blob: 1792b9fb659b8b1e0d431f9829763e6cd0574329 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for operations in eager execution."""
import gc
import sys
import threading
import weakref
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.eager import execute
from tensorflow.python.eager import test
from tensorflow.python.framework import config
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.layers import core
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import sparse_ops
class OpsTest(test_util.TensorFlowTestCase, parameterized.TestCase):
def testExecuteBasic(self):
three = constant_op.constant(3)
five = constant_op.constant(5)
product = three * five
self.assertAllEqual(15, product)
@test_util.run_gpu_only
def testMatMulGPU(self):
three = constant_op.constant([[3.]]).gpu()
five = constant_op.constant([[5.]]).gpu()
product = math_ops.matmul(three, five)
self.assertEqual([[15.0]], product.numpy())
def testExecuteStringAttr(self):
three = constant_op.constant(3.0)
checked_three = array_ops.check_numerics(three,
message='just checking')
self.assertEqual([[3]], checked_three.numpy())
def testExecuteFloatAttr(self):
three = constant_op.constant(3.0)
almost_three = constant_op.constant(2.8)
almost_equal = math_ops.approximate_equal(
three, almost_three, tolerance=0.3)
self.assertTrue(almost_equal)
def testExecuteIntAttr(self):
three = constant_op.constant(3)
four = constant_op.constant(4)
total = math_ops.add_n([three, four])
self.assertAllEqual(7, total)
def testExecuteBoolAttr(self):
three = constant_op.constant([[3]])
five = constant_op.constant([[5]])
product = math_ops.matmul(three, five, transpose_a=True)
self.assertAllEqual([[15]], product)
def testExecuteOneListOutput(self):
split_dim = constant_op.constant(1)
value = constant_op.constant([[0, 1, 2], [3, 4, 5]])
x1, x2, x3 = array_ops.split(value, 3, axis=split_dim)
self.assertAllEqual([[0], [3]], x1)
self.assertAllEqual([[1], [4]], x2)
self.assertAllEqual([[2], [5]], x3)
def testGraphMode(self):
graph = ops.Graph()
with graph.as_default(), context.graph_mode():
array_ops.placeholder(dtypes.int32)
self.assertLen(graph.get_operations(), 1)
# See comments on handling of int32 tensors on GPU in
# EagerTensor.__init__.
@test_util.run_gpu_only
def testInt32CPUDefault(self):
with context.device('/gpu:0'):
r = constant_op.constant(1) + constant_op.constant(2)
self.assertAllEqual(r, 3)
def testExecuteListOutputLen1(self):
split_dim = constant_op.constant(1)
value = constant_op.constant([[0, 1, 2], [3, 4, 5]])
result = array_ops.split(value, 1, axis=split_dim)
self.assertIsInstance(result, list)
self.assertLen(result, 1)
self.assertAllEqual([[0, 1, 2], [3, 4, 5]], result[0])
def testExecuteListOutputLen0(self):
empty = constant_op.constant([], dtype=dtypes.int32)
result = array_ops_stack.unstack(empty, 0)
self.assertIsInstance(result, list)
self.assertEmpty(result)
def testExecuteMultipleNonListOutput(self):
x = constant_op.constant([1, 2, 3, 4, 5, 6])
y = constant_op.constant([1, 3, 5])
result = array_ops.listdiff(x, y)
out, idx = result
self.assertIs(out, result.out)
self.assertIs(idx, result.idx)
self.assertAllEqual([2, 4, 6], out)
self.assertAllEqual([1, 3, 5], idx)
def testExecuteMultipleListOutput(self):
split_dim = constant_op.constant(1, dtype=dtypes.int64)
indices = constant_op.constant([[0, 2], [0, 4], [0, 5], [1, 0], [1, 1]],
dtype=dtypes.int64)
values = constant_op.constant([2, 3, 5, 7, 11])
shape = constant_op.constant([2, 7], dtype=dtypes.int64)
result = sparse_ops.gen_sparse_ops.sparse_split(
split_dim,
indices,
values,
shape,
num_split=2)
output_indices, output_values, output_shape = result
self.assertLen(output_indices, 2)
self.assertLen(output_values, 2)
self.assertLen(output_shape, 2)
self.assertEqual(output_indices, result.output_indices)
self.assertEqual(output_values, result.output_values)
self.assertEqual(output_shape, result.output_shape)
self.assertAllEqual([[0, 2], [1, 0], [1, 1]], output_indices[0])
self.assertAllEqual([[0, 0], [0, 1]], output_indices[1])
self.assertAllEqual([2, 7, 11], output_values[0])
self.assertAllEqual([3, 5], output_values[1])
self.assertAllEqual([2, 4], output_shape[0])
self.assertAllEqual([2, 3], output_shape[1])
