blob: 15b60b3ed179eda3b2addc79f46761598eaa61a2 [file] [log] [blame]
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RefVariable class."""
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import variable_pb2
from tensorflow.python.eager import context
from tensorflow.python.framework import indexed_slices
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_conversion_registry
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gen_state_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variable_v1
from tensorflow.python.ops import variables
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.trackable import base as trackable
from tensorflow.python.types import core
from tensorflow.python.util import compat
from tensorflow.python.util.deprecation import deprecated
def default_variable_creator(next_creator=None, **kwargs):
"""Default variable creator."""
assert next_creator is None
initial_value = kwargs.get("initial_value", None)
trainable = kwargs.get("trainable", None)
collections = kwargs.get("collections", None)
validate_shape = kwargs.get("validate_shape", True)
caching_device = kwargs.get("caching_device", None)
name = kwargs.get("name", None)
variable_def = kwargs.get("variable_def", None)
dtype = kwargs.get("dtype", None)
expected_shape = kwargs.get("expected_shape", None)
import_scope = kwargs.get("import_scope", None)
constraint = kwargs.get("constraint", None)
use_resource = kwargs.get("use_resource", None)
synchronization = kwargs.get("synchronization", None)
aggregation = kwargs.get("aggregation", None)
shape = kwargs.get("shape", None)
if use_resource is None:
use_resource = variable_scope.get_variable_scope().use_resource
if use_resource is None:
use_resource = variable_scope._DEFAULT_USE_RESOURCE # pylint: disable=protected-access
use_resource = use_resource or context.executing_eagerly()
if use_resource:
distribute_strategy = kwargs.get("distribute_strategy", None)
return resource_variable_ops.ResourceVariable(
initial_value=initial_value,
trainable=trainable,
collections=collections,
validate_shape=validate_shape,
caching_device=caching_device,
name=name,
dtype=dtype,
constraint=constraint,
variable_def=variable_def,
import_scope=import_scope,
distribute_strategy=distribute_strategy,
synchronization=synchronization,
aggregation=aggregation,
shape=shape)
else:
return RefVariable(
initial_value=initial_value,
trainable=trainable,
collections=collections,
validate_shape=validate_shape,
caching_device=caching_device,
name=name,
dtype=dtype,
constraint=constraint,
variable_def=variable_def,
expected_shape=expected_shape,
import_scope=import_scope,
synchronization=synchronization,
aggregation=aggregation,
shape=shape)
variable_v1.default_variable_creator = default_variable_creator
def _to_proto_fn(v, export_scope=None):
"""Converts Variable and ResourceVariable to VariableDef for collections."""
return v.to_proto(export_scope=export_scope)
def _from_proto_fn(v, import_scope=None):
"""Creates Variable or ResourceVariable from VariableDef as needed."""
if v.is_resource:
return resource_variable_ops.ResourceVariable.from_proto(
v, import_scope=import_scope)
return variable_v1.VariableV1.from_proto(v, import_scope=import_scope)
ops.register_proto_function(
ops.GraphKeys.GLOBAL_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.TRAINABLE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.MOVING_AVERAGE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.LOCAL_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.MODEL_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.GLOBAL_STEP,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.METRIC_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
# TODO(apassos): do not repeat all comments here
class RefVariable(variable_v1.VariableV1, core.Tensor):
"""Ref-based implementation of variables."""
def __init__(
self, # pylint: disable=super-init-not-called
initial_value=None,
trainable=None,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
variable_def=None,
dtype=None,
expected_shape=None,
import_scope=None,
constraint=None,
synchronization=None,
aggregation=None,
shape=None):
"""Creates a new variable with value `initial_value`.
The new variable is added to the graph collections listed in `collections`,
which defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
If `trainable` is `True` the variable is also added to the graph collection
`GraphKeys.TRAINABLE_VARIABLES`.
