ChunkLink *current = allocator->magazines[ix]; |
| ChunkLink *prev = magazine_chain_prev (current); |
| ChunkLink *next = magazine_chain_next (current); |
| /* unlink */ |
| magazine_chain_next (prev) = next; |
| magazine_chain_prev (next) = prev; |
| allocator->magazines[ix] = next == current ? NULL : next; |
| g_mutex_unlock (allocator->magazine_mutex); |
| /* clear special fields and hand out */ |
| *countp = (gsize) magazine_chain_count (current); |
| magazine_chain_prev (current) = NULL; |
| magazine_chain_next (current) = NULL; |
| magazine_chain_count (current) = NULL; |
| magazine_chain_stamp (current) = NULL; |
| return current; |
| } |
| } |
| |
| /* --- thread magazines --- */ |
| static void |
| private_thread_memory_cleanup (gpointer data) |
| { |
| ThreadMemory *tmem = data; |
| const guint n_magazines = MAX_SLAB_INDEX (allocator); |
| guint ix; |
| for (ix = 0; ix < n_magazines; ix++) |
| { |
| Magazine *mags[2]; |
| guint j; |
| mags[0] = &tmem->magazine1[ix]; |
| mags[1] = &tmem->magazine2[ix]; |
| for (j = 0; j < 2; j++) |
| { |
| Magazine *mag = mags[j]; |
| if (mag->count >= MIN_MAGAZINE_SIZE) |
| magazine_cache_push_magazine (ix, mag->chunks, mag->count); |
| else |
| { |
| const guint chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| g_mutex_lock (allocator->slab_mutex); |
| while (mag->chunks) |
| { |
| ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); |
| slab_allocator_free_chunk (chunk_size, chunk); |
| } |
| g_mutex_unlock (allocator->slab_mutex); |
| } |
| } |
| } |
| g_free (tmem); |
| } |
| |
| static void |
| thread_memory_magazine1_reload (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine1[ix]; |
| g_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */ |
| mag->count = 0; |
| mag->chunks = magazine_cache_pop_magazine (ix, &mag->count); |
| } |
| |
| static void |
| thread_memory_magazine2_unload (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine2[ix]; |
| magazine_cache_push_magazine (ix, mag->chunks, mag->count); |
| mag->chunks = NULL; |
| mag->count = 0; |
| } |
| |
| static inline void |
| thread_memory_swap_magazines (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine xmag = tmem->magazine1[ix]; |
| tmem->magazine1[ix] = tmem->magazine2[ix]; |
| tmem->magazine2[ix] = xmag; |
| } |
| |
| static inline gboolean |
| thread_memory_magazine1_is_empty (ThreadMemory *tmem, |
| guint ix) |
| { |
| return tmem->magazine1[ix].chunks == NULL; |
| } |
| |
| static inline gboolean |
| thread_memory_magazine2_is_full (ThreadMemory *tmem, |
| guint ix) |
| { |
| return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix); |
| } |
| |
| static inline gpointer |
| thread_memory_magazine1_alloc (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine1[ix]; |
| ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); |
| if (G_LIKELY (mag->count > 0)) |
| mag->count--; |
| return chunk; |
| } |
| |
| static inline void |
| thread_memory_magazine2_free (ThreadMemory *tmem, |
| guint ix, |
| gpointer mem) |
| { |
| Magazine *mag = &tmem->magazine2[ix]; |
| ChunkLink *chunk = mem; |
| chunk->data = NULL; |
| chunk->next = mag->chunks; |
| mag->chunks = chunk; |
| mag->count++; |
| } |
| |
| /* --- API functions --- */ |
| gpointer |
| g_slice_alloc (gsize mem_size) |
| { |
| gsize chunk_size; |
| gpointer mem; |
| guint acat; |
| chunk_size = P2ALIGN (mem_size); |
| acat = allocator_categorize (chunk_size); |
| if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ |
| { |
| ThreadMemory *tmem = thread_memory_from_self(); |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) |
| { |
| thread_memory_swap_magazines (tmem, ix); |
| if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) |
| thread_memory_magazine1_reload (tmem, ix); |
| } |
| mem = thread_memory_magazine1_alloc (tmem, ix); |
| } |
| else if (acat == 2) /* allocate through slab allocator */ |
| { |
| g_mutex_lock (allocator->slab_mutex); |
| mem = slab_allocator_alloc_chunk (chunk_size); |
| g_mutex_unlock (allocator->slab_mutex); |
| } |
| else /* delegate to system malloc */ |
| mem = g_malloc (mem_size); |
| return mem; |
| } |
| |
| gpointer |
| g_slice_alloc0 (guint mem_size) |