# TODO(josh11b): Test an op that has multiple outputs, some but not
# all of which are lists. Examples: barrier_take_many (currently
# unsupported since it uses a type list) or sdca_optimizer (I don't
# have an example of legal inputs & outputs).
def testComposition(self):
x = constant_op.constant(1, dtype=dtypes.int32)
three_x = x + x + x
self.assertEqual(dtypes.int32, three_x.dtype)
self.assertAllEqual(3, three_x)
def testOperatorOverrides(self):
def ops_test(v1, v2):
a = constant_op.constant(v1)
b = constant_op.constant(v2)
self.assertAllEqual((-a), np.negative(v1))
self.assertAllEqual(abs(b), np.absolute(v2))
self.assertAllEqual((a + b), np.add(v1, v2))
self.assertAllEqual((a - b), np.subtract(v1, v2))
self.assertAllEqual((a * b), np.multiply(v1, v2))
self.assertAllEqual((a * a), np.multiply(v1, v1))
if all(x >= 0 for x in v2):
self.assertAllEqual((a**b), np.power(v1, v2))
self.assertAllEqual((a / b), np.true_divide(v1, v2))
self.assertAllEqual((a / a), np.true_divide(v1, v1))
self.assertAllEqual((a % b), np.mod(v1, v2))
self.assertAllEqual((a < b), np.less(v1, v2))
self.assertAllEqual((a <= b), np.less_equal(v1, v2))
self.assertAllEqual((a > b), np.greater(v1, v2))
self.assertAllEqual((a >= b), np.greater_equal(v1, v2))
# TODO(b/120678848): Remove the else branch once we enable
# ops.Tensor._USE_EQUALITY by default.
if ops.Tensor._USE_EQUALITY:
self.assertAllEqual((a == b), np.equal(v1, v2))
self.assertAllEqual((a != b), np.not_equal(v1, v2))
else:
self.assertAllEqual((a == b), np.equal(v1, v2)[0])
self.assertAllEqual((a != b), np.not_equal(v1, v2)[0])
self.assertAllEqual(v1[0], a[constant_op.constant(0)])
ops_test([1, 4, 8], [2, 3, 5])
ops_test([1, -4, -5], [-2, 3, -6])
def test_basic_slice(self):
npt = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3)
t = constant_op.constant(npt)
self.assertAllEqual(npt[:, :, :], t[:, :, :])
self.assertAllEqual(npt[::, ::, ::], t[::, ::, ::])
self.assertAllEqual(npt[::1, ::1, ::1], t[::1, ::1, ::1])
self.assertAllEqual(npt[::1, ::5, ::2], t[::1, ::5, ::2])
self.assertAllEqual(npt[::-1, :, :], t[::-1, :, :])
self.assertAllEqual(npt[:, ::-1, :], t[:, ::-1, :])
self.assertAllEqual(npt[:, :, ::-1], t[:, :, ::-1])
self.assertAllEqual(npt[-2::-1, :, ::1], t[-2::-1, :, ::1])
self.assertAllEqual(npt[-2::-1, :, ::2], t[-2::-1, :, ::2])
def testDegenerateSlices(self):
npt = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3)
t = constant_op.constant(npt)
# degenerate by offering a forward interval with a negative stride
self.assertAllEqual(npt[0:-1:-1, :, :], t[0:-1:-1, :, :])
# degenerate with a reverse interval with a positive stride
self.assertAllEqual(npt[-1:0, :, :], t[-1:0, :, :])
# empty interval in every dimension
self.assertAllEqual(npt[-1:0, 2:2, 2:3:-1], t[-1:0, 2:2, 2:3:-1])
def testEllipsis(self):
npt = np.array(
[[[[[1, 2], [3, 4], [5, 6]]], [[[7, 8], [9, 10], [11, 12]]]]])
t = constant_op.constant(npt)
self.assertAllEqual(npt[0:], t[0:])
# implicit ellipsis
self.assertAllEqual(npt[0:, ...], t[0:, ...])
# ellipsis alone
self.assertAllEqual(npt[...], t[...])
# ellipsis at end
self.assertAllEqual(npt[0:1, ...], t[0:1, ...])
# ellipsis at begin
self.assertAllEqual(npt[..., 0:1], t[..., 0:1])
# ellipsis at middle
self.assertAllEqual(npt[0:1, ..., 0:1], t[0:1, ..., 0:1])
def testShrink(self):
npt = np.array([[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]],
[[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]])
t = constant_op.constant(npt)
self.assertAllEqual(npt[:, :, :, :, 3], t[:, :, :, :, 3])
self.assertAllEqual(npt[..., 3], t[..., 3])
self.assertAllEqual(npt[:, 0], t[:, 0])
self.assertAllEqual(npt[:, :, 0], t[:, :, 0])
@test_util.run_gpu_only
def testOpWithInputsOnDifferentDevices(self):