This constructor creates both a `variable` Op and an `assign` Op to set the
variable to its initial value.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, `dtype` must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)
trainable: If `True`, also adds the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES`. This collection is used as the default
list of variables to use by the `Optimizer` classes. Defaults to `True`,
unless `synchronization` is set to `ON_READ`, in which case it defaults
to `False`.
collections: List of graph collections keys. The new variable is added to
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
validate_shape: If `False`, allows the variable to be initialized with a
value of unknown shape. If `True`, the default, the shape of
`initial_value` must be known.
caching_device: Optional device string describing where the Variable
should be cached for reading. Defaults to the Variable's device. If not
`None`, caches on another device. Typical use is to cache on the device
where the Ops using the Variable reside, to deduplicate copying through
`Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
variable_def: `VariableDef` protocol buffer. If not `None`, recreates the
Variable object with its contents, referencing the variable's nodes in
the graph, which must already exist. The graph is not changed.
`variable_def` and the other arguments are mutually exclusive.
dtype: If set, initial_value will be converted to the given type. If
`None`, either the datatype will be kept (if `initial_value` is a
Tensor), or `convert_to_tensor` will decide.
expected_shape: A TensorShape. If set, initial_value is expected to have
this shape.
import_scope: Optional `string`. Name scope to add to the `Variable.` Only
used when initializing from protocol buffer.
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value (which must have
the same shape). Constraints are not safe to use when doing asynchronous
distributed training.
synchronization: Indicates when a distributed a variable will be
aggregated. Accepted values are constants defined in the class
`tf.VariableSynchronization`. By default the synchronization is set to
`AUTO` and the current `DistributionStrategy` chooses when to
synchronize.
aggregation: Indicates how a distributed variable will be aggregated.
Accepted values are constants defined in the class
`tf.VariableAggregation`.
shape: (optional) The shape of this variable. If None, the shape of
`initial_value` will be used. When setting this argument to
`tf.TensorShape(None)` (representing an unspecified shape), the variable
can be assigned with values of different shapes.
Raises:
ValueError: If both `variable_def` and initial_value are specified.
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
RuntimeError: If eager execution is enabled.
"""
self._in_graph_mode = True
if variable_def:
# If variable_def is provided, recreates the variable from its fields.
if initial_value:
raise ValueError("variable_def and initial_value are mutually "
"exclusive.")
self._init_from_proto(variable_def, import_scope=import_scope)
else:
# Create from initial_value.
self._init_from_args(
initial_value=initial_value,
trainable=trainable,
collections=collections,
validate_shape=validate_shape,
caching_device=caching_device,
name=name,
dtype=dtype,
expected_shape=expected_shape,
constraint=constraint,
synchronization=synchronization,
aggregation=aggregation,
shape=shape)
def __repr__(self):
if context.executing_eagerly() and not self._in_graph_mode:
return "<tf.Variable '%s' shape=%s dtype=%s, numpy=%s>" % (
self.name, self.get_shape(), self.dtype.name,
ops.numpy_text(self.read_value(), is_repr=True))
else:
return "<tf.Variable '%s' shape=%s dtype=%s>" % (
self.name, self.get_shape(), self.dtype.name)
def _init_from_args(self,
initial_value=None,
trainable=None,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
dtype=None,
expected_shape=None,
constraint=None,
synchronization=None,
aggregation=None,
shape=None):
"""Creates a new variable from arguments.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound to
a shape before being used here.)
trainable: If `True`, also adds the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES`. This collection is used as the default
list of variables to use by the `Optimizer` classes. Defaults to `True`,
unless `synchronization` is set to `ON_READ`, in which case it defaults
to `False`.
collections: List of graph collections keys. The new variable is added to
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
validate_shape: If `False`, allows the variable to be initialized with a
value of unknown shape. If `True`, the default, the shape of
`initial_value` must be known.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type. If None,
either the datatype will be kept (if initial_value is a Tensor) or
float32 will be used (if it is a Python object convertible to a Tensor).
expected_shape: Deprecated. Ignored.