| { |
| gpointer mem = g_slice_alloc (mem_size); |
| if (mem) |
| memset (mem, 0, mem_size); |
| return mem; |
| } |
| |
| void |
| g_slice_free1 (guint mem_size, |
| gpointer mem_block) |
| { |
| guint chunk_size = P2ALIGN (mem_size); |
| guint acat = allocator_categorize (chunk_size); |
| if (G_UNLIKELY (!mem_block)) |
| /* pass */; |
| else if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ |
| { |
| ThreadMemory *tmem = thread_memory_from_self(); |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| { |
| thread_memory_swap_magazines (tmem, ix); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| thread_memory_magazine2_unload (tmem, ix); |
| } |
| thread_memory_magazine2_free (tmem, ix, mem_block); |
| } |
| else if (acat == 2) /* allocate through slab allocator */ |
| { |
| g_mutex_lock (allocator->slab_mutex); |
| slab_allocator_free_chunk (chunk_size, mem_block); |
| g_mutex_unlock (allocator->slab_mutex); |
| } |
| else /* delegate to system malloc */ |
| g_free (mem_block); |
| } |
| |
| void |
| g_slice_free_chain (guint mem_size, |
| gpointer mem_chain, |
| guint next_offset) |
| { |
| GSList *slice = mem_chain; |
| g_return_if_fail (next_offset == G_STRUCT_OFFSET (GSList, next)); |
| g_return_if_fail (mem_size >= sizeof (GSList)); |
| while (slice) |
| { |
| GSList *current = slice; |
| slice = slice->next; |
| g_slice_free1 (mem_size, current); |
| } |
| /* while the thread magazines and the magazine cache are implemented so that |
| * they can easily be extended to allow for free lists containing more free |
| * lists for the first level nodes, which would allow O(1) freeing in this |
| * function, the benefit of such an extension is questionable, because: |
| * - the magazine size counts will become mere lower bounds which confuses |
| * the code adapting to lock contention; |
| * - freeing a single node to the thread magazines is very fast, so this |
| * O(list_length) operation is multiplied by a fairly small factor; |
| * - memory usage histograms on larger applications seem to indicate that |
| * the amount of released multi node lists is negligible in comparison |
| * to single node releases. |
| */ |
| } |
| |
| /* --- single page allocator --- */ |
| static void |
| allocator_slab_stack_push (Allocator *allocator, |
| guint ix, |
| SlabInfo *sinfo) |
| { |
| /* insert slab at slab ring head */ |
| if (!allocator->slab_stack[ix]) |
| { |
| sinfo->next = sinfo; |
| sinfo->prev = sinfo; |
| } |
| else |
| { |
| SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev; |
| next->prev = sinfo; |
| prev->next = sinfo; |
| sinfo->next = next; |
| sinfo->prev = prev; |
| } |
| allocator->slab_stack[ix] = sinfo; |
| } |
| |
| static void |
| allocator_add_slab (Allocator *allocator, |
| guint ix, |
| guint chunk_size) |
| { |
| SlabInfo *sinfo; |
| gsize padding, n_chunks, color = 0; |
| gsize page_size = SLAB_PAGE_SIZE (allocator, chunk_size); |
| /* allocate 1 page for the chunks and the slab */ |
| gpointer aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING); |
| guint8 *mem = aligned_memory; |
| if (!mem) |
| g_error ("%s: failed to allocate %lu bytes: %s", "GSlicedMemory", (gulong) (page_size - NATIVE_MALLOC_PADDING), g_strerror (errno)); |
| /* mask page adress */ |
| gsize addr = ((gsize) mem / page_size) * page_size; |
| /* assert alignment */ |
| g_assert (aligned_memory == (gpointer) addr); |
| /* basic slab info setup */ |
| sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE); |
| sinfo->n_allocated = 0; |
| sinfo->chunks = NULL; |
| /* figure cache colorization */ |
| n_chunks = ((guint8*) sinfo - mem) / chunk_size; |
| padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size; |
| if (padding) |
| { |
| color = (allocator->color_accu * P2ALIGNMENT) % padding; |
| allocator->color_accu += 1; /* alternatively: + 0x7fffffff */ |
| } |
| /* add chunks to free list */ |
| ChunkLink *chunk = (ChunkLink*) (mem + color); |
| guint i; |
| sinfo->chunks = chunk; |
| for (i = 0; i < n_chunks - 1; i++) |
| { |
| chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size); |
| chunk = chunk->next; |
| } |
| chunk->next = NULL; /* last chunk */ |
