blob: 19835aeb09e4cb0181259efcfbf91b24769f2b57 [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for compute_gradient."""
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import custom_gradient
from tensorflow.python.ops import \
gradient_checker_v2 as gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import sparse_ops
# needs this to register gradient for SoftmaxCrossEntropyWithLogits:
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging
def _random_complex(shape, dtype):
data = np.random.random_sample(shape).astype(dtype.as_numpy_dtype)
if dtype.is_complex:
data.imag = np.random.random_sample(shape)
return data
@test_util.run_all_in_graph_and_eager_modes
class GradientCheckerTest(test.TestCase):
def testSparseTensorReshape(self):
x = constant_op.constant(2.0, shape=(2,))
def sparse_tensor_reshape(values):
sparse = sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]], values=values, dense_shape=[3, 4])
sparse = sparse_ops.sparse_reshape(sparse, shape=(12,))
return sparse.values
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(sparse_tensor_reshape, [x]))
self.assertLess(error, 1e-4)
def testWithStaticShape(self):
size = (2, 3)
constant = constant_op.constant(2.0, shape=size, name="const")
def add_constant_with_static_shape_check(x):
self.assertAllEqual(x.shape.as_list(), constant.shape.as_list())
return x + constant
x = constant_op.constant(3.0, shape=size, name="x")
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
add_constant_with_static_shape_check, [x]))
self.assertLess(error, 1e-4)
def testWithArgumentsAsTuple(self):
size = (2, 3)
x1 = constant_op.constant(2.0, shape=size, name="x1")
x2 = constant_op.constant(3.0, shape=size, name="x2")
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
lambda x1: math_ops.add(x1, x2), (x1,)))
tf_logging.info("x1 error = %f", error)
self.assertLess(error, 1e-4)
def testAddSimple(self):
size = (2, 3)
x1 = constant_op.constant(2.0, shape=size, name="x1")
x2 = constant_op.constant(3.0, shape=size, name="x2")
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
lambda x1: math_ops.add(x1, x2), [x1]))
tf_logging.info("x1 error = %f", error)
self.assertLess(error, 1e-4)
def testBfloat16(self):
x1 = constant_op.constant(2.0, dtype="bfloat16")
x2 = constant_op.constant(3.0, dtype="bfloat16")
# bfloat16 is very imprecise, so we use very large delta and error bar here.
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
lambda x1: math_ops.add(x1, x2), [x1], delta=0.1))
tf_logging.info("x1 error = %f", error)
self.assertLess(error, 0.07)
def testAddCustomized(self):
size = (2, 3)
x1 = constant_op.constant(2.0, shape=size, dtype=dtypes.float64, name="x1")
x2 = np.asarray(np.arange(6, dtype=np.float64).reshape(2, 3))
# checkint gradients for x2 using a special delta
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
lambda x2: math_ops.add(x1, x2), [x2], delta=1e-2))
tf_logging.info("x2 error = %f", error)
self.assertLess(error, 1e-10)
def testGather(self):
def f(params):
index_values = [1, 3]
indices = constant_op.constant(index_values, name="i")
return array_ops.gather(params, indices, name="y")
p_shape = (4, 2)
p_size = 8
params = constant_op.constant(
np.arange(p_size).astype(np.float64), shape=p_shape, name="p")
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(f, [params]))
tf_logging.info("gather error = %f", error)
self.assertLess(error, 1e-4)
def testNestedGather(self):
def f(params):
index_values = [1, 3, 5, 6]
indices = constant_op.constant(index_values, name="i")
y = array_ops.gather(params, indices, name="y")
index_values2 = [0, 2]
indices2 = constant_op.constant(index_values2, name="i2")
return array_ops.gather(y, indices2, name="y2")
p_shape = (8, 2)
p_size = 16
params = constant_op.constant(
np.arange(p_size).astype(np.float64), shape=p_shape, name="p")
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(f, [params]))
tf_logging.info("nested gather error = %f", error)
self.assertLess(error, 1e-4)
def testComplexMul(self):
c = constant_op.constant(5 + 7j, dtype=dtypes.complex64)
def f(x):
return c * x
x_shape = c.shape
x_dtype = c.dtype
x = constant_op.constant(_random_complex(x_shape, x_dtype))
analytical, numerical = gradient_checker.compute_gradient(f, [x])
correct = np.array([[5, -7], [7, 5]])
self.assertAllEqual(correct, analytical[0])
self.assertAllClose(correct, numerical[0], rtol=1e-4)
x = constant_op.constant(_random_complex(x_shape, x_dtype))
self.assertLess(
gradient_checker.max_error(*gradient_checker.compute_gradient(f, [x])),
3e-4)
def testComplexConj(self):
def f(x):
return math_ops.conj(x)
x_shape = ()
x_dtype = dtypes.complex64
x = constant_op.constant(_random_complex(x_shape, x_dtype))
analytical, numerical = gradient_checker.compute_gradient(f, [x])
correct = np.array([[1, 0], [0, -1]])
self.assertAllEqual(correct, analytical[0])
self.assertAllClose(correct, numerical[0], rtol=2e-5)
x = constant_op.constant(_random_complex(x_shape, x_dtype))
self.assertLess(
gradient_checker.max_error(*gradient_checker.compute_gradient(f, [x])),
2e-5)
def testEmptySucceeds(self):
def f(x):
return array_ops.identity(x)
x = constant_op.constant(
np.random.random_sample((0, 3)), dtype=dtypes.float32)
for grad in gradient_checker.compute_gradient(f, [x]):
self.assertEqual(grad[0].shape, (0, 0))
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(f, [x]))
self.assertEqual(error, 0)
def testEmptyMatMul(self):
def f(x, y):
return math_ops.matmul(x, y)
x = constant_op.constant(
np.random.random_sample((0, 3)), dtype=dtypes.float32)
y = constant_op.constant(
np.random.random_sample((3, 4)), dtype=dtypes.float32)
for grad in gradient_checker.compute_gradient(f, [x, y]):
self.assertEqual(grad[0].shape, (0, 0))
self.assertEqual(grad[1].shape, (0, 12))
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(f, [x, y]))
self.assertEqual(error, 0)
def testEmptyFails(self):
@custom_gradient.custom_gradient
def id_bad_grad(x):
y = array_ops.identity(x)
def grad_fn(dy):
# dx = constant_op.constant(np.zeros((1, 4)), dtype=dtypes.float32)
dx = array_ops.transpose(dy)
return dx
return y, grad_fn
def f(x):
return id_bad_grad(x)
x = constant_op.constant(
np.random.random_sample((0, 3)), dtype=dtypes.float32)
bad = r"Empty gradient has wrong shape: expected \(0, 3\), got \(3, 0\)"
with self.assertRaisesRegex(ValueError, bad):
gradient_checker.compute_gradient(f, [x])
def testNaNGradFails(self):
@custom_gradient.custom_gradient
def id_nan_grad(x):
y = array_ops.identity(x)
def grad_fn(dy):
dx = np.nan * dy
# dx = dy
return dx
return y, grad_fn
def f(x):
return id_nan_grad(x)
x = constant_op.constant(
np.random.random_sample((1, 1)), dtype=dtypes.float32)
error = gradient_checker.max_error(
*gradient_checker.compute_gradient(f, [x]))
