blob: ecebdec733637aa43c77bb4f1e077d45fa4c96a2 [file] [log] [blame]
/* adler32_avx512_vnni.c -- compute the Adler-32 checksum of a data stream
* Based on Brian Bockelman's AVX2 version
* Copyright (C) 1995-2011 Mark Adler
* Authors:
* Adam Stylinski <kungfujesus06@gmail.com>
* Brian Bockelman <bockelman@gmail.com>
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef X86_AVX512VNNI_ADLER32
#include "../../zbuild.h"
#include "../../adler32_p.h"
#include "../../cpu_features.h"
#include "../../fallback_builtins.h"
#include <immintrin.h>
#include "../../adler32_fold.h"
#include "adler32_avx512_p.h"
#include "adler32_avx2_p.h"
Z_INTERNAL uint32_t adler32_avx512_vnni(uint32_t adler, const uint8_t *src, uint64_t len) {
if (src == NULL) return 1L;
if (len == 0) return adler;
uint32_t adler0, adler1;
adler1 = (adler >> 16) & 0xffff;
adler0 = adler & 0xffff;
rem_peel:
if (len < 32)
#if defined(X86_SSSE3_ADLER32)
return adler32_ssse3(adler, src, len);
#else
return adler32_len_16(adler0, src, len, adler1);
#endif
if (len < 64)
#ifdef X86_AVX2_ADLER32
return adler32_avx2(adler, src, len);
#elif defined(X86_SSE3_ADLER32)
return adler32_ssse3(adler, src, len);
#else
return adler32_len_16(adler0, src, len, adler1);
#endif
const __m512i dot2v = _mm512_set_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64);
const __m512i zero = _mm512_setzero_si512();
__m512i vs1, vs2;
while (len >= 64) {
vs1 = _mm512_zextsi128_si512(_mm_cvtsi32_si128(adler0));
vs2 = _mm512_zextsi128_si512(_mm_cvtsi32_si128(adler1));
uint64_t k = MIN(len, NMAX);
k -= k % 64;
len -= k;
__m512i vs1_0 = vs1;
__m512i vs3 = _mm512_setzero_si512();
/* We might get a tad bit more ILP here if we sum to a second register in the loop */
__m512i vs2_1 = _mm512_setzero_si512();
__m512i vbuf0, vbuf1;
/* Remainder peeling */
if (k % 128) {
vbuf1 = _mm512_loadu_si512((__m512i*)src);
src += 64;
k -= 64;
__m512i vs1_sad = _mm512_sad_epu8(vbuf1, zero);
vs1 = _mm512_add_epi32(vs1, vs1_sad);
vs3 = _mm512_add_epi32(vs3, vs1_0);
vs2 = _mm512_dpbusd_epi32(vs2, vbuf1, dot2v);
vs1_0 = vs1;
}
/* Manually unrolled this loop by 2 for an decent amount of ILP */
while (k >= 128) {
/*
vs1 = adler + sum(c[i])
vs2 = sum2 + 64 vs1 + sum( (64-i+1) c[i] )
*/
vbuf0 = _mm512_loadu_si512((__m512i*)src);
vbuf1 = _mm512_loadu_si512((__m512i*)(src + 64));
src += 128;
k -= 128;
__m512i vs1_sad = _mm512_sad_epu8(vbuf0, zero);
vs1 = _mm512_add_epi32(vs1, vs1_sad);
vs3 = _mm512_add_epi32(vs3, vs1_0);
/* multiply-add, resulting in 16 ints. Fuse with sum stage from prior versions, as we now have the dp
* instructions to eliminate them */
vs2 = _mm512_dpbusd_epi32(vs2, vbuf0, dot2v);
vs3 = _mm512_add_epi32(vs3, vs1);
vs1_sad = _mm512_sad_epu8(vbuf1, zero);
vs1 = _mm512_add_epi32(vs1, vs1_sad);
vs2_1 = _mm512_dpbusd_epi32(vs2_1, vbuf1, dot2v);
vs1_0 = vs1;
}
vs3 = _mm512_slli_epi32(vs3, 6);
vs2 = _mm512_add_epi32(vs2, vs3);
vs2 = _mm512_add_epi32(vs2, vs2_1);
