blob: dbfe999a0e9247adb405d69161bc60d3a35e52ce [file] [log] [blame]
// Copyright 2013 sigu-399 ( https://github.com/sigu-399 )
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// author sigu-399
// author-github https://github.com/sigu-399
// author-mail sigu.399@gmail.com
//
// repository-name gojsonschema
// repository-desc An implementation of JSON Schema, based on IETF's draft v4 - Go language.
//
// description Defines schemaDocument, the main entry to every schemas.
// Contains the parsing logic and error checking.
//
// created 26-02-2013
package gojsonschema
import (
"errors"
"fmt"
"reflect"
"regexp"
"github.com/sigu-399/gojsonreference"
)
func NewJsonSchemaDocument(document interface{}) (*JsonSchemaDocument, error) {
internalLog("New schema document :")
var err error
d := JsonSchemaDocument{}
d.pool = newSchemaPool()
d.referencePool = newSchemaReferencePool()
switch document.(type) {
// document is a reference, file or http scheme
case string:
internalLog(fmt.Sprintf(" From http or file (%s)", document.(string)))
d.documentReference, err = gojsonreference.NewJsonReference(document.(string))
spd, err := d.pool.GetDocument(d.documentReference)
if err != nil {
return nil, err
}
err = d.parse(spd.Document)
if err != nil {
return nil, err
}
// document is json
case map[string]interface{}:
internalLog(" From map")
d.documentReference, err = gojsonreference.NewJsonReference("#")
d.pool.SetStandaloneDocument(document)
if err != nil {
return nil, err
}
err = d.parse(document.(map[string]interface{}))
if err != nil {
return nil, err
}
default:
return nil, errors.New("Invalid argument, must be a jsonReference string or Json as map[string]interface{}")
}
return &d, nil
}
type JsonSchemaDocument struct {
documentReference gojsonreference.JsonReference
rootSchema *jsonSchema
pool *schemaPool
referencePool *schemaReferencePool
}
func (d *JsonSchemaDocument) parse(document interface{}) error {
d.rootSchema = &jsonSchema{property: ROOT_SCHEMA_PROPERTY}
return d.parseSchema(document, d.rootSchema)
}
func (d *JsonSchemaDocument) SetRootSchemaName(name string) {
d.rootSchema.property = name
}
// Parses a schema
//
// Pretty long function ( sorry :) )... but pretty straight forward, repetitive and boring
// Not much magic involved here, most of the job is to validate the key names and their values,
// then the values are copied into schema struct
//
func (d *JsonSchemaDocument) parseSchema(documentNode interface{}, currentSchema *jsonSchema) error {
if internalLogEnabled {
documentJson, err := marshalToJsonString(documentNode)
if err == nil && documentJson != nil {
internalLog(fmt.Sprintf("Parsing schema %s", *documentJson))
} else {
internalLog(fmt.Sprintf("Parsing schema %v", documentNode))
}
}
if !isKind(documentNode, reflect.Map) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, STRING_SCHEMA, STRING_OBJECT))
}
m := documentNode.(map[string]interface{})
if currentSchema == d.rootSchema {
currentSchema.ref = &d.documentReference
}
// $schema
if existsMapKey(m, KEY_SCHEMA) {
if !isKind(m[KEY_SCHEMA], reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_SCHEMA, STRING_STRING))
}
schemaRef := m[KEY_SCHEMA].(string)
schemaReference, err := gojsonreference.NewJsonReference(schemaRef)
currentSchema.schema = &schemaReference
if err != nil {
return err
}
}
// $ref
