blob: 366b2e631ac2e3eb332188fc1ddb76d71a991b5e [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for generating random numbers."""
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_random_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import shape_util
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_random_ops import *
# pylint: enable=wildcard-import
from tensorflow.python.util import deprecation
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
@tf_export("random.normal", v1=["random.normal", "random_normal"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("random_normal")
def random_normal(shape,
mean=0.0,
stddev=1.0,
dtype=dtypes.float32,
seed=None,
name=None):
"""Outputs random values from a normal distribution.
Example that generates a new set of random values every time:
>>> tf.random.set_seed(5);
>>> tf.random.normal([4], 0, 1, tf.float32)
<tf.Tensor: shape=(4,), dtype=float32, numpy=..., dtype=float32)>
Example that outputs a reproducible result:
>>> tf.random.set_seed(5);
>>> tf.random.normal([2,2], 0, 1, tf.float32, seed=1)
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[-1.3768897 , -0.01258316],
[-0.169515 , 1.0824056 ]], dtype=float32)>
In this case, we are setting both the global and operation-level seed to
ensure this result is reproducible. See `tf.random.set_seed` for more
information.
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
mean: A Tensor or Python value of type `dtype`, broadcastable with `stddev`.
The mean of the normal distribution.
stddev: A Tensor or Python value of type `dtype`, broadcastable with `mean`.
The standard deviation of the normal distribution.
dtype: The float type of the output: `float16`, `bfloat16`, `float32`,
`float64`. Defaults to `float32`.
seed: A Python integer. Used to create a random seed for the distribution.
See
`tf.random.set_seed`
for behavior.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random normal values.
"""
with ops.name_scope(name, "random_normal", [shape, mean, stddev]) as name:
shape_tensor = shape_util.shape_tensor(shape)
mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean")
stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev")
seed1, seed2 = random_seed.get_seed(seed)
rnd = gen_random_ops.random_standard_normal(
shape_tensor, dtype, seed=seed1, seed2=seed2)
mul = rnd * stddev_tensor
value = math_ops.add(mul, mean_tensor, name=name)
shape_util.maybe_set_static_shape(value, shape)
return value
ops.NotDifferentiable("RandomStandardNormal")
def parameterized_truncated_normal(shape,
means=0.0,
stddevs=1.0,
minvals=-2.0,
maxvals=2.0,
dtype=dtypes.float32,
seed=None,
name=None):
"""Outputs random values from a truncated normal distribution.
The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
means: A 0-D Tensor or Python value of type `dtype`. The mean of the
truncated normal distribution.
stddevs: A 0-D Tensor or Python value of type `dtype`. The standard
deviation of the truncated normal distribution.
minvals: A 0-D Tensor or Python value of type `dtype`. The minimum value of
the truncated normal distribution.
maxvals: A 0-D Tensor or Python value of type `dtype`. The maximum value of
the truncated normal distribution.
dtype: The type of the output.
seed: A Python integer. Used to create a random seed for the distribution.
See
`tf.random.set_seed`
for behavior.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random truncated normal values.
"""
with ops.name_scope(name, "parameterized_truncated_normal",
[shape, means, stddevs, minvals, maxvals]) as name:
shape_tensor = shape_util.shape_tensor(shape)
means_tensor = ops.convert_to_tensor(means, dtype=dtype, name="means")
stddevs_tensor = ops.convert_to_tensor(stddevs, dtype=dtype, name="stddevs")
minvals_tensor = ops.convert_to_tensor(minvals, dtype=dtype, name="minvals")
maxvals_tensor = ops.convert_to_tensor(maxvals, dtype=dtype, name="maxvals")
seed1, seed2 = random_seed.get_seed(seed)
rnd = gen_random_ops.parameterized_truncated_normal(
shape_tensor,
means_tensor,
stddevs_tensor,
minvals_tensor,
maxvals_tensor,
seed=seed1,
seed2=seed2)
shape_util.maybe_set_static_shape(rnd, shape)
return rnd
@tf_export("random.truncated_normal",
v1=["random.truncated_normal", "truncated_normal"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("truncated_normal")
def truncated_normal(shape,
mean=0.0,
stddev=1.0,
dtype=dtypes.float32,
seed=None,
name=None):
"""Outputs random values from a truncated normal distribution.
The values are drawn from a normal distribution with specified mean and
standard deviation, discarding and re-drawing any samples that are more than
two standard deviations from the mean.
Examples:
>>> tf.random.truncated_normal(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
>>> tf.random.truncated_normal(shape=[2], mean=3, stddev=1, dtype=tf.float32)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
mean: A 0-D Tensor or Python value of type `dtype`. The mean of the
truncated normal distribution.
stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
of the normal distribution, before truncation.
dtype: The type of the output. Restricted to floating-point types:
`tf.half`, `tf.float`, `tf.double`, etc.
seed: A Python integer. Used to create a random seed for the distribution.