| /* add slab to slab ring */ |
| allocator_slab_stack_push (allocator, ix, sinfo); |
| } |
| |
| static gpointer |
| slab_allocator_alloc_chunk (guint chunk_size) |
| { |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| /* ensure non-empty slab */ |
| if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks) |
| allocator_add_slab (allocator, ix, chunk_size); |
| /* allocate chunk */ |
| ChunkLink *chunk = allocator->slab_stack[ix]->chunks; |
| allocator->slab_stack[ix]->chunks = chunk->next; |
| allocator->slab_stack[ix]->n_allocated++; |
| /* rotate empty slabs */ |
| if (!allocator->slab_stack[ix]->chunks) |
| allocator->slab_stack[ix] = allocator->slab_stack[ix]->next; |
| return chunk; |
| } |
| |
| static void |
| slab_allocator_free_chunk (guint chunk_size, |
| gpointer mem) |
| { |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| gsize page_size = SLAB_PAGE_SIZE (allocator, chunk_size); |
| gsize addr = ((gsize) mem / page_size) * page_size; |
| /* mask page adress */ |
| guint8 *page = (guint8*) addr; |
| SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE); |
| /* assert valid chunk count */ |
| g_assert (sinfo->n_allocated > 0); |
| /* add chunk to free list */ |
| gboolean was_empty = sinfo->chunks == NULL; |
| ChunkLink *chunk = (ChunkLink*) mem; |
| chunk->next = sinfo->chunks; |
| sinfo->chunks = chunk; |
| sinfo->n_allocated--; |
| /* keep slab ring partially sorted, empty slabs at end */ |
| if (was_empty) |
| { |
| /* unlink slab */ |
| SlabInfo *next = sinfo->next, *prev = sinfo->prev; |
| next->prev = prev; |
| prev->next = next; |
| if (allocator->slab_stack[ix] == sinfo) |
| allocator->slab_stack[ix] = next == sinfo ? NULL : next; |
| /* insert slab at head */ |
| allocator_slab_stack_push (allocator, ix, sinfo); |
| } |
| /* eagerly free complete unused slabs */ |
| if (!sinfo->n_allocated) |
| { |
| /* unlink slab */ |
| SlabInfo *next = sinfo->next, *prev = sinfo->prev; |
| next->prev = prev; |
| prev->next = next; |
| if (allocator->slab_stack[ix] == sinfo) |
| allocator->slab_stack[ix] = next == sinfo ? NULL : next; |
| /* free slab */ |
| allocator_memfree (page_size, page); |
| } |
| } |
| |
| /* --- memalign implementation --- */ |
| #include <malloc.h> /* memalign() */ |
| |
| /* from config.h: |
| * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h> |
| * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h> |
| * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h> |
| * if none is provided, we implement malloc(3)-based alloc-only page alignment |
| */ |
| |
| #if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC) |
| static GTrashStack *compat_valloc_trash = NULL; |
| #endif |
| |
| static gpointer |
| allocator_memalign (gsize alignment, |
| gsize memsize) |
| { |
| gpointer aligned_memory = NULL; |
| gint err = ENOMEM; |
| #if HAVE_POSIX_MEMALIGN |
| err = posix_memalign (&aligned_memory, alignment, memsize); |
| #elif HAVE_MEMALIGN |
| errno = 0; |
| aligned_memory = memalign (alignment, memsize); |
| err = errno; |
| #elif HAVE_VALLOC |
| errno = 0; |
| aligned_memory = valloc (memsize); |
| err = errno; |
| #else |
| /* simplistic non-freeing page allocator */ |
| g_assert (alignment == sys_page_size); |
| g_assert (memsize <= sys_page_size); |
| if (!compat_valloc_trash) |
| { |
| const guint n_pages = 16; |
| guint8 *mem = malloc (n_pages * sys_page_size); |
| err = errno; |
| if (mem) |
| { |
| gint i = n_pages; |
| guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size); |
| if (amem != mem) |
| i--; /* mem wasn't page aligned */ |
| while (--i >= 0) |
| g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size); |
| } |
| } |
| aligned_memory = g_trash_stack_pop (&compat_valloc_trash); |
| #endif |
| if (!aligned_memory) |
| errno = err; |
| return aligned_memory; |
| } |
| |
| static void |
| allocator_memfree (gsize memsize, |
| gpointer mem) |
| { |
| #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC |
| free (mem); |
| #else |
| g_assert (memsize <= sys_page_size); |
| g_trash_stack_push (&compat_valloc_trash, mem); |
| #endif |
| } |
| |
| #define __G_SLICE_C__ |
| #include "galiasdef.c" |