# The GPU kernel for the Reshape op requires that the
# shape input be on CPU.
value = constant_op.constant([1., 2.]).gpu()
shape = constant_op.constant([2, 1])
reshaped = array_ops.reshape(value, shape)
self.assertAllEqual([[1], [2]], reshaped.cpu())
def testInt64(self):
# Fill requires the first input to be an int32 tensor.
self.assertAllEqual(
[1.0, 1.0],
array_ops.fill(constant_op.constant([2], dtype=dtypes.int64),
constant_op.constant(1)))
@test_util.run_gpu_only
def testOutputOnHostMemory(self):
# The Shape op kernel on GPU places the output in host memory.
value = constant_op.constant([1.]).gpu()
shape = array_ops.shape(value)
self.assertEqual([1], shape.numpy())
@test_util.run_gpu_only
def testSilentCopy(self):
# Temporarily replace the context
# pylint: disable=protected-access
old_context = context.context()
context._set_context(context.Context())
try:
config.set_device_policy('silent')
cpu_tensor = constant_op.constant(1.0)
gpu_tensor = cpu_tensor.gpu()
self.assertAllEqual(cpu_tensor + gpu_tensor, 2.0)
finally:
context._set_context(old_context)
# pylint: enable=protected-access
@test_util.run_gpu_only
def testSoftPlacement(self):
# Temporarily replace the context
# pylint: disable=protected-access
old_context = context.context()
context._set_context(context.Context())
try:
config.set_device_policy('silent')
config.set_soft_device_placement(True)
cpu_tensor = constant_op.constant(1.0)
result = cpu_tensor + cpu_tensor
self.assertEqual(result.device,
'/job:localhost/replica:0/task:0/device:GPU:0')
finally:
context._set_context(old_context)
# pylint: enable=protected-access
def testRandomUniform(self):
scalar_shape = constant_op.constant([], dtype=dtypes.int32)
x = random_ops.random_uniform(scalar_shape)
self.assertEqual(0, x.shape.ndims)
self.assertEqual(dtypes.float32, x.dtype)
x = random_ops.random_uniform(
scalar_shape, minval=constant_op.constant(5.),
maxval=constant_op.constant(6.))
self.assertLess(x, 6)
self.assertGreaterEqual(x, 5)
def testArgsToMatchingEagerDefault(self):
# Uses default
ctx = context.context()
allowed_dtypes = [dtypes.int32, dtypes.int64]
# Follows standard int conversion rules
t, r = execute.args_to_matching_eager([[3, 4]], ctx, allowed_dtypes,
dtypes.int32)
self.assertEqual(t, dtypes.int32)
self.assertEqual(r[0].dtype, dtypes.int32)
t, r = execute.args_to_matching_eager([[3, 4]], ctx, allowed_dtypes,
dtypes.int64)
self.assertEqual(t, dtypes.int32)
self.assertEqual(r[0].dtype, dtypes.int32)
# Use int64 since it is a better fit
t, r = execute.args_to_matching_eager([[2**48]], ctx, allowed_dtypes,
dtypes.int32)
self.assertEqual(t, dtypes.int64)
self.assertEqual(r[0].dtype, dtypes.int64)
# When the regular tensor conversion fails, then use the default type as a
# hint.
allowed_dtypes = [dtypes.uint32, dtypes.uint32]
t, r = execute.args_to_matching_eager([[3, 4]], ctx, allowed_dtypes,
dtypes.uint32)
self.assertEqual(t, dtypes.uint32)
self.assertEqual(r[0].dtype, dtypes.uint32)
t, r = execute.args_to_matching_eager([[3, 4]], ctx, allowed_dtypes,
dtypes.uint64)
self.assertEqual(t, dtypes.uint64)
self.assertEqual(r[0].dtype, dtypes.uint64)
t, r = execute.args_to_matching_eager([], ctx, allowed_dtypes, dtypes.int64)
self.assertEqual(t, dtypes.int64)
# Doesn't use default
allowed_dtypes = [dtypes.int32, dtypes.string]
t, r = execute.args_to_matching_eager([['string', 'arg']], ctx,
allowed_dtypes, dtypes.int32)
self.assertEqual(t, dtypes.string)
self.assertEqual(r[0].dtype, dtypes.string)
def testFlattenLayer(self):
flatten_layer = core.Flatten()
x = constant_op.constant([[[-10, -20], [-30, -40]], [[10, 20], [30, 40]]])
y = flatten_layer(x)
self.assertAllEqual([[-10, -20, -30, -40], [10, 20, 30, 40]], y)
def testIdentity(self):
self.assertAllEqual(2, array_ops.identity(2))
@test_util.run_gpu_only
def testIdentityOnVariable(self):
with context.device('/gpu:0'):
v = resource_variable_ops.ResourceVariable(True)
self.assertAllEqual(True, array_ops.identity(v))
def testIncompatibleSetShape(self):
x = constant_op.constant(1)