if existsMapKey(m, KEY_REF) && !isKind(m[KEY_REF], reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_REF, STRING_STRING))
}
if k, ok := m[KEY_REF].(string); ok {
if sch, ok := d.referencePool.GetSchema(currentSchema.ref.String() + k); ok {
currentSchema.refSchema = sch
} else {
var err error
err = d.parseReference(documentNode, currentSchema, k)
if err != nil {
return err
}
return nil
}
}
// definitions
if existsMapKey(m, KEY_DEFINITIONS) {
if isKind(m[KEY_DEFINITIONS], reflect.Map) {
currentSchema.definitions = make(map[string]*jsonSchema)
for dk, dv := range m[KEY_DEFINITIONS].(map[string]interface{}) {
if isKind(dv, reflect.Map) {
newSchema := &jsonSchema{property: KEY_DEFINITIONS, parent: currentSchema, ref: currentSchema.ref}
currentSchema.definitions[dk] = newSchema
err := d.parseSchema(m[KEY_DEFINITIONS], newSchema)
if err != nil {
return errors.New(err.Error())
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_DEFINITIONS, STRING_ARRAY_OF_SCHEMAS))
}
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_DEFINITIONS, STRING_ARRAY_OF_SCHEMAS))
}
}
// id
if existsMapKey(m, KEY_ID) && !isKind(m[KEY_ID], reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_ID, STRING_STRING))
}
if k, ok := m[KEY_ID].(string); ok {
currentSchema.id = &k
}
// title
if existsMapKey(m, KEY_TITLE) && !isKind(m[KEY_TITLE], reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_TITLE, STRING_STRING))
}
if k, ok := m[KEY_TITLE].(string); ok {
currentSchema.title = &k
}
// description
if existsMapKey(m, KEY_DESCRIPTION) && !isKind(m[KEY_DESCRIPTION], reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_DESCRIPTION, STRING_STRING))
}
if k, ok := m[KEY_DESCRIPTION].(string); ok {
currentSchema.description = &k
}
// type
if existsMapKey(m, KEY_TYPE) {
if isKind(m[KEY_TYPE], reflect.String) {
if k, ok := m[KEY_TYPE].(string); ok {
err := currentSchema.types.Add(k)
if err != nil {
return err
}
}
} else {
if isKind(m[KEY_TYPE], reflect.Slice) {
arrayOfTypes := m[KEY_TYPE].([]interface{})
for _, typeInArray := range arrayOfTypes {
if reflect.ValueOf(typeInArray).Kind() != reflect.String {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_TYPE, STRING_STRING+"/"+STRING_ARRAY_OF_STRINGS))
} else {
currentSchema.types.Add(typeInArray.(string))
}
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_TYPE, STRING_STRING+"/"+STRING_ARRAY_OF_STRINGS))
}
}
}
// properties
if existsMapKey(m, KEY_PROPERTIES) {
err := d.parseProperties(m[KEY_PROPERTIES], currentSchema)
if err != nil {
return err
}
}
// additionalProperties
if existsMapKey(m, KEY_ADDITIONAL_PROPERTIES) {
if isKind(m[KEY_ADDITIONAL_PROPERTIES], reflect.Bool) {
currentSchema.additionalProperties = m[KEY_ADDITIONAL_PROPERTIES].(bool)
} else if isKind(m[KEY_ADDITIONAL_PROPERTIES], reflect.Map) {
newSchema := &jsonSchema{property: KEY_ADDITIONAL_PROPERTIES, parent: currentSchema, ref: currentSchema.ref}
currentSchema.additionalProperties = newSchema
err := d.parseSchema(m[KEY_ADDITIONAL_PROPERTIES], newSchema)
if err != nil {
return errors.New(err.Error())
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_ADDITIONAL_PROPERTIES, STRING_BOOLEAN+"/"+STRING_SCHEMA))
}
}
// patternProperties
if existsMapKey(m, KEY_PATTERN_PROPERTIES) {
if isKind(m[KEY_PATTERN_PROPERTIES], reflect.Map) {
patternPropertiesMap := m[KEY_PATTERN_PROPERTIES].(map[string]interface{})
if len(patternPropertiesMap) > 0 {
currentSchema.patternProperties = make(map[string]*jsonSchema)
