blob: f40f78d6d97217ecbcd4139121725154413ca8cd [file] [log] [blame]
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various classes representing distributed values for PS."""
import contextlib
import copy
import functools
import threading
import weakref
import numpy as np
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import distribute_utils
from tensorflow.python.distribute import values
from tensorflow.python.distribute import values_util
from tensorflow.python.distribute.coordinator import coordinator_context
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_conversion_registry
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.saved_model import save_context
from tensorflow.python.trackable import base as trackable
from tensorflow.python.types import core
TRACKABLE_RESOURCE_METHODS = [
"_create_resource", "_initialize", "_destroy_resource"
]
# Variable used in PSStrategy TF 1, TF2 and CentralStorageStrategy.
class AggregatingVariable(resource_variable_ops.BaseResourceVariable,
core.Tensor):
"""A wrapper around a variable that aggregates updates across replicas."""
def __init__(self, strategy, v, aggregation):
self._distribute_strategy = strategy
self._v = v
# NOTE: We don't use "_distributed_container" here because we don't want
# to trigger that code path in regroup().
v._aggregating_container = weakref.ref(self) # pylint: disable=protected-access
self._aggregation = aggregation
def __deepcopy__(self, memo):
"""Perform a deepcopy of the `AggregatingVariable`.
Unlike the deepcopy of a regular tf.Variable, this keeps the original
strategy and devices of the `AggregatingVariable`. To avoid confusion
with the behavior of deepcopy on a regular `Variable` (which does
copy into new devices), we only allow a deepcopy of a `AggregatingVariable`
within its originating strategy scope.
Args:
memo: The memoization object for `deepcopy`.
Returns:
A deep copy of the current `AggregatingVariable`.
Raises:
RuntimeError: If trying to deepcopy into a different strategy.
"""
with distribute_lib.enter_or_assert_strategy(self._distribute_strategy):
v = copy.deepcopy(self._v, memo)
copied_variable = type(self)(
strategy=self._distribute_strategy,
v=v,
aggregation=self._aggregation)
memo[id(self)] = copied_variable
return copied_variable
def get(self):
return self._v
@property
def distribute_strategy(self):
return self._distribute_strategy
def __getattr__(self, name):
return getattr(self._v, name)
def _assign_func(self, *args, **kwargs):
with distribute_lib.enter_or_assert_strategy(self._distribute_strategy):
f = kwargs.pop("f")
if distribute_lib.in_cross_replica_context():
if distribute_lib.get_update_replica_id() is not None:
# We are calling an assign function in an update context.
return f(self._v, *args, **kwargs)
# We are calling an assign function in cross replica context, wrap it in
# an update call.
return self._distribute_strategy.extended.update(
self, f, args=args, kwargs=kwargs)
else:
replica_context = distribute_lib.get_replica_context()
assert replica_context
# We are calling an assign function in replica context.
# We reduce the value we want to assign/add/sub. More details about how
# we handle the different use cases can be found in the _reduce method.
# We call the function with the reduced value.
if self._aggregation == vs.VariableAggregation.NONE:
raise ValueError(
values_util.aggregation_error_msg.format(
variable_type="AggregatingVariable"))
def merge_fn(strategy,
value,
use_locking=False,
name=None,
read_value=True):
v = values_util.apply_aggregation(strategy, value, self._aggregation,
self)
if name and isinstance(name, values.PerReplica):
name = name.values[0]
return strategy.extended.update(
self,
f,
args=(v,),
kwargs={
"use_locking": use_locking,
"name": name,
"read_value": read_value
})
return replica_context.merge_call(merge_fn, args=args, kwargs=kwargs)
def assign_sub(self, *args, **kwargs):
assign_sub_fn = lambda var, *a, **kw: var.assign_sub(*a, **kw)
return self._assign_func(f=assign_sub_fn, *args, **kwargs)
def assign_add(self, *args, **kwargs):
assign_add_fn = lambda var, *a, **kw: var.assign_add(*a, **kw)
return self._assign_func(f=assign_add_fn, *args, **kwargs)
def assign(self, *args, **kwargs):
assign_fn = lambda var, *a, **kw: var.assign(*a, **kw)
return self._assign_func(f=assign_fn, *args, **kwargs)
@property
def initializer(self):
return self._v.initializer
def initialized_value(self):
return self._v.initialized_value()
@property
def initial_value(self):
return self._v.initial_value
@property
def op(self):
return self._v.op
def value(self):
return self._v.value()
def read_value(self):
return self._v.read_value()
def sparse_read(self, indices, name=None):
return self._v.sparse_read(indices, name=name)
def eval(self, session=None):
return self._v.eval(session)
@property
def graph(self):
return self._v.graph
@property
def device(self):
return self._v.device
@property
def shape(self):
return self._v.shape
@property
def aggregation(self):
return self._aggregation
@property
def synchronization(self):
return self._v.synchronization
@property
def name(self):
return self._v.name
@property
def trainable(self):
return self._v.trainable
@property
def dtype(self):
return self._v.dtype
# TODO(josh11b): Test saving & restoring.
def _gather_saveables_for_checkpoint(self):
if isinstance(self._v, CachingVariable):
return self._v._gather_saveables_for_checkpoint() # pylint:disable=protected-access
return {trackable.VARIABLE_VALUE_KEY: self._v}
def _export_to_saved_model_graph(self, object_map, tensor_map,
options, **kwargs):
"""For implementing `Trackable`."""
# By delegating this method to