with self.assertRaises(ValueError):
x.set_shape((1, 2))
def testCompatibleSetShape(self):
x = constant_op.constant([[1, 2]])
x.set_shape(tensor_shape.TensorShape([None, 2]))
self.assertEqual(x.get_shape(), (1, 2))
@parameterized.named_parameters(
('Tensor', lambda: constant_op.constant(1.3+1j)),
('Variable', lambda: resource_variable_ops.ResourceVariable(1.3+1j)))
def testCastToPrimitiveTypesFrom(self, value_fn):
x = value_fn()
self.assertIsInstance(int(x), int)
self.assertEqual(int(x), 1)
self.assertIsInstance(float(x), float)
self.assertAllClose(float(x), 1.3)
self.assertIsInstance(complex(x), complex)
self.assertAllClose(complex(x), 1.3+1j)
def testCastNonScalarToPrimitiveTypesFails(self):
x = constant_op.constant([1.3, 2])
with self.assertRaises(TypeError):
int(x)
with self.assertRaises(TypeError):
float(x)
def testRange(self):
x = constant_op.constant(2)
self.assertEqual([0, 1], list(range(x)))
def testFormatString(self):
x = constant_op.constant(3.1415)
self.assertEqual('3.14', '{:.2f}'.format(x))
def testNoOpIsNone(self):
self.assertIsNone(control_flow_ops.no_op())
def testEagerContextPreservedAcrossThreads(self):
def init_fn():
self.assertTrue(context.executing_eagerly())
with ops.init_scope():
self.assertTrue(context.executing_eagerly())
context_switches = context.context().context_switches
self.assertLen(context_switches.stack, 1)
self.assertFalse(context_switches.stack[0].is_building_function)
self.assertEqual(context_switches.stack[0].enter_context_fn,
context.eager_mode)
self.assertTrue(context.executing_eagerly())
t1 = threading.Thread(target=init_fn)
t1.start()
t1.join()
def testWeakrefEagerTensor(self):
if sys.version_info.major == 3 and sys.version_info.minor == 11:
# TODO(b/264947738)
self.skipTest('Not working in Python 3.11')
x = constant_op.constant([[1.]])
x.at1 = constant_op.constant([[2.]])
x.at2 = 3.
weak_x = weakref.ref(x)
weak_xat1 = weakref.ref(x.at1)
del x
self.assertIs(weak_x(), None)
self.assertIs(weak_xat1(), None)
def testWeakKeyDictionaryTensor(self):
weak_key_dict = weakref.WeakKeyDictionary()
strong_x = constant_op.constant([[1.]])
strong_y = constant_op.constant([[2.]])
strong_x_ref = strong_x.ref()
strong_y_ref = strong_y.ref()
weak_key_dict[strong_x_ref] = constant_op.constant([[3.]])
weak_key_dict[strong_y_ref] = constant_op.constant([[4.]])
strong_y.a = constant_op.constant([[5.]])
weak_x_ref = weakref.ref(strong_x)
del strong_x, strong_x_ref
self.assertIs(weak_x_ref(), None)
self.assertEqual([strong_y_ref], list(weak_key_dict))
self.assertLen(list(weak_key_dict), 1)
self.assertLen(weak_key_dict, 1)
del strong_y, strong_y_ref
self.assertEqual([], list(weak_key_dict))
def testEagerTensorsCanBeGarbageCollected(self):
x = constant_op.constant([[1.]])
y = constant_op.constant([[2.]])
x.y = y
y.x = x
weak_x = weakref.ref(x)
weak_y = weakref.ref(y)
del x
del y
gc.collect()
self.assertIs(weak_x(), None)
self.assertIs(weak_y(), None)
@test_util.disable_tfrt(
'b/153697193: tfrt cannot decode python stacktrace yet')
# TODO(b/234153596): Disabled because it invalidates stack traces on other
# tests (due to partial migration to absl::Status).
def DISABLED_testAsyncExceptionStackTrace(self):
config.set_synchronous_execution(False)
def exception_originated_from_here():
# Invalid shapes for matmul.
return math_ops.matmul([[1]], [[2], [3]])
# In sync mode, an exception would have been raised here but since this is
# in async, the exception will be raised next.
x = exception_originated_from_here()
with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
'in exception_originated_from_here'):
x.numpy()
context.async_clear_error()
config.set_synchronous_execution(True)
def testCrossContextTensorCache(self):
old_context = context.context()
old_x = constant_op.constant(9.5)
context._set_context(context.Context())
try:
new_x = constant_op.constant(9.5)
self.assertEqual(new_x.numpy(), 9.5)
finally:
context._set_context(old_context)
self.assertEqual(old_x.numpy(), 9.5)
if __name__ == '__main__':
test.main()