for k, v := range patternPropertiesMap {
_, err := regexp.MatchString(k, "")
if err != nil {
return errors.New(fmt.Sprintf("Invalid regex pattern '%s'", k))
}
newSchema := &jsonSchema{property: k, parent: currentSchema, ref: currentSchema.ref}
err = d.parseSchema(v, newSchema)
if err != nil {
return errors.New(err.Error())
}
currentSchema.patternProperties[k] = newSchema
}
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_PATTERN_PROPERTIES, STRING_SCHEMA))
}
}
// dependencies
if existsMapKey(m, KEY_DEPENDENCIES) {
err := d.parseDependencies(m[KEY_DEPENDENCIES], currentSchema)
if err != nil {
return err
}
}
// items
if existsMapKey(m, KEY_ITEMS) {
if isKind(m[KEY_ITEMS], reflect.Slice) {
for _, itemElement := range m[KEY_ITEMS].([]interface{}) {
if isKind(itemElement, reflect.Map) {
newSchema := &jsonSchema{parent: currentSchema, property: KEY_ITEMS}
newSchema.ref = currentSchema.ref
currentSchema.AddItemsChild(newSchema)
err := d.parseSchema(itemElement, newSchema)
if err != nil {
return err
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_ITEMS, STRING_SCHEMA+"/"+STRING_ARRAY_OF_SCHEMAS))
}
currentSchema.itemsChildrenIsSingleSchema = false
}
} else if isKind(m[KEY_ITEMS], reflect.Map) {
newSchema := &jsonSchema{parent: currentSchema, property: KEY_ITEMS}
newSchema.ref = currentSchema.ref
currentSchema.AddItemsChild(newSchema)
err := d.parseSchema(m[KEY_ITEMS], newSchema)
if err != nil {
return err
}
currentSchema.itemsChildrenIsSingleSchema = true
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_ITEMS, STRING_SCHEMA+"/"+STRING_ARRAY_OF_SCHEMAS))
}
}
// additionalItems
if existsMapKey(m, KEY_ADDITIONAL_ITEMS) {
if isKind(m[KEY_ADDITIONAL_ITEMS], reflect.Bool) {
currentSchema.additionalItems = m[KEY_ADDITIONAL_ITEMS].(bool)
} else if isKind(m[KEY_ADDITIONAL_ITEMS], reflect.Map) {
newSchema := &jsonSchema{property: KEY_ADDITIONAL_ITEMS, parent: currentSchema, ref: currentSchema.ref}
currentSchema.additionalItems = newSchema
err := d.parseSchema(m[KEY_ADDITIONAL_ITEMS], newSchema)
if err != nil {
return errors.New(err.Error())
}
} else {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_ADDITIONAL_ITEMS, STRING_BOOLEAN+"/"+STRING_SCHEMA))
}
}
// validation : number / integer
if existsMapKey(m, KEY_MULTIPLE_OF) {
if isKind(m[KEY_MULTIPLE_OF], reflect.Float64) {
multipleOfValue := m[KEY_MULTIPLE_OF].(float64)
if multipleOfValue <= 0 {
return errors.New("multipleOf must be strictly greater than 0")
}
currentSchema.multipleOf = &multipleOfValue
} else {
return errors.New("multipleOf must be a number")
}
}
if existsMapKey(m, KEY_MINIMUM) {
if isKind(m[KEY_MINIMUM], reflect.Float64) {
minimumValue := m[KEY_MINIMUM].(float64)
currentSchema.minimum = &minimumValue
} else if isKind(m[KEY_MINIMUM], reflect.Int) {
minimumValue := float64(m[KEY_MINIMUM].(int))
currentSchema.minimum = &minimumValue
} else {
return errors.New("minimum must be a number")
}
}
if existsMapKey(m, KEY_EXCLUSIVE_MINIMUM) {
if isKind(m[KEY_EXCLUSIVE_MINIMUM], reflect.Bool) {
if currentSchema.minimum == nil {
return errors.New("exclusiveMinimum cannot exist without minimum")
}
exclusiveMinimumValue := m[KEY_EXCLUSIVE_MINIMUM].(bool)
currentSchema.exclusiveMinimum = exclusiveMinimumValue
} else {
return errors.New("exclusiveMinimum must be a boolean")
}
}
if existsMapKey(m, KEY_MAXIMUM) {
if isKind(m[KEY_MAXIMUM], reflect.Float64) {