See `tf.random.set_seed` for more information.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random truncated normal values.
"""
with ops.name_scope(name, "truncated_normal", [shape, mean, stddev]) as name:
shape_tensor = shape_util.shape_tensor(shape)
mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean")
stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev")
seed1, seed2 = random_seed.get_seed(seed)
rnd = gen_random_ops.truncated_normal(
shape_tensor, dtype, seed=seed1, seed2=seed2)
mul = rnd * stddev_tensor
value = math_ops.add(mul, mean_tensor, name=name)
shape_util.maybe_set_static_shape(value, shape)
return value
ops.NotDifferentiable("ParameterizedTruncatedNormal")
ops.NotDifferentiable("TruncatedNormal")
@tf_export("random.uniform", v1=["random.uniform", "random_uniform"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("random_uniform")
def random_uniform(shape,
minval=0,
maxval=None,
dtype=dtypes.float32,
seed=None,
name=None):
"""Outputs random values from a uniform distribution.
The generated values follow a uniform distribution in the range
`[minval, maxval)`. The lower bound `minval` is included in the range, while
the upper bound `maxval` is excluded.
For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
be specified explicitly.
In the integer case, the random integers are slightly biased unless
`maxval - minval` is an exact power of two. The bias is small for values of
`maxval - minval` significantly smaller than the range of the output (either
`2**32` or `2**64`).
Examples:
>>> tf.random.uniform(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
>>> tf.random.uniform(shape=[], minval=-1., maxval=0.)
<tf.Tensor: shape=(), dtype=float32, numpy=-...>
>>> tf.random.uniform(shape=[], minval=5, maxval=10, dtype=tf.int64)
<tf.Tensor: shape=(), dtype=int64, numpy=...>
The `seed` argument produces a deterministic sequence of tensors across
multiple calls. To repeat that sequence, use `tf.random.set_seed`:
>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
Without `tf.random.set_seed` but with a `seed` argument is specified, small
changes to function graphs or previously executed operations will change the
returned value. See `tf.random.set_seed` for details.
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
minval: A Tensor or Python value of type `dtype`, broadcastable with
`shape` (for integer types, broadcasting is not supported, so it needs to
be a scalar). The lower bound on the range of random values to generate
(inclusive). Defaults to 0.
maxval: A Tensor or Python value of type `dtype`, broadcastable with
`shape` (for integer types, broadcasting is not supported, so it needs to
be a scalar). The upper bound on the range of random values to generate
(exclusive). Defaults to 1 if `dtype` is floating point.
dtype: The type of the output: `float16`, `bfloat16`, `float32`, `float64`,
`int32`, or `int64`. Defaults to `float32`.
seed: A Python integer. Used in combination with `tf.random.set_seed` to
create a reproducible sequence of tensors across multiple calls.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random uniform values.
Raises:
ValueError: If `dtype` is integral and `maxval` is not specified.
"""
dtype = dtypes.as_dtype(dtype)
accepted_dtypes = (dtypes.float16, dtypes.bfloat16, dtypes.float32,
dtypes.float64, dtypes.int32, dtypes.int64)
if dtype not in accepted_dtypes:
raise ValueError(
f"Argument `dtype` got invalid value {dtype}. Accepted dtypes are "
f"{accepted_dtypes}.")
if maxval is None:
if dtype.is_integer:
raise ValueError("Must specify maxval for integer dtype %r" % dtype)
maxval = 1
with ops.name_scope(name, "random_uniform", [shape, minval, maxval]) as name:
shape = shape_util.shape_tensor(shape)
# In case of [0,1) floating results, minval and maxval is unused. We do an
# `is` comparison here since this is cheaper than isinstance or __eq__.
minval_is_zero = isinstance(minval, int) and minval == 0
maxval_is_one = isinstance(maxval, int) and maxval == 1
if not minval_is_zero or not maxval_is_one or dtype.is_integer:
minval = ops.convert_to_tensor(minval, dtype=dtype, name="min")
maxval = ops.convert_to_tensor(maxval, dtype=dtype, name="max")
seed1, seed2 = random_seed.get_seed(seed)
if dtype.is_integer:
result = gen_random_ops.random_uniform_int(
shape, minval, maxval, seed=seed1, seed2=seed2, name=name)
else:
result = gen_random_ops.random_uniform(
shape, dtype, seed=seed1, seed2=seed2)
if minval_is_zero:
if not maxval_is_one:
result = math_ops.multiply(result, maxval)
else:
result = math_ops.add(result * (maxval - minval), minval, name=name)
# TODO(b/132092188): C++ shape inference inside functional ops does not
# cross FuncGraph boundaries since that information is only available in
# python. So we manually get the static shape using
# `constant_value_as_shape` which *does* cross function boundaries.
shape_util.maybe_set_static_shape(result, shape)
return result
ops.NotDifferentiable("RandomUniform")
@tf_export("random.shuffle", v1=["random.shuffle", "random_shuffle"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("random_shuffle")
def random_shuffle(value, seed=None, name=None):
"""Randomly shuffles a tensor along its first dimension.
The tensor is shuffled along dimension 0, such that each `value[j]` is mapped
to one and only one `output[i]`. For example, a mapping that might occur for a
3x2 tensor is:
```python
[[1, 2], [[5, 6],
[3, 4], ==> [1, 2],
[5, 6]] [3, 4]]
```
Args:
value: A Tensor to be shuffled.
seed: A Python integer. Used to create a random seed for the distribution.
See
`tf.random.set_seed`
for behavior.
name: A name for the operation (optional).
Returns:
A tensor of same shape and type as `value`, shuffled along its first
dimension.
"""
seed1, seed2 = random_seed.get_seed(seed)
return gen_random_ops.random_shuffle(
value, seed=seed1, seed2=seed2, name=name)
ops.NotDifferentiable("RandomShuffle")
@tf_export(v1=["random.multinomial", "multinomial"])
@dispatch.add_dispatch_support
@deprecation.deprecated(
date=None, instructions="Use `tf.random.categorical` instead.")
def multinomial(logits, num_samples, seed=None, name=None, output_dtype=None):
"""Draws samples from a multinomial distribution.
Example:
```python
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
```
Args:
logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice
`[i, :]` represents the unnormalized log-probabilities for all classes.
num_samples: 0-D. Number of independent samples to draw for each row slice.
seed: A Python integer. Used to create a random seed for the distribution.
See `tf.random.set_seed` for behavior.
name: Optional name for the operation.
output_dtype: The integer type of the output: `int32` or `int64`. Defaults
to `int64`.
Returns:
The drawn samples of shape `[batch_size, num_samples]`.
"""
with ops.name_scope(name, "multinomial", [logits]):
return multinomial_categorical_impl(logits, num_samples, output_dtype, seed)
@tf_export("random.categorical")
@dispatch.add_dispatch_support
def categorical(logits, num_samples, dtype=None, seed=None, name=None):
"""Draws samples from a categorical distribution.
Example:
```python
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
```
Args:
logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice
`[i, :]` represents the unnormalized log-probabilities for all classes.
num_samples: 0-D. Number of independent samples to draw for each row slice.
dtype: The integer type of the output: `int32` or `int64`. Defaults to
`int64`.
seed: A Python integer. Used to create a random seed for the distribution.
See `tf.random.set_seed` for behavior.
name: Optional name for the operation.
Returns:
The drawn samples of shape `[batch_size, num_samples]`.
"""
with ops.name_scope(name, "categorical", [logits]):
return multinomial_categorical_impl(logits, num_samples, dtype, seed)
def multinomial_categorical_impl(logits, num_samples, dtype, seed):
"""Implementation for random.categorical (v1) and random.categorical (v2)."""
logits = ops.convert_to_tensor(logits, name="logits")
dtype = dtypes.as_dtype(dtype) if dtype else dtypes.int64
accepted_dtypes = (dtypes.int32, dtypes.int64)
if dtype not in accepted_dtypes:
raise ValueError(
f"Argument `dtype` got invalid value {dtype}. Accepted dtypes are "
f"{accepted_dtypes}.")
seed1, seed2 = random_seed.get_seed(seed)
return gen_random_ops.multinomial(
logits, num_samples, seed=seed1, seed2=seed2, output_dtype=dtype)
ops.NotDifferentiable("Multinomial")
def _maybe_set_static_shape_helper(tensor, shape, postfix_tensor):
if (not context.executing_eagerly() and
ops.get_default_graph().building_function and
not tensor.shape.is_fully_defined()):
shape = shape_util.shape_tensor(shape)
const_shape = tensor_util.constant_value_as_shape(shape)
postfix_tensor = ops.convert_to_tensor(postfix_tensor)
tensor.set_shape(const_shape.concatenate(postfix_tensor.shape))
@tf_export("random.gamma", v1=["random.gamma", "random_gamma"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("random_gamma")
def random_gamma(shape,
alpha,
beta=None,
dtype=dtypes.float32,
seed=None,
name=None):
"""Draws `shape` samples from each of the given Gamma distribution(s).
`alpha` is the shape parameter describing the distribution(s), and `beta` is
the inverse scale parameter(s).
Note: Because internal calculations are done using `float64` and casting has
`floor` semantics, we must manually map zero outcomes to the smallest
possible positive floating-point value, i.e., `np.finfo(dtype).tiny`. This
means that `np.finfo(dtype).tiny` occurs more frequently than it otherwise
should. This bias can only happen for small values of `alpha`, i.e.,
`alpha << 1` or large values of `beta`, i.e., `beta >> 1`.
The samples are differentiable w.r.t. alpha and beta.
The derivatives are computed using the approach described in
(Figurnov et al., 2018).
Example:
```python
samples = tf.random.gamma([10], [0.5, 1.5])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random.gamma([7, 5], [0.5, 1.5])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
alpha = tf.constant([[1.],[3.],[5.]])
beta = tf.constant([[3., 4.]])
samples = tf.random.gamma([30], alpha=alpha, beta=beta)
# samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.
loss = tf.reduce_mean(tf.square(samples))
dloss_dalpha, dloss_dbeta = tf.gradients(loss, [alpha, beta])
# unbiased stochastic derivatives of the loss function
alpha.shape == dloss_dalpha.shape # True
beta.shape == dloss_dbeta.shape # True
```
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per alpha/beta-parameterized distribution.
alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
provides the shape parameter(s) describing the gamma distribution(s) to
sample. Must be broadcastable with `beta`.
beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
`beta` provides the inverse scale parameter(s) of the gamma
distribution(s) to sample. Must be broadcastable with `alpha`.
dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
`float64`.
seed: A Python integer. Used to create a random seed for the distributions.
See
`tf.random.set_seed`
for behavior.
name: Optional name for the operation.
Returns:
samples: a `Tensor` of shape
`tf.concat([shape, tf.shape(alpha + beta)], axis=0)` with values of type
`dtype`.
References:
Implicit Reparameterization Gradients:
[Figurnov et al., 2018]
(http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients)
([pdf]
(http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf))
"""
with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
beta = ops.convert_to_tensor(
beta if beta is not None else 1, name="beta", dtype=dtype)
broadcast_shape = array_ops.broadcast_dynamic_shape(
array_ops.shape(alpha), array_ops.shape(beta))
alpha_broadcast = array_ops.broadcast_to(alpha, broadcast_shape)
seed1, seed2 = random_seed.get_seed(seed)
result = math_ops.maximum(
np.finfo(alpha.dtype.as_numpy_dtype).tiny,
gen_random_ops.random_gamma(
shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta)
_maybe_set_static_shape_helper(result, shape, alpha_broadcast)
return result
@tf_export(v1=["random.poisson", "random_poisson"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("random_poisson")
def random_poisson(lam, shape, dtype=dtypes.float32, seed=None, name=None):
"""Draws `shape` samples from each of the given Poisson distribution(s).
`lam` is the rate parameter describing the distribution(s).
Example:
```python
samples = tf.random.poisson([0.5, 1.5], [10])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random.poisson([12.2, 3.3], [7, 5])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
```
Args:
lam: A Tensor or Python value or N-D array of type `dtype`.
`lam` provides the rate parameter(s) describing the poisson
distribution(s) to sample.
shape: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per "rate"-parameterized distribution.
dtype: The type of the output: `float16`, `float32`, `float64`, `int32` or
`int64`.
seed: A Python integer. Used to create a random seed for the distributions.
See
`tf.random.set_seed`
for behavior.
name: Optional name for the operation.
Returns:
samples: a `Tensor` of shape `tf.concat([shape, tf.shape(lam)], axis=0)`
with values of type `dtype`.
"""
return random_poisson_v2(shape, lam, dtype, seed, name)
@tf_export("random.poisson", v1=[])
@dispatch.add_dispatch_support
def random_poisson_v2(shape, lam, dtype=dtypes.float32, seed=None, name=None):
"""Draws `shape` samples from each of the given Poisson distribution(s).
`lam` is the rate parameter describing the distribution(s).
Example:
```python
samples = tf.random.poisson([10], [0.5, 1.5])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random.poisson([7, 5], [12.2, 3.3])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
```
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per "rate"-parameterized distribution.
lam: A Tensor or Python value or N-D array of type `dtype`.
`lam` provides the rate parameter(s) describing the poisson
distribution(s) to sample.
dtype: The type of the output: `float16`, `float32`, `float64`, `int32` or
`int64`.
seed: A Python integer. Used to create a random seed for the distributions.
See
`tf.random.set_seed`
for behavior.
name: Optional name for the operation.
Returns:
samples: a `Tensor` of shape `tf.concat([shape, tf.shape(lam)], axis=0)`
with values of type `dtype`.
"""
with ops.name_scope(name, "random_poisson", [lam, shape]):
shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
seed1, seed2 = random_seed.get_seed(seed)
result = gen_random_ops.random_poisson_v2(
shape, lam, dtype=dtype, seed=seed1, seed2=seed2)
_maybe_set_static_shape_helper(result, shape, lam)
return result