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value (which must have
the same shape). Constraints are not safe to use when doing asynchronous
distributed training.
synchronization: Indicates when a distributed a variable will be
aggregated. Accepted values are constants defined in the class
`tf.VariableSynchronization`. By default the synchronization is set to
`AUTO` and the current `DistributionStrategy` chooses when to
synchronize.
aggregation: Indicates how a distributed variable will be aggregated.
Accepted values are constants defined in the class
`tf.VariableAggregation`.
shape: (optional) The shape of this variable. If None, the shape of
`initial_value` will be used. When setting this argument to
`tf.TensorShape(None)` (representing an unspecified shape), the variable
can be assigned with values of different shapes.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
RuntimeError: If lifted into the eager context.
"""
_ = expected_shape
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
if not isinstance(collections, (list, tuple, set)):
raise ValueError(
"collections argument to Variable constructor must be a list, tuple, "
"or set. Got %s of type %s" % (collections, type(collections)))
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
# Store the graph key so optimizers know how to only retrieve variables from
# this graph.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
if isinstance(initial_value, trackable.CheckpointInitialValue):
self._maybe_initialize_trackable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
synchronization, aggregation, trainable = (
variables.validate_synchronization_aggregation_trainable(
synchronization, aggregation, trainable, name))
self._synchronization = synchronization
self._aggregation = aggregation
self._trainable = trainable
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections:
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES]
with ops.init_scope():
# Ensure that we weren't lifted into the eager context.
if context.executing_eagerly():
raise RuntimeError(
"Reference variables are not supported when eager execution is "
"enabled. Please run `tf.compat.v1.enable_resource_variables()` to "
"switch to resource variables.")
with ops.name_scope(name, "Variable",
[] if init_from_fn else [initial_value]) as name:
if init_from_fn:
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
true_name = ops.name_from_scope_name(name) # pylint: disable=protected-access
attr = attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(
s=[compat.as_bytes("loc:@%s" % true_name)]))
# pylint: disable=protected-access
with ops.get_default_graph()._attr_scope({"_class": attr}):
with ops.name_scope("Initializer"), ops.device(None):
initial_value = initial_value()
if isinstance(initial_value, trackable.CheckpointInitialValue):
self._maybe_initialize_trackable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
self._initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype)
if shape is None:
shape = (
self._initial_value.get_shape()
if validate_shape else tensor_shape.unknown_shape())
self._variable = state_ops.variable_op_v2(
shape, self._initial_value.dtype.base_dtype, name=name)
# pylint: enable=protected-access
# Or get the initial value from a Tensor or Python object.
else:
self._initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype)
# pylint: disable=protected-access
if self._initial_value.op._get_control_flow_context() is not None:
raise ValueError(
"Initializer for variable %s is from inside a control-flow "
"construct, such as a loop or conditional. When creating a "
"variable inside a loop or conditional, use a lambda as the "
"initializer." % name)
if shape is None:
# pylint: enable=protected-access
shape = (
self._initial_value.get_shape()
if validate_shape else tensor_shape.unknown_shape())
# In this case, the variable op can't be created until after the
# initial_value has been converted to a Tensor with a known type.
self._variable = state_ops.variable_op_v2(
shape, self._initial_value.dtype.base_dtype, name=name)
# Cache the name in `self`, because some APIs call `Variable.name` in a
# tight loop, and this halves the cost.
self._name = self._variable.name
# Manually overrides the variable's shape with the initial value's.
if validate_shape:
initial_value_shape = self._initial_value.get_shape()
if not initial_value_shape.is_fully_defined():
raise ValueError("initial_value must have a shape specified: %s" %
self._initial_value)