maximumValue := m[KEY_MAXIMUM].(float64)
currentSchema.maximum = &maximumValue
} else if isKind(m[KEY_MAXIMUM], reflect.Int) {
maximumValue := float64(m[KEY_MAXIMUM].(int))
currentSchema.maximum = &maximumValue
} else {
return errors.New("maximum must be a number")
}
}
if existsMapKey(m, KEY_EXCLUSIVE_MAXIMUM) {
if isKind(m[KEY_EXCLUSIVE_MAXIMUM], reflect.Bool) {
if currentSchema.maximum == nil {
return errors.New("exclusiveMaximum cannot exist without maximum")
}
exclusiveMaximumValue := m[KEY_EXCLUSIVE_MAXIMUM].(bool)
currentSchema.exclusiveMaximum = exclusiveMaximumValue
} else {
return errors.New("exclusiveMaximum must be a boolean")
}
}
if currentSchema.minimum != nil && currentSchema.maximum != nil {
if *currentSchema.minimum > *currentSchema.maximum {
return errors.New("minimum cannot be greater than maximum")
}
}
// validation : string
if existsMapKey(m, KEY_MIN_LENGTH) {
if isKind(m[KEY_MIN_LENGTH], reflect.Float64) {
minLengthValue := m[KEY_MIN_LENGTH].(float64)
if isFloat64AnInteger(minLengthValue) {
if minLengthValue < 0 {
return errors.New("minLength must be greater than or equal to 0")
}
minLengthIntegerValue := int(minLengthValue)
currentSchema.minLength = &minLengthIntegerValue
} else {
return errors.New("minLength must be an integer")
}
} else {
return errors.New("minLength must be an integer")
}
}
if existsMapKey(m, KEY_MAX_LENGTH) {
if isKind(m[KEY_MAX_LENGTH], reflect.Float64) {
maxLengthValue := m[KEY_MAX_LENGTH].(float64)
if isFloat64AnInteger(maxLengthValue) {
if maxLengthValue < 0 {
return errors.New("maxLength must be greater than or equal to 0")
}
maxLengthIntegerValue := int(maxLengthValue)
currentSchema.maxLength = &maxLengthIntegerValue
} else {
return errors.New("maxLength must be an integer")
}
} else {
return errors.New("maxLength must be an integer")
}
}
if currentSchema.minLength != nil && currentSchema.maxLength != nil {
if *currentSchema.minLength > *currentSchema.maxLength {
return errors.New("minLength cannot be greater than maxLength")
}
}
if existsMapKey(m, KEY_PATTERN) {
if isKind(m[KEY_PATTERN], reflect.String) {
regexpObject, err := regexp.Compile(m[KEY_PATTERN].(string))
if err != nil {
return errors.New("pattern must be a valid regular expression")
}
currentSchema.pattern = regexpObject
} else {
return errors.New("pattern must be a string")
}
}
// validation : object
if existsMapKey(m, KEY_MIN_PROPERTIES) {
if isKind(m[KEY_MIN_PROPERTIES], reflect.Float64) {
minPropertiesValue := m[KEY_MIN_PROPERTIES].(float64)
if isFloat64AnInteger(minPropertiesValue) {
if minPropertiesValue < 0 {
return errors.New("minProperties must be greater than or equal to 0")
}
minPropertiesntegerValue := int(minPropertiesValue)
currentSchema.minProperties = &minPropertiesntegerValue
} else {
return errors.New("minProperties must be an integer")
}
} else {
return errors.New("minProperties must be an integer")
}
}
if existsMapKey(m, KEY_MAX_PROPERTIES) {
if isKind(m[KEY_MAX_PROPERTIES], reflect.Float64) {
maxPropertiesValue := m[KEY_MAX_PROPERTIES].(float64)
if isFloat64AnInteger(maxPropertiesValue) {
if maxPropertiesValue < 0 {
return errors.New("maxProperties must be greater than or equal to 0")
}
maxPropertiesntegerValue := int(maxPropertiesValue)
currentSchema.maxProperties = &maxPropertiesntegerValue
} else {
return errors.New("maxProperties must be an integer")
}
} else {
