blob: f73064f7b7a9daf8dccd16ffa7b8b4d1a6869ec6 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ======================================
"""Library of TPU helper functions."""
import enum
import math
from typing import List, Optional, Text, Tuple
import numpy as np
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.tpu.topology import Topology
from tensorflow.python.util.tf_export import tf_export
SINGLE_CORE_ASSIGNMENT = [[[0, 0, 0, 0]]]
def _compute_task_and_cores_to_replicas(core_assignment, topology):
"""Computes a nested dict which maps task and logical core to replicas."""
task_and_cores_to_replicas = {}
for replica in range(core_assignment.shape[0]):
for logical_core in range(core_assignment.shape[1]):
coordinates = core_assignment[replica, logical_core, :]
task_id = topology.task_ordinal_at_coordinates(coordinates)
if task_id not in task_and_cores_to_replicas:
task_and_cores_to_replicas[task_id] = {}
if logical_core not in task_and_cores_to_replicas[task_id]:
task_and_cores_to_replicas[task_id][logical_core] = set()
task_and_cores_to_replicas[task_id][logical_core].add(replica)
task_to_sorted_replica_id = {}
for task, core_to_replicas in task_and_cores_to_replicas.items():
core_to_sorted_replicas = {}
for core, replicas in core_to_replicas.items():
core_to_sorted_replicas[core] = sorted(replicas)
task_to_sorted_replica_id[task] = core_to_sorted_replicas
return task_to_sorted_replica_id
@tf_export("tpu.experimental.DeviceAssignment")
class DeviceAssignment(object):
"""Mapping from logical cores in a computation to the physical TPU topology.
Prefer to use the `DeviceAssignment.build()` helper to construct a
`DeviceAssignment`; it is easier if less flexible than constructing a
`DeviceAssignment` directly.
"""
def __init__(self, topology: Topology, core_assignment: np.ndarray):
"""Constructs a `DeviceAssignment` object.
Args:
topology: A `Topology` object that describes the physical TPU topology.
core_assignment: A logical to physical core mapping, represented as a
rank 3 numpy array. See the description of the `core_assignment`
property for more details.
Raises:
ValueError: If `topology` is not `Topology` object.
ValueError: If `core_assignment` is not a rank 3 numpy array.
"""
if not isinstance(topology, Topology):
raise ValueError("topology must be a Topology object, got {}".format(
type(topology)))
core_assignment = np.asarray(core_assignment, dtype=np.int32)
self._topology = topology
if core_assignment.ndim != 3:
raise ValueError("core_assignment must be a rank 3 numpy array, "
f"got shape {core_assignment.shape}")
self._num_replicas = core_assignment.shape[0]
self._num_cores_per_replica = core_assignment.shape[1]
if core_assignment.shape[-1] != topology.mesh_rank:
raise ValueError(
"core_assignment.shape[-1] must have size equal to topology "
f"rank ({topology.mesh_rank}), got "
f"core_assignment.shape={core_assignment.shape}")
self._core_assignment = core_assignment
self._task_and_cores_to_replicas = _compute_task_and_cores_to_replicas(
self._core_assignment, topology)
@property
def topology(self) -> Topology:
"""A `Topology` that describes the TPU topology."""
return self._topology
@property
def num_cores_per_replica(self) -> int:
"""The number of cores per replica."""
return self._num_cores_per_replica
@property
def num_replicas(self) -> int:
"""The number of replicas of the computation."""
return self._num_replicas
@property
def core_assignment(self) -> np.ndarray:
"""The logical to physical core mapping.
Returns:
An integer numpy array of rank 3, with shape
`[num_replicas, num_cores_per_replica, topology_rank]`. Maps
(replica, logical core) pairs to physical topology coordinates.
"""
return self._core_assignment
def coordinates(self, replica: int, logical_core: int) -> Tuple: # pylint:disable=g-bare-generic
"""Returns the physical topology coordinates of a logical core."""
return tuple(self.core_assignment[replica, logical_core, :])
def lookup_replicas(self, task_id: int, logical_core: int) -> List[int]:
"""Lookup replica ids by task number and logical core.
Args:
task_id: TensorFlow task number.
logical_core: An integer, identifying a logical core.
Returns:
A sorted list of the replicas that are attached to that task and
logical_core.
Raises:
ValueError: If no replica exists in the task which contains the logical
core.
