blob: 8012a40b11b428cc9bb0bdb1f413046f4d626377 [file] [log] [blame]
/* functable.c -- Choose relevant optimized functions at runtime
* Copyright (C) 2017 Hans Kristian Rosbach
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifndef DISABLE_RUNTIME_CPU_DETECTION
#include "zbuild.h"
#include "functable.h"
#include "cpu_features.h"
#include "arch_functions.h"
#if defined(_MSC_VER)
# include <intrin.h>
#endif
/* Platform has pointer size atomic store */
#if defined(__GNUC__) || defined(__clang__)
# define FUNCTABLE_ASSIGN(VAR, FUNC_NAME) \
__atomic_store(&(functable.FUNC_NAME), &(VAR.FUNC_NAME), __ATOMIC_SEQ_CST)
# define FUNCTABLE_BARRIER() __atomic_thread_fence(__ATOMIC_SEQ_CST)
#elif defined(_MSC_VER)
# define FUNCTABLE_ASSIGN(VAR, FUNC_NAME) \
_InterlockedExchangePointer((void * volatile *)&(functable.FUNC_NAME), (void *)(VAR.FUNC_NAME))
# if defined(_M_ARM) || defined(_M_ARM64)
# define FUNCTABLE_BARRIER() do { \
_ReadWriteBarrier(); \
__dmb(0xB); /* _ARM_BARRIER_ISH */ \
_ReadWriteBarrier(); \
} while (0)
# else
# define FUNCTABLE_BARRIER() _ReadWriteBarrier()
# endif
#else
# warning Unable to detect atomic intrinsic support.
# define FUNCTABLE_ASSIGN(VAR, FUNC_NAME) \
*((void * volatile *)&(functable.FUNC_NAME)) = (void *)(VAR.FUNC_NAME)
# define FUNCTABLE_BARRIER() do { /* Empty */ } while (0)
#endif
static void force_init_empty(void) {
// empty
}
static void init_functable(void) {
struct functable_s ft;
struct cpu_features cf;
cpu_check_features(&cf);
// Generic code
ft.force_init = &force_init_empty;
ft.adler32 = &adler32_c;
ft.adler32_fold_copy = &adler32_fold_copy_c;
ft.chunkmemset_safe = &chunkmemset_safe_c;
ft.chunksize = &chunksize_c;
ft.crc32 = &PREFIX(crc32_braid);
ft.crc32_fold = &crc32_fold_c;
ft.crc32_fold_copy = &crc32_fold_copy_c;
ft.crc32_fold_final = &crc32_fold_final_c;
ft.crc32_fold_reset = &crc32_fold_reset_c;
ft.inflate_fast = &inflate_fast_c;
ft.slide_hash = &slide_hash_c;
ft.longest_match = &longest_match_generic;
ft.longest_match_slow = &longest_match_slow_generic;
ft.compare256 = &compare256_generic;
// Select arch-optimized functions
// X86 - SSE2
#ifdef X86_SSE2
# if !defined(__x86_64__) && !defined(_M_X64) && !defined(X86_NOCHECK_SSE2)
if (cf.x86.has_sse2)
# endif
{
ft.chunkmemset_safe = &chunkmemset_safe_sse2;
ft.chunksize = &chunksize_sse2;
ft.inflate_fast = &inflate_fast_sse2;
ft.slide_hash = &slide_hash_sse2;
# ifdef HAVE_BUILTIN_CTZ
ft.compare256 = &compare256_sse2;
ft.longest_match = &longest_match_sse2;
ft.longest_match_slow = &longest_match_slow_sse2;
# endif
}
#endif
// X86 - SSSE3
#ifdef X86_SSSE3
if (cf.x86.has_ssse3) {
ft.adler32 = &adler32_ssse3;
ft.chunkmemset_safe = &chunkmemset_safe_ssse3;
ft.inflate_fast = &inflate_fast_ssse3;
}
#endif
// X86 - SSE4.2
#ifdef X86_SSE42
if (cf.x86.has_sse42) {
ft.adler32_fold_copy = &adler32_fold_copy_sse42;
}
#endif
// X86 - PCLMUL
#ifdef X86_PCLMULQDQ_CRC
if (cf.x86.has_pclmulqdq) {
ft.crc32 = &crc32_pclmulqdq;
ft.crc32_fold = &crc32_fold_pclmulqdq;
ft.crc32_fold_copy = &crc32_fold_pclmulqdq_copy;