return errors.New("maxProperties must be an integer")
}
}
if currentSchema.minProperties != nil && currentSchema.maxProperties != nil {
if *currentSchema.minProperties > *currentSchema.maxProperties {
return errors.New("minProperties cannot be greater than maxProperties")
}
}
if existsMapKey(m, KEY_REQUIRED) {
if isKind(m[KEY_REQUIRED], reflect.Slice) {
requiredValues := m[KEY_REQUIRED].([]interface{})
for _, requiredValue := range requiredValues {
if isKind(requiredValue, reflect.String) {
err := currentSchema.AddRequired(requiredValue.(string))
if err != nil {
return err
}
} else {
return errors.New("required items must be string")
}
}
} else {
return errors.New("required must be an array")
}
}
// validation : array
if existsMapKey(m, KEY_MIN_ITEMS) {
if isKind(m[KEY_MIN_ITEMS], reflect.Float64) {
minItemsValue := m[KEY_MIN_ITEMS].(float64)
if isFloat64AnInteger(minItemsValue) {
if minItemsValue < 0 {
return errors.New("minItems must be greater than or equal to 0")
}
minItemsIntegerValue := int(minItemsValue)
currentSchema.minItems = &minItemsIntegerValue
} else {
return errors.New("minItems must be an integer")
}
} else {
return errors.New("minItems must be an integer")
}
}
if existsMapKey(m, KEY_MAX_ITEMS) {
if isKind(m[KEY_MAX_ITEMS], reflect.Float64) {
maxItemsValue := m[KEY_MAX_ITEMS].(float64)
if isFloat64AnInteger(maxItemsValue) {
if maxItemsValue < 0 {
return errors.New("maxItems must be greater than or equal to 0")
}
maxItemsIntegerValue := int(maxItemsValue)
currentSchema.maxItems = &maxItemsIntegerValue
} else {
return errors.New("maxItems must be an integer")
}
} else {
return errors.New("maxItems must be an integer")
}
}
if existsMapKey(m, KEY_UNIQUE_ITEMS) {
if isKind(m[KEY_UNIQUE_ITEMS], reflect.Bool) {
currentSchema.uniqueItems = m[KEY_UNIQUE_ITEMS].(bool)
} else {
return errors.New("uniqueItems must be an boolean")
}
}
// validation : all
if existsMapKey(m, KEY_ENUM) {
if isKind(m[KEY_ENUM], reflect.Slice) {
for _, v := range m[KEY_ENUM].([]interface{}) {
err := currentSchema.AddEnum(v)
if err != nil {
return err
}
}
} else {
return errors.New("enum must be an array")
}
}
// validation : schema
if existsMapKey(m, KEY_ONE_OF) {
if isKind(m[KEY_ONE_OF], reflect.Slice) {
for _, v := range m[KEY_ONE_OF].([]interface{}) {
newSchema := &jsonSchema{property: KEY_ONE_OF, parent: currentSchema, ref: currentSchema.ref}
currentSchema.AddOneOf(newSchema)
err := d.parseSchema(v, newSchema)
if err != nil {
return err
}
}
} else {
return errors.New("oneOf must be an array")
}
}
if existsMapKey(m, KEY_ANY_OF) {
if isKind(m[KEY_ANY_OF], reflect.Slice) {
for _, v := range m[KEY_ANY_OF].([]interface{}) {
newSchema := &jsonSchema{property: KEY_ANY_OF, parent: currentSchema, ref: currentSchema.ref}
currentSchema.AddAnyOf(newSchema)
err := d.parseSchema(v, newSchema)
if err != nil {
return err
}
}
} else {
return errors.New("anyOf must be an array")
}
}
if existsMapKey(m, KEY_ALL_OF) {
if isKind(m[KEY_ALL_OF], reflect.Slice) {
for _, v := range m[KEY_ALL_OF].([]interface{}) {
newSchema := &jsonSchema{property: KEY_ALL_OF, parent: currentSchema, ref: currentSchema.ref}
currentSchema.AddAllOf(newSchema)
err := d.parseSchema(v, newSchema)
if err != nil {
return err
}
}
} else {
return errors.New("anyOf must be an array")
}
}
if existsMapKey(m, KEY_NOT) {
if isKind(m[KEY_NOT], reflect.Map) {
newSchema := &jsonSchema{property: KEY_NOT, parent: currentSchema, ref: currentSchema.ref}