"""
try:
return self._task_and_cores_to_replicas[task_id][logical_core]
except KeyError:
raise ValueError(
"Can not find any replica in task: {} contains logical_core: {} ".
format(task_id, logical_core))
def tpu_ordinal(self, replica: int = 0, logical_core: int = 0) -> int:
"""Returns the ordinal of the TPU device assigned to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.tpu_device_ordinal_at_coordinates(coordinates)
def host_device(self,
replica: int = 0,
logical_core: int = 0,
job: Optional[Text] = None) -> Text:
"""Returns the CPU device attached to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.cpu_device_name_at_coordinates(coordinates, job=job)
def tpu_device(self,
replica: int = 0,
logical_core: int = 0,
job: Optional[Text] = None) -> Text:
"""Returns the name of the TPU device assigned to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.tpu_device_name_at_coordinates(coordinates, job=job)
@staticmethod
def build(topology: Topology,
computation_shape: Optional[np.ndarray] = None,
computation_stride: Optional[np.ndarray] = None,
num_replicas: int = 1) -> "DeviceAssignment":
return device_assignment(topology, computation_shape, computation_stride,
num_replicas)
def _open_ring_2d(x_size: int, y_size: int,
z_coord: int) -> List[Tuple[int, int, int]]:
"""Ring-order of a X by Y mesh, with a fixed Z coordinate.
For example, in a 4x4 mesh, this returns the following order.
0 -- 1 -- 2 -- 3
| | | |
15-- 6 -- 5 -- 4
| | | |
14-- 7 -- 8 -- 9
| | | |
13-- 12-- 11-- 10
Note that chip 0 is not included in the output.
Args:
x_size: An integer represents the mesh size in the x-dimension. Must be
larger than 1.
y_size: An integer represents the mesh size in the y-dimension. Must be
larger than 1.
z_coord: An integer represents the z-coordinate to use for the chips in the
ring.
Returns:
A list of (x,y,z) triples in ring order.
"""
ret = []
for i in range(y_size // 2):
for j in range(1, x_size):
ret.append((j, 2 * i, z_coord))
for j in range(x_size - 1, 0, -1):
ret.append((j, 2 * i + 1, z_coord))
for i in range(y_size - 1, 0, -1):
ret.append((0, i, z_coord))
return ret
def _ring_3d(x_size: int, y_size: int,
z_size: int) -> List[Tuple[int, int, int]]:
"""Ring-order of a X by Y by Z mesh.
Constructs the 3d ring from 2d rings that are stacked in the Z dimension and
joined in one corner.
z == 0:
0 -- 1 -- 2 -- 3
| | | |
15 - 6 -- 5 -- 4
| | | |
14 - 7 -- 8 -- 9
| | | |
13 - 12 - 11 - 10
z == 1:
63 - 30 - 29 - 28
| | | |
16 - 25 - 26 - 27
| | | |
17 - 24 - 23 - 22
| | | |
18 - 19 - 20 - 21
z == 2:
62 - 31 - 32 - 33
| | | |
45 - 36 - 35 - 34
| | | |
44 - 37 - 38 - 39
| | | |
43 - 42 - 41 - 40
z == 3:
61 - 60 - 59 - 58
| | | |
46 - 55 - 56 - 57
| | | |
47 - 54 - 53 - 52
| | | |
48 - 49 - 50 - 51
Args:
x_size: An integer represents the mesh size in the x-dimension. Must be
larger than 1.
y_size: An integer represents the mesh size in the y-dimension. Must be
larger than 1.
z_size: An integer represents the mesh size in the z-dimension. Must be
larger than 1. For example, in a 4x4x4 mesh, this returns the following
order.
Returns:
A list of (x,y,z) triples in ring order.
"""
# Handle the case where 2 dimensions are size 1.
if x_size == 1 and y_size == 1:
return [(0, 0, i) for i in range(z_size)]
if x_size == 1 and z_size == 1:
return [(0, i, 0) for i in range(y_size)]
if y_size == 1 and z_size == 1:
return [(i, 0, 0) for i in range(x_size)]
# Handle odd mesh dimensions. This never happens in practice, so we don't
# bother to try building something optimal.
if (x_size > 1 and x_size % 2 != 0) or (y_size > 1 and
y_size % 2 != 0) or (z_size > 1 and
z_size % 2 != 0):
logging.warning("Odd dimension")
ret = []
for z in range(z_size):
for y in range(y_size):
ret.extend((x, y, z) for x in range(x_size))
return ret
# Always start with chip 0.
ret = [(0, 0, 0)]
# Handle the case where one dimension is size 1. We just build a flat, 2d
# ring.
if z_size == 1:
ret.extend(_open_ring_2d(x_size, y_size, 0))
return ret
if y_size == 1:
ret = [(0, 0, 0)]
ret.extend((x, y, z) for (x, z, y) in _open_ring_2d(x_size, z_size, 0))
return ret
if x_size == 1:
ret = [(0, 0, 0)]
ret.extend((x, y, z) for (y, z, x) in _open_ring_2d(y_size, z_size, 0))
return ret
# Handle the case where all dimensions have size > 1 and even.
ret = [(0, 0, 0)]
for i in range(0, z_size):
r = _open_ring_2d(x_size, y_size, i)
if i % 2 == 0:
ret.extend(r)
else:
ret.extend(reversed(r))
for i in range(z_size - 1, 0, -1):
ret.append((0, 0, i))
return ret
class DeviceOrderMode(enum.IntEnum):
"""The way of determining device orders when computing device assignment."""