# If 'initial_value' makes use of other variables, make sure we don't
# have an issue if these other variables aren't initialized first by
# using their initialized_value() method.
self._initializer_op = state_ops.assign(
self._variable,
variables._try_guard_against_uninitialized_dependencies( # pylint: disable=protected-access
name, self._initial_value),
validate_shape=validate_shape).op
# TODO(vrv): Change this class to not take caching_device, but
# to take the op to colocate the snapshot with, so we can use
# colocation rather than devices.
if caching_device is not None:
with ops.device(caching_device):
self._snapshot = array_ops.identity(self._variable, name="read")
else:
with ops.colocate_with(self._variable.op):
self._snapshot = array_ops.identity(self._variable, name="read")
ops.add_to_collections(collections, self)
self._caching_device = caching_device
self._save_slice_info = None
self._constraint = constraint
def _init_from_proto(self, variable_def, import_scope=None):
"""Recreates the Variable object from a `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer, describing a variable whose
nodes already exists in the graph.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(
variable_def.variable_name, import_scope=import_scope))
self._name = self._variable.name
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(
variable_def.initializer_name, import_scope=import_scope))
# Tests whether initial_value_name exists first for backwards compatibility.
if (hasattr(variable_def, "initial_value_name") and
variable_def.initial_value_name):
self._initial_value = g.as_graph_element(
ops.prepend_name_scope(
variable_def.initial_value_name, import_scope=import_scope))
else:
self._initial_value = None
synchronization, aggregation, trainable = (
variables.validate_synchronization_aggregation_trainable(
variable_def.synchronization, variable_def.aggregation,
variable_def.trainable, variable_def.variable_name))
self._synchronization = synchronization
self._aggregation = aggregation
self._trainable = trainable
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(
variable_def.snapshot_name, import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = variables.Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def,
import_scope=import_scope)
else:
self._save_slice_info = None
self._caching_device = None
self._constraint = None
def _as_graph_element(self):
"""Conversion function for Graph.as_graph_element()."""
return self._variable
def value(self):
"""Returns the last snapshot of this variable.
You usually do not need to call this method as all ops that need the value
of the variable call it automatically through a `convert_to_tensor()` call.
Returns a `Tensor` which holds the value of the variable. You can not
assign a new value to this tensor as it is not a reference to the variable.
To avoid copies, if the consumer of the returned value is on the same device
as the variable, this actually returns the live value of the variable, not
a copy. Updates to the variable are seen by the consumer. If the consumer
is on a different device it will get a copy of the variable.
Returns:
A `Tensor` containing the value of the variable.
"""
return self._snapshot
def read_value(self):
"""Returns the value of this variable, read in the current context.
Can be different from value() if it's on another device, with control
dependencies, etc.
Returns:
A `Tensor` containing the value of the variable.
"""
return array_ops.identity(self._variable, name="read")
def _ref(self):
"""Returns a reference to this variable.
You usually do not need to call this method as all ops that need a reference
to the variable call it automatically.
Returns is a `Tensor` which holds a reference to the variable. You can
assign a new value to the variable by passing the tensor to an assign op.
See `tf.Variable.value` if you want to get the value of the
variable.
Returns:
A `Tensor` that is a reference to the variable.
"""
return self._variable
def set_shape(self, shape):
"""Overrides the shape for this variable.
Args:
shape: the `TensorShape` representing the overridden shape.
"""
self._ref().set_shape(shape)
self.value().set_shape(shape)
@property
def trainable(self):
return self._trainable
@property
def synchronization(self):
return self._synchronization
@property
def aggregation(self):
return self._aggregation
def eval(self, session=None):
"""In a session, computes and returns the value of this variable.
This is not a graph construction method, it does not add ops to the graph.
This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used. See `tf.compat.v1.Session` for more
information on launching a graph and on sessions.
```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:
sess.run(init)
# Usage passing the session explicitly.
print(v.eval(sess))
# Usage with the default session. The 'with' block
# above makes 'sess' the default session.
print(v.eval())
```
Args:
session: The session to use to evaluate this variable. If none, the
default session is used.