ft.crc32_fold_final = &crc32_fold_pclmulqdq_final;
ft.crc32_fold_reset = &crc32_fold_pclmulqdq_reset;
}
#endif
// X86 - AVX
#ifdef X86_AVX2
if (cf.x86.has_avx2) {
ft.adler32 = &adler32_avx2;
ft.adler32_fold_copy = &adler32_fold_copy_avx2;
ft.chunkmemset_safe = &chunkmemset_safe_avx2;
ft.chunksize = &chunksize_avx2;
ft.inflate_fast = &inflate_fast_avx2;
ft.slide_hash = &slide_hash_avx2;
# ifdef HAVE_BUILTIN_CTZ
ft.compare256 = &compare256_avx2;
ft.longest_match = &longest_match_avx2;
ft.longest_match_slow = &longest_match_slow_avx2;
# endif
}
#endif
// X86 - AVX512 (F,DQ,BW,Vl)
#ifdef X86_AVX512
if (cf.x86.has_avx512) {
ft.adler32 = &adler32_avx512;
ft.adler32_fold_copy = &adler32_fold_copy_avx512;
}
#endif
#ifdef X86_AVX512VNNI
if (cf.x86.has_avx512vnni) {
ft.adler32 = &adler32_avx512_vnni;
ft.adler32_fold_copy = &adler32_fold_copy_avx512_vnni;
}
#endif
// X86 - VPCLMULQDQ
#ifdef X86_VPCLMULQDQ_CRC
if (cf.x86.has_pclmulqdq && cf.x86.has_avx512 && cf.x86.has_vpclmulqdq) {
ft.crc32 = &crc32_vpclmulqdq;
ft.crc32_fold = &crc32_fold_vpclmulqdq;
ft.crc32_fold_copy = &crc32_fold_vpclmulqdq_copy;
ft.crc32_fold_final = &crc32_fold_vpclmulqdq_final;
ft.crc32_fold_reset = &crc32_fold_vpclmulqdq_reset;
}
#endif
// ARM - SIMD
#ifdef ARM_SIMD
# ifndef ARM_NOCHECK_SIMD
if (cf.arm.has_simd)
# endif
{
ft.slide_hash = &slide_hash_armv6;
}
#endif
// ARM - NEON
#ifdef ARM_NEON
# ifndef ARM_NOCHECK_NEON
if (cf.arm.has_neon)
# endif
{
ft.adler32 = &adler32_neon;
ft.chunkmemset_safe = &chunkmemset_safe_neon;
ft.chunksize = &chunksize_neon;
ft.inflate_fast = &inflate_fast_neon;
ft.slide_hash = &slide_hash_neon;
# ifdef HAVE_BUILTIN_CTZLL
ft.compare256 = &compare256_neon;
ft.longest_match = &longest_match_neon;
ft.longest_match_slow = &longest_match_slow_neon;
# endif
}
#endif
// ARM - ACLE
#ifdef ARM_ACLE
if (cf.arm.has_crc32) {
ft.crc32 = &crc32_acle;
}
#endif
// Power - VMX
#ifdef PPC_VMX
if (cf.power.has_altivec) {
ft.adler32 = &adler32_vmx;
ft.slide_hash = &slide_hash_vmx;
}
#endif
// Power8 - VSX
#ifdef POWER8_VSX
if (cf.power.has_arch_2_07) {
ft.adler32 = &adler32_power8;
ft.chunkmemset_safe = &chunkmemset_safe_power8;
ft.chunksize = &chunksize_power8;
ft.inflate_fast = &inflate_fast_power8;
ft.slide_hash = &slide_hash_power8;
}
#endif
#ifdef POWER8_VSX_CRC32
if (cf.power.has_arch_2_07)
ft.crc32 = &crc32_power8;
#endif
// Power9
#ifdef POWER9
if (cf.power.has_arch_3_00) {
ft.compare256 = &compare256_power9;
ft.longest_match = &longest_match_power9;
ft.longest_match_slow = &longest_match_slow_power9;
}
#endif
// RISCV - RVV
#ifdef RISCV_RVV
if (cf.riscv.has_rvv) {
ft.adler32 = &adler32_rvv;
ft.adler32_fold_copy = &adler32_fold_copy_rvv;
ft.chunkmemset_safe = &chunkmemset_safe_rvv;
ft.chunksize = &chunksize_rvv;
ft.compare256 = &compare256_rvv;
ft.inflate_fast = &inflate_fast_rvv;
ft.longest_match = &longest_match_rvv;
ft.longest_match_slow = &longest_match_slow_rvv;
ft.slide_hash = &slide_hash_rvv;
}
#endif
// S390
#ifdef S390_CRC32_VX
if (cf.s390.has_vx)
ft.crc32 = crc32_s390_vx;
#endif