# By default the mode is set to AUTO, the library will choose to form rings
# when that is possible.
AUTO = 0
# Form rings for replicas and model-parallel cores.
RING = 1
# Form meshes for replicas and/or model-parallel cores.
MESH = 2
def device_assignment(
topology: Topology,
computation_shape: Optional[np.ndarray] = None,
computation_stride: Optional[np.ndarray] = None,
num_replicas: int = 1,
device_order_mode: DeviceOrderMode = DeviceOrderMode.AUTO
) -> DeviceAssignment:
"""Computes a device_assignment of a computation across a TPU topology.
Attempts to choose a compact grid of cores for locality.
Returns a `DeviceAssignment` that describes the cores in the topology assigned
to each core of each replica.
`computation_shape` and `computation_stride` values should be powers of 2 for
optimal packing.
Args:
topology: A `Topology` object that describes the TPU cluster topology. To
obtain a TPU topology, evaluate the `Tensor` returned by
`initialize_system` using `Session.run`. Either a serialized
`TopologyProto` or a `Topology` object may be passed. Note: you must
evaluate the `Tensor` first; you cannot pass an unevaluated `Tensor`
here.
computation_shape: A rank 1 int32 numpy array with size equal to the
topology rank, describing the shape of the computation's block of cores.
If None, the `computation_shape` is `[1] * topology_rank`.
computation_stride: A rank 1 int32 numpy array of size `topology_rank`,
describing the inter-core spacing of the `computation_shape` cores in the
TPU topology. If None, the `computation_stride` is `[1] * topology_rank`.
num_replicas: The number of computation replicas to run. The replicas will
be packed into the free spaces of the topology.
device_order_mode: An enum of `DeviceOrderMode` class which indicates
whether to assign devices to form rings or meshes, or let the library to
choose.
Returns:
A DeviceAssignment object, which describes the mapping between the logical
cores in each computation replica and the physical cores in the TPU
topology.
Raises:
ValueError: If `topology` is not a valid `Topology` object.
ValueError: If `computation_shape` or `computation_stride` are not 1D int32
numpy arrays with shape [3] where all values are positive.
ValueError: If computation's replicas cannot fit into the TPU topology.
"""
# Deserialize the Topology proto, if it is a string.
if isinstance(topology, bytes):
topology = Topology(serialized=topology)
if not isinstance(topology, Topology):
raise ValueError(
f"`topology` is not a Topology object; got {type(topology)}")
topology_rank = len(topology.mesh_shape)
mesh_shape = topology.mesh_shape
if computation_shape is None:
computation_shape = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_shape = np.asarray(computation_shape, dtype=np.int32)
if computation_stride is None:
computation_stride = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_stride = np.asarray(computation_stride, dtype=np.int32)
if computation_shape.shape != (topology_rank,):
raise ValueError(
f"computation_shape must have shape [{topology_rank}]; "
f"got {computation_shape.shape}"
)
if computation_stride.shape != (topology_rank,):
raise ValueError(
f"computation_stride must have shape [{topology_rank}]; "
f"got {computation_stride.shape}"
)
if any(computation_shape < 1):
raise ValueError(
"computation_shape must be positive; got computation_shape={}".format(
computation_shape))
if any(computation_stride < 1):
raise ValueError(
"computation_stride must be positive; got computation_stride={}".format(
computation_stride))
# Computes the physical size of one computation instance.
computation_footprint = computation_shape * computation_stride
if any(computation_footprint > mesh_shape):
raise ValueError(
"computation footprint {} does not fit in TPU topology shape {}".format(
computation_footprint, mesh_shape))
# Computes how many copies of the computation footprint fit in the mesh.
block_counts = mesh_shape // computation_footprint
replica_counts = block_counts * computation_stride
max_replicas = np.prod(replica_counts)
if num_replicas > max_replicas:
raise ValueError(
"requested {} replicas but only {} replicas with shape {} and "
"computation_stride {} fit in a TPU mesh of shape {}".format(
num_replicas, max_replicas, computation_shape, computation_stride,
mesh_shape))
def ceil_of_ratio(n, m):
return (n + m - 1) // m
if topology.missing_devices.size == 0:
replica_shape = [0] * topology_rank
if num_replicas > 0:
remaining_replicas = num_replicas
remaining_dims = topology_rank
# Choose dimensions as close to an equal cube as possible,
# in order of increasing dimension size. By visiting dimensions
# in increasing size, we assign the most constrained dimension
# first, so we won't make infeasible choices.
#
# As a secondary sort order, visit the last dimension (core index) first,
# then the other dimensions in increasing order. This means we try to use
# both cores on the same chip in preference to two cores on different
# chips. We visit the x dimension first, and the z dimension last, so
# that we prefer to arrange adjacent replicas on the same machine when
# possible.
#
# For example, if num_replicas == 4, we prefer to use a replica_shape of
# (2,1,1,2) over (1,1,2,2).
for x, ni in sorted(((x, ((i + 1) % topology_rank))
for (i, x) in enumerate(replica_counts))):
i = (ni + topology_rank - 1) % topology_rank
target_size = int(math.ceil(remaining_replicas**(1.0 / remaining_dims)))
replica_shape[i] = min(target_size, x)
remaining_replicas = ceil_of_ratio(remaining_replicas, replica_shape[i])
remaining_dims -= 1
assert remaining_replicas == 1 and remaining_dims == 0
# Assigns an offset to each replica such that no two replicas overlap.
replica_offsets = np.full([num_replicas, topology_rank], -1, dtype=np.int32)
enable_3d_tiling = (
topology_rank == 4 and
computation_shape[-1] == mesh_shape[-1] # Only handle 3D case.
and np.prod(computation_stride) == 1 # Ensure no stride.
and num_replicas == max_replicas) # Full replication.
if device_order_mode != DeviceOrderMode.AUTO:
if device_order_mode == DeviceOrderMode.RING and not enable_3d_tiling:
raise ValueError(
"device_order_mode=DeviceOrderMode.RING is not compatible with the "
"3D tiling current topology. Try setting "
"device_order_mode=DeviceOrderMode.AUTO"
)
enable_3d_tiling = device_order_mode == DeviceOrderMode.RING
if enable_3d_tiling:
assignment = []
inner_ring = _ring_3d(computation_shape[0], computation_shape[1],
computation_shape[2])
outer_ring = _ring_3d(replica_shape[0], replica_shape[1],
replica_shape[2])
for replica in range(num_replicas):
outer_x, outer_y, outer_z = outer_ring[replica]
per_replica_assignment = []
for index in range(np.prod(computation_shape)):
inner_x, inner_y, inner_z = inner_ring[index // mesh_shape[-1]]
px = outer_x * computation_shape[0] + inner_x
py = outer_y * computation_shape[1] + inner_y
pz = outer_z * computation_shape[2] + inner_z
pi = index % mesh_shape[-1]
per_replica_assignment.append([px, py, pz, pi])
assignment.append(per_replica_assignment)
else:
for replica in range(num_replicas):
# Chooses a replica number in each axis.
t = replica
pos = []
# Visit the core number first.
for dim in np.concatenate([[replica_shape[-1]], replica_shape[:-1]]):
pos.append(t % dim)
t //= dim
replica_pos = np.concatenate([pos[1:], [pos[0]]])
# Determines where that replica starts in each axis.
outer = replica_pos // computation_stride
inner = replica_pos % computation_stride
replica_offsets[replica, :] = outer * computation_footprint + inner
# Computes a logical core -> physical core mapping for each replica.
indices = [
np.arange(0, computation_shape[i] * computation_stride[i],
computation_stride[i]) for i in range(topology_rank)
]
indices = np.concatenate(
[i[..., np.newaxis] for i in np.meshgrid(*indices, indexing="ij")],
axis=-1)
indices = indices.reshape((-1, topology_rank))
assignment = indices + replica_offsets[:, np.newaxis, :]
else:
# We have a slice with missing chips. We define a simple assignment by
# ignoring computation stride. This assignment should enable a consistent
# and correct device assignment on degraded slices. It is optimal when
# weights are not sharded. But this device assignment may be sub-optimal for
# other model parallelism scenarios.
assert np.prod(computation_stride) == 1
# Next, we check if we have sufficient devices.
assert num_replicas * np.prod(
computation_shape) <= topology.num_tasks * topology.num_tpus_per_task
# Map replicas to physical devices in task order.
device_coordinates = topology.device_coordinates
assignment = []
devices_per_replica = np.prod(computation_shape)
for rindex in range(num_replicas):
replica_assignment = []
for index in range(devices_per_replica):
logical_id = rindex * devices_per_replica + index
# Pick logical cores in task order
task = logical_id // topology.num_tpus_per_task
device = logical_id % topology.num_tpus_per_task
# Append physical cores to the replica assignment
replica_assignment.append(device_coordinates[task, device, :])
assignment.append(replica_assignment)
return DeviceAssignment(topology, core_assignment=assignment)