Returns:
A numpy `ndarray` with a copy of the value of this variable.
"""
return self._variable.eval(session=session)
@property
def initial_value(self):
"""Returns the Tensor used as the initial value for the variable.
Note that this is different from `initialized_value()` which runs
the op that initializes the variable before returning its value.
This method returns the tensor that is used by the op that initializes
the variable.
Returns:
A `Tensor`.
"""
return self._initial_value
@property
def constraint(self):
"""Returns the constraint function associated with this variable.
Returns:
The constraint function that was passed to the variable constructor.
Can be `None` if no constraint was passed.
"""
return self._constraint
def assign(self, value, use_locking=False, name=None, read_value=True):
"""Assigns a new value to the variable.
This is essentially a shortcut for `assign(self, value)`.
Args:
value: A `Tensor`. The new value for this variable.
use_locking: If `True`, use locking during the assignment.
name: The name of the operation to be created
read_value: if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.
Returns:
A `Tensor` that will hold the new value of this variable after
the assignment has completed.
"""
assign = state_ops.assign(
self._variable, value, use_locking=use_locking, name=name)
if read_value:
return assign
return assign.op
def assign_add(self, delta, use_locking=False, name=None, read_value=True):
"""Adds a value to this variable.
This is essentially a shortcut for `assign_add(self, delta)`.
Args:
delta: A `Tensor`. The value to add to this variable.
use_locking: If `True`, use locking during the operation.
name: The name of the operation to be created
read_value: if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.
Returns:
A `Tensor` that will hold the new value of this variable after
the addition has completed.
"""
assign = state_ops.assign_add(
self._variable, delta, use_locking=use_locking, name=name)
if read_value:
return assign
return assign.op
def assign_sub(self, delta, use_locking=False, name=None, read_value=True):
"""Subtracts a value from this variable.
This is essentially a shortcut for `assign_sub(self, delta)`.
Args:
delta: A `Tensor`. The value to subtract from this variable.
use_locking: If `True`, use locking during the operation.
name: The name of the operation to be created
read_value: if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.
Returns:
A `Tensor` that will hold the new value of this variable after
the subtraction has completed.
"""
assign = state_ops.assign_sub(
self._variable, delta, use_locking=use_locking, name=name)
if read_value:
return assign
return assign.op
def scatter_sub(self, sparse_delta, use_locking=False, name=None):
"""Subtracts `tf.IndexedSlices` from this variable.
Args:
sparse_delta: `tf.IndexedSlices` to be subtracted from this variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered subtraction has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_sub(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_add(self, sparse_delta, use_locking=False, name=None):
"""Adds `tf.IndexedSlices` to this variable.
Args:
sparse_delta: `tf.IndexedSlices` to be added to this variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered addition has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_add(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_max(self, sparse_delta, use_locking=False, name=None):
"""Updates this variable with the max of `tf.IndexedSlices` and itself.
Args:
sparse_delta: `tf.IndexedSlices` to use as an argument of max with this
variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered maximization has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_max(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_min(self, sparse_delta, use_locking=False, name=None):
"""Updates this variable with the min of `tf.IndexedSlices` and itself.
Args:
sparse_delta: `tf.IndexedSlices` to use as an argument of min with this
variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered minimization has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_min(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_mul(self, sparse_delta, use_locking=False, name=None):
"""Multiply this variable by `tf.IndexedSlices`.
Args:
sparse_delta: `tf.IndexedSlices` to multiply this variable by.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered multiplication has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_mul(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_div(self, sparse_delta, use_locking=False, name=None):
"""Divide this variable by `tf.IndexedSlices`.
Args:
sparse_delta: `tf.IndexedSlices` to divide this variable by.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered division has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_div(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_update(self, sparse_delta, use_locking=False, name=None):
"""Assigns `tf.IndexedSlices` to this variable.