currentSchema.SetNot(newSchema)
err := d.parseSchema(m[KEY_NOT], newSchema)
if err != nil {
return err
}
} else {
return errors.New("not must be an object")
}
}
return nil
}
func (d *JsonSchemaDocument) parseReference(documentNode interface{}, currentSchema *jsonSchema, reference string) (e error) {
var err error
jsonReference, err := gojsonreference.NewJsonReference(reference)
if err != nil {
return err
}
standaloneDocument := d.pool.GetStandaloneDocument()
if jsonReference.HasFullUrl || standaloneDocument != nil {
currentSchema.ref = &jsonReference
} else {
inheritedReference, err := currentSchema.ref.Inherits(jsonReference)
if err != nil {
return err
}
currentSchema.ref = inheritedReference
}
jsonPointer := currentSchema.ref.GetPointer()
var refdDocumentNode interface{}
if standaloneDocument != nil {
var err error
refdDocumentNode, _, err = jsonPointer.Get(standaloneDocument)
if err != nil {
return err
}
} else {
var err error
dsp, err := d.pool.GetDocument(*currentSchema.ref)
if err != nil {
return err
}
refdDocumentNode, _, err = jsonPointer.Get(dsp.Document)
if err != nil {
return err
}
}
if !isKind(refdDocumentNode, reflect.Map) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, STRING_SCHEMA, STRING_OBJECT))
}
// returns the loaded referenced schema for the caller to update its current schema
newSchemaDocument := refdDocumentNode.(map[string]interface{})
newSchema := &jsonSchema{property: KEY_REF, parent: currentSchema, ref: currentSchema.ref}
d.referencePool.AddSchema(currentSchema.ref.String()+reference, newSchema)
err = d.parseSchema(newSchemaDocument, newSchema)
if err != nil {
return err
}
currentSchema.refSchema = newSchema
return nil
}
func (d *JsonSchemaDocument) parseProperties(documentNode interface{}, currentSchema *jsonSchema) error {
if !isKind(documentNode, reflect.Map) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, STRING_PROPERTIES, STRING_OBJECT))
}
m := documentNode.(map[string]interface{})
for k := range m {
schemaProperty := k
newSchema := &jsonSchema{property: schemaProperty, parent: currentSchema, ref: currentSchema.ref}
currentSchema.AddPropertiesChild(newSchema)
err := d.parseSchema(m[k], newSchema)
if err != nil {
return err
}
}
return nil
}
func (d *JsonSchemaDocument) parseDependencies(documentNode interface{}, currentSchema *jsonSchema) error {
if !isKind(documentNode, reflect.Map) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, KEY_DEPENDENCIES, STRING_OBJECT))
}
m := documentNode.(map[string]interface{})
currentSchema.dependencies = make(map[string]interface{})
for k := range m {
switch reflect.ValueOf(m[k]).Kind() {
case reflect.Slice:
values := m[k].([]interface{})
var valuesToRegister []string
for _, value := range values {
if !isKind(value, reflect.String) {
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, STRING_DEPENDENCY, STRING_SCHEMA_OR_ARRAY_OF_STRINGS))
} else {
valuesToRegister = append(valuesToRegister, value.(string))
}
currentSchema.dependencies[k] = valuesToRegister
}
case reflect.Map:
depSchema := &jsonSchema{property: k, parent: currentSchema, ref: currentSchema.ref}
err := d.parseSchema(m[k], depSchema)
if err != nil {
return err
}
currentSchema.dependencies[k] = depSchema
default:
return errors.New(fmt.Sprintf(ERROR_MESSAGE_X_MUST_BE_OF_TYPE_Y, STRING_DEPENDENCY, STRING_SCHEMA_OR_ARRAY_OF_STRINGS))
}
}
return nil
}