// Assign function pointers individually for atomic operation
FUNCTABLE_ASSIGN(ft, force_init);
FUNCTABLE_ASSIGN(ft, adler32);
FUNCTABLE_ASSIGN(ft, adler32_fold_copy);
FUNCTABLE_ASSIGN(ft, chunkmemset_safe);
FUNCTABLE_ASSIGN(ft, chunksize);
FUNCTABLE_ASSIGN(ft, compare256);
FUNCTABLE_ASSIGN(ft, crc32);
FUNCTABLE_ASSIGN(ft, crc32_fold);
FUNCTABLE_ASSIGN(ft, crc32_fold_copy);
FUNCTABLE_ASSIGN(ft, crc32_fold_final);
FUNCTABLE_ASSIGN(ft, crc32_fold_reset);
FUNCTABLE_ASSIGN(ft, inflate_fast);
FUNCTABLE_ASSIGN(ft, longest_match);
FUNCTABLE_ASSIGN(ft, longest_match_slow);
FUNCTABLE_ASSIGN(ft, slide_hash);
// Memory barrier for weak memory order CPUs
FUNCTABLE_BARRIER();
}
/* stub functions */
static void force_init_stub(void) {
init_functable();
}
static uint32_t adler32_stub(uint32_t adler, const uint8_t* buf, size_t len) {
init_functable();
return functable.adler32(adler, buf, len);
}
static uint32_t adler32_fold_copy_stub(uint32_t adler, uint8_t* dst, const uint8_t* src, size_t len) {
init_functable();
return functable.adler32_fold_copy(adler, dst, src, len);
}
static uint8_t* chunkmemset_safe_stub(uint8_t* out, unsigned dist, unsigned len, unsigned left) {
init_functable();
return functable.chunkmemset_safe(out, dist, len, left);
}
static uint32_t chunksize_stub(void) {
init_functable();
return functable.chunksize();
}
static uint32_t compare256_stub(const uint8_t* src0, const uint8_t* src1) {
init_functable();
return functable.compare256(src0, src1);
}
static uint32_t crc32_stub(uint32_t crc, const uint8_t* buf, size_t len) {
init_functable();
return functable.crc32(crc, buf, len);
}
static void crc32_fold_stub(crc32_fold* crc, const uint8_t* src, size_t len, uint32_t init_crc) {
init_functable();
functable.crc32_fold(crc, src, len, init_crc);
}
static void crc32_fold_copy_stub(crc32_fold* crc, uint8_t* dst, const uint8_t* src, size_t len) {
init_functable();
functable.crc32_fold_copy(crc, dst, src, len);
}
static uint32_t crc32_fold_final_stub(crc32_fold* crc) {
init_functable();
return functable.crc32_fold_final(crc);
}
static uint32_t crc32_fold_reset_stub(crc32_fold* crc) {
init_functable();
return functable.crc32_fold_reset(crc);
}
static void inflate_fast_stub(PREFIX3(stream) *strm, uint32_t start) {
init_functable();
functable.inflate_fast(strm, start);
}
static uint32_t longest_match_stub(deflate_state* const s, Pos cur_match) {
init_functable();
return functable.longest_match(s, cur_match);
}
static uint32_t longest_match_slow_stub(deflate_state* const s, Pos cur_match) {
init_functable();
return functable.longest_match_slow(s, cur_match);
}
static void slide_hash_stub(deflate_state* s) {
init_functable();
functable.slide_hash(s);
}
/* functable init */
Z_INTERNAL struct functable_s functable = {
force_init_stub,
adler32_stub,
adler32_fold_copy_stub,
chunkmemset_safe_stub,
chunksize_stub,
compare256_stub,
crc32_stub,
crc32_fold_stub,
crc32_fold_copy_stub,
crc32_fold_final_stub,
crc32_fold_reset_stub,
inflate_fast_stub,
longest_match_stub,
longest_match_slow_stub,
slide_hash_stub,
};
#endif