Args:
sparse_delta: `tf.IndexedSlices` to be assigned to this variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered assignment has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, indexed_slices.IndexedSlices):
raise TypeError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return gen_state_ops.scatter_update(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def batch_scatter_update(self, sparse_delta, use_locking=False, name=None):
"""Assigns `tf.IndexedSlices` to this variable batch-wise.
Analogous to `batch_gather`. This assumes that this variable and the
sparse_delta IndexedSlices have a series of leading dimensions that are the
same for all of them, and the updates are performed on the last dimension of
indices. In other words, the dimensions should be the following:
`num_prefix_dims = sparse_delta.indices.ndims - 1`
`batch_dim = num_prefix_dims + 1`
`sparse_delta.updates.shape = sparse_delta.indices.shape + var.shape[
batch_dim:]`
where
`sparse_delta.updates.shape[:num_prefix_dims]`
`== sparse_delta.indices.shape[:num_prefix_dims]`
`== var.shape[:num_prefix_dims]`
And the operation performed can be expressed as:
`var[i_1, ..., i_n,
sparse_delta.indices[i_1, ..., i_n, j]] = sparse_delta.updates[
i_1, ..., i_n, j]`
When sparse_delta.indices is a 1D tensor, this operation is equivalent to
`scatter_update`.
To avoid this operation one can looping over the first `ndims` of the
variable and using `scatter_update` on the subtensors that result of slicing
the first dimension. This is a valid option for `ndims = 1`, but less
efficient than this implementation.
Args:
sparse_delta: `tf.IndexedSlices` to be assigned to this variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered assignment has completed.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`.
"""
return state_ops.batch_scatter_update(
self,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking,
name=name)
def scatter_nd_sub(self, indices, updates, name=None):
"""Applies sparse subtraction to individual values or slices in a Variable.
`ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.
`indices` must be integer tensor, containing indices into `ref`.
It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.
The innermost dimension of `indices` (with length `K`) corresponds to
indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
dimension of `ref`.
`updates` is `Tensor` of rank `Q-1+P-K` with shape:
```
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
```
For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:
```python
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = ref.scatter_nd_sub(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(op)
```
The resulting update to ref would look like this:
[1, -9, 3, -6, -6, 6, 7, -4]
See `tf.scatter_nd` for more details about how to make updates to
slices.
Args:
indices: The indices to be used in the operation.
updates: The values to be used in the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered subtraction has completed.
"""
return gen_state_ops.scatter_nd_sub(
self._variable, indices, updates, use_locking=True, name=name)
def scatter_nd_add(self, indices, updates, name=None):
"""Applies sparse addition to individual values or slices in a Variable.
`ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.
`indices` must be integer tensor, containing indices into `ref`.
It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.
The innermost dimension of `indices` (with length `K`) corresponds to
indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
dimension of `ref`.
`updates` is `Tensor` of rank `Q-1+P-K` with shape:
```
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
```
For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:
```python
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
add = ref.scatter_nd_add(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(add)
```
The resulting update to ref would look like this:
[1, 13, 3, 14, 14, 6, 7, 20]
See `tf.scatter_nd` for more details about how to make updates to
slices.
Args:
indices: The indices to be used in the operation.
updates: The values to be used in the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered addition has completed.
"""
return gen_state_ops.scatter_nd_add(
self._variable, indices, updates, use_locking=True, name=name)
def scatter_nd_update(self, indices, updates, name=None):
"""Applies sparse assignment to individual values or slices in a Variable.
`ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.
`indices` must be integer tensor, containing indices into `ref`.
It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.
The innermost dimension of `indices` (with length `K`) corresponds to
indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
dimension of `ref`.
`updates` is `Tensor` of rank `Q-1+P-K` with shape:
```
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
```
For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:
```python
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = ref.scatter_nd_update(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(op)
```
The resulting update to ref would look like this:
[1, 11, 3, 10, 9, 6, 7, 12]
See `tf.scatter_nd` for more details about how to make updates to
slices.
Args:
indices: The indices to be used in the operation.
updates: The values to be used in the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered assignment has completed.
"""
return gen_state_ops.scatter_nd_update(
self._variable, indices, updates, use_locking=True, name=name)
def scatter_nd_max(self, indices, updates, name=None):
"""Updates this variable with the max of `tf.IndexedSlices` and itself.
`ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.
`indices` must be integer tensor, containing indices into `ref`.
It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.
The innermost dimension of `indices` (with length `K`) corresponds to
indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
dimension of `ref`.
`updates` is `Tensor` of rank `Q-1+P-K` with shape:
```
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
```
See `tf.scatter_nd` for more details about how to make updates to
slices.
Args:
indices: The indices to be used in the operation.
updates: The values to be used in the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered addition has completed.
"""
return gen_state_ops.scatter_nd_max(
self._variable, indices, updates, use_locking=True, name=name)
def scatter_nd_min(self, indices, updates, name=None):
"""Updates this variable with the min of `tf.IndexedSlices` and itself.
`ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.
`indices` must be integer tensor, containing indices into `ref`.
It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.
The innermost dimension of `indices` (with length `K`) corresponds to
indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
dimension of `ref`.
`updates` is `Tensor` of rank `Q-1+P-K` with shape:
```
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
```
See `tf.scatter_nd` for more details about how to make updates to
slices.
Args:
indices: The indices to be used in the operation.
updates: The values to be used in the operation.
name: the name of the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered addition has completed.
"""
return gen_state_ops.scatter_nd_min(
self._variable, indices, updates, use_locking=True, name=name)
def _strided_slice_assign(self, begin, end, strides, value, name, begin_mask,
end_mask, ellipsis_mask, new_axis_mask,
shrink_axis_mask):
return gen_array_ops.strided_slice_assign(
ref=self._ref(),
begin=begin,
end=end,
strides=strides,
value=value,
name=name,
begin_mask=begin_mask,
end_mask=end_mask,
ellipsis_mask=ellipsis_mask,
new_axis_mask=new_axis_mask,
shrink_axis_mask=shrink_axis_mask)
@deprecated(None, "Prefer Dataset.range instead.")
def count_up_to(self, limit):
"""Increments this variable until it reaches `limit`.
When that Op is run it tries to increment the variable by `1`. If
incrementing the variable would bring it above `limit` then the Op raises
the exception `OutOfRangeError`.
If no error is raised, the Op outputs the value of the variable before
the increment.
This is essentially a shortcut for `count_up_to(self, limit)`.
Args:
limit: value at which incrementing the variable raises an error.
Returns:
A `Tensor` that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.
"""
return state_ops.count_up_to(self._variable, limit=limit)
# Conversion to tensor.
@staticmethod
def _TensorConversionFunction(v, dtype=None, name=None, as_ref=False): # pylint: disable=invalid-name
"""Utility function for converting a Variable to a Tensor."""
_ = name
if dtype and not dtype.is_compatible_with(v.dtype):
raise ValueError(
"Incompatible type conversion requested to type '%s' for variable "
"of type '%s'" % (dtype.name, v.dtype.name))
if as_ref:
return v._ref() # pylint: disable=protected-access
else:
return v.value()
# NOTE(mrry): This enables the Variable's overloaded "right" binary
# operators to run when the left operand is an ndarray, because it
# accords the Variable class higher priority than an ndarray, or a
# numpy matrix.
# TODO(mrry): Convert this to using numpy's __numpy_ufunc__
# mechanism, which allows more control over how Variables interact
# with ndarrays.
__array_priority__ = 100
@property
def name(self):
"""The name of this variable."""
return self._name
@property
def initializer(self):
"""The initializer operation for this variable."""
return self._initializer_op
@property
def device(self):
"""The device of this variable."""
return self._variable.device
@property
def dtype(self):
"""The `DType` of this variable."""
return self._variable.dtype
@property
def op(self):
"""The `Operation` of this variable."""
return self._variable.op
@property
def graph(self):
"""The `Graph` of this variable."""
return self._variable.graph
@property
def _distribute_strategy(self):
"""The `tf.distribute.Strategy` that this variable was created under."""
return None # Ref variables are never created inside a strategy.
@property
def shape(self):
"""The `TensorShape` of this variable.
Returns:
A `TensorShape`.
"""
return self._variable.get_shape()
def to_proto(self, export_scope=None):
"""Converts a `Variable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or self._variable.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(self._variable.name,
export_scope)
if self._initial_value is not None:
# For backwards compatibility.
var_def.initial_value_name = ops.strip_name_scope(
self._initial_value.name, export_scope)
var_def.trainable = self.trainable
var_def.synchronization = self.synchronization.value
var_def.aggregation = self.aggregation.value
var_def.initializer_name = ops.strip_name_scope(self.initializer.name,
export_scope)
var_def.snapshot_name = ops.strip_name_scope(self._snapshot.name,
export_scope)
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(
self._save_slice_info.to_proto(export_scope=export_scope))
return var_def
else:
return None
def __iadd__(self, other):
logging.log_first_n(
logging.WARN, "Variable += will be deprecated. Use variable.assign_add"
" if you want assignment to the variable value or 'x = x + y'"
" if you want a new python Tensor object.", 1)
return self + other
def __isub__(self, other):
logging.log_first_n(
logging.WARN, "Variable -= will be deprecated. Use variable.assign_sub"
" if you want assignment to the variable value or 'x = x - y'"
" if you want a new python Tensor object.", 1)
return self - other
def __imul__(self, other):
logging.log_first_n(
logging.WARN,
"Variable *= will be deprecated. Use `var.assign(var * other)`"
" if you want assignment to the variable value or `x = x * y`"
" if you want a new python Tensor object.", 1)
return self * other
def __idiv__(self, other):
logging.log_first_n(
logging.WARN,
"Variable /= will be deprecated. Use `var.assign(var / other)`"
" if you want assignment to the variable value or `x = x / y`"
" if you want a new python Tensor object.", 1)
return self / other
def __itruediv__(self, other):
logging.log_first_n(
logging.WARN,
"Variable /= will be deprecated. Use `var.assign(var / other)`"
" if you want assignment to the variable value or `x = x / y`"
" if you want a new python Tensor object.", 1)
return self / other
def __irealdiv__(self, other):
logging.log_first_n(
logging.WARN,
"Variable /= will be deprecated. Use `var.assign(var / other)`"
" if you want assignment to the variable value or `x = x / y`"
" if you want a new python Tensor object.", 1)
return self / other
def __ipow__(self, other):
logging.log_first_n(
logging.WARN,
"Variable **= will be deprecated. Use `var.assign(var ** other)`"
" if you want assignment to the variable value or `x = x ** y`"
" if you want a new python Tensor object.", 1)
return self**other
def _serialize_to_tensors(self):
"""Implements Trackable._serialize_to_tensors."""
return {trackable.VARIABLE_VALUE_KEY: self}
def _restore_from_tensors(self, restored_tensors):
"""Implements Trackable._restore_from_tensors."""
restored_tensor = restored_tensors[trackable.VARIABLE_VALUE_KEY]
return state_ops.assign(
self,
restored_tensor,
validate_shape=self.get_shape().is_fully_defined())
# Register a conversion function which reads the value of the variable,
# allowing instances of the class to be used as tensors.
tensor_conversion_registry.register_tensor_conversion_function(
RefVariable, RefVariable._TensorConversionFunction) # pylint: disable=protected-access
variable_v1.set_variable_from_proto_fn(RefVariable)