adler0 = partial_hsum(vs1) % BASE;
adler1 = _mm512_reduce_add_epu32(vs2) % BASE;
}
adler = adler0 | (adler1 << 16);
/* Process tail (len < 64). */
if (len) {
goto rem_peel;
}
return adler;
}
Z_INTERNAL uint32_t adler32_fold_copy_avx512_vnni(uint32_t adler, uint8_t *dst, const uint8_t *src, uint64_t len) {
if (src == NULL) return 1L;
if (len == 0) return adler;
uint32_t adler0, adler1;
adler1 = (adler >> 16) & 0xffff;
adler0 = adler & 0xffff;
rem_peel_copy:
if (len < 32) {
/* This handles the remaining copies, just call normal adler checksum after this */
__mmask32 storemask = (0xFFFFFFFFUL >> (32 - len));
__m256i copy_vec = _mm256_maskz_loadu_epi8(storemask, src);
_mm256_mask_storeu_epi8(dst, storemask, copy_vec);
#if defined(X86_SSSE3_ADLER32)
return adler32_ssse3(adler, src, len);
#else
return adler32_len_16(adler0, src, len, adler1);
#endif
}
const __m256i dot2v = _mm256_set_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32);
const __m256i zero = _mm256_setzero_si256();
__m256i vs1, vs2;
while (len >= 32) {
vs1 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler0));
vs2 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler1));
uint64_t k = MIN(len, NMAX);
k -= k % 32;
len -= k;
__m256i vs1_0 = vs1;
__m256i vs3 = _mm256_setzero_si256();
/* We might get a tad bit more ILP here if we sum to a second register in the loop */
__m256i vs2_1 = _mm256_setzero_si256();
__m256i vbuf0, vbuf1;
/* Remainder peeling */
if (k % 64) {
vbuf1 = _mm256_loadu_si256((__m256i*)src);
_mm256_storeu_si256((__m256i*)dst, vbuf1);
dst += 32;
src += 32;
k -= 32;
__m256i vs1_sad = _mm256_sad_epu8(vbuf1, zero);
vs1 = _mm256_add_epi32(vs1, vs1_sad);
vs3 = _mm256_add_epi32(vs3, vs1_0);
vs2 = _mm256_dpbusd_epi32(vs2, vbuf1, dot2v);
vs1_0 = vs1;
}
/* Manually unrolled this loop by 2 for an decent amount of ILP */
while (k >= 64) {
/*
vs1 = adler + sum(c[i])
vs2 = sum2 + 64 vs1 + sum( (64-i+1) c[i] )
*/
vbuf0 = _mm256_loadu_si256((__m256i*)src);
vbuf1 = _mm256_loadu_si256((__m256i*)(src + 32));
_mm256_storeu_si256((__m256i*)dst, vbuf0);
_mm256_storeu_si256((__m256i*)(dst + 32), vbuf1);
dst += 64;
src += 64;
k -= 64;
__m256i vs1_sad = _mm256_sad_epu8(vbuf0, zero);
vs1 = _mm256_add_epi32(vs1, vs1_sad);
vs3 = _mm256_add_epi32(vs3, vs1_0);
/* multiply-add, resulting in 16 ints. Fuse with sum stage from prior versions, as we now have the dp
* instructions to eliminate them */
vs2 = _mm256_dpbusd_epi32(vs2, vbuf0, dot2v);
vs3 = _mm256_add_epi32(vs3, vs1);
vs1_sad = _mm256_sad_epu8(vbuf1, zero);
vs1 = _mm256_add_epi32(vs1, vs1_sad);
vs2_1 = _mm256_dpbusd_epi32(vs2_1, vbuf1, dot2v);
vs1_0 = vs1;
}
vs3 = _mm256_slli_epi32(vs3, 5);
vs2 = _mm256_add_epi32(vs2, vs3);
vs2 = _mm256_add_epi32(vs2, vs2_1);
adler0 = partial_hsum256(vs1) % BASE;
adler1 = hsum256(vs2) % BASE;
}
adler = adler0 | (adler1 << 16);
/* Process tail (len < 64). */
if (len) {
goto rem_peel_copy;
}
return adler;
}
#endif