# Typical test would assert error < max_err, so assert this test would
# raise AssertionError, since NaN is not < 1.0.
with self.assertRaisesRegex(AssertionError, "nan not less than 1.0"):
self.assertLess(error, 1.0)
def testGradGrad(self):
def f(x):
with backprop.GradientTape() as tape:
tape.watch(x)
y = math_ops.square(x)
z = math_ops.square(y)
return tape.gradient(z, x)
analytical, numerical = gradient_checker.compute_gradient(f, [2.0])
self.assertAllEqual([[[48.]]], analytical)
self.assertAllClose([[[48.]]], numerical, rtol=1e-4)
@test_util.run_all_in_graph_and_eager_modes
class MiniMNISTTest(test.TestCase):
# Gradient checker for MNIST.
def _BuildAndTestMiniMNIST(self, param_index, tag):
# Fix seed to avoid occasional flakiness
np.random.seed(6)
# Hyperparameters
batch = 3
inputs = 16
features = 32
classes = 10
# Define the parameters
inp_data = np.random.random_sample(inputs * batch)
hidden_weight_data = np.random.randn(inputs * features) / np.sqrt(inputs)
hidden_bias_data = np.random.random_sample(features)
sm_weight_data = np.random.randn(features * classes) / np.sqrt(features)
sm_bias_data = np.random.random_sample(classes)
# special care for labels since they need to be normalized per batch
label_data = np.random.random(batch * classes).reshape((batch, classes))
s = label_data.sum(axis=1)
label_data /= s[:, None]
# We treat the inputs as "parameters" here
inp = constant_op.constant(
inp_data.tolist(),
shape=[batch, inputs],
dtype=dtypes.float64,
name="inp")
hidden_weight = constant_op.constant(
hidden_weight_data.tolist(),
shape=[inputs, features],
dtype=dtypes.float64,
name="hidden_weight")
hidden_bias = constant_op.constant(
hidden_bias_data.tolist(),
shape=[features],
dtype=dtypes.float64,
name="hidden_bias")
softmax_weight = constant_op.constant(
sm_weight_data.tolist(),
shape=[features, classes],
dtype=dtypes.float64,
name="softmax_weight")
softmax_bias = constant_op.constant(
sm_bias_data.tolist(),
shape=[classes],
dtype=dtypes.float64,
name="softmax_bias")
# List all the parameter so that we can test them one at a time
all_params = [inp, hidden_weight, hidden_bias, softmax_weight, softmax_bias]
# Now, Building MNIST
def f(inp, hidden_weight, hidden_bias, softmax_weight, softmax_bias):
features = nn_ops.relu(
nn_ops.xw_plus_b(inp, hidden_weight, hidden_bias), name="features")
logits = nn_ops.xw_plus_b(
features, softmax_weight, softmax_bias, name="logits")
labels = constant_op.constant(
label_data.tolist(),
shape=[batch, classes],
dtype=dtypes.float64,
name="labels")
cost = nn_ops.softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name="cost")
return cost
def f_restricted(x):
xs = all_params
i = param_index
# use x for the i-th parameter
xs = xs[0:i] + [x] + xs[i + 1:]
return f(*xs)
# Test the gradients.
err = gradient_checker.max_error(*gradient_checker.compute_gradient(
f_restricted, [all_params[param_index]], delta=1e-5))
tf_logging.info("Mini MNIST: %s gradient error = %g", tag, err)
return err
def testInputGradient(self):
self.assertLess(self._BuildAndTestMiniMNIST(0, "input"), 1e-8)
def testHiddenWeightGradient(self):
self.assertLess(self._BuildAndTestMiniMNIST(1, "hidden_weight"), 1e-8)
def testHiddenBiasGradient(self):
self.assertLess(self._BuildAndTestMiniMNIST(2, "hidden_bias"), 1e-8)
def testSoftmaxWeightGradient(self):
self.assertLess(self._BuildAndTestMiniMNIST(3, "softmax_weight"), 1e-8)
def testSoftmaxBiasGradient(self):
self.assertLess(self._BuildAndTestMiniMNIST(4, "softmax_bias"), 1e-8)
if __name__ == "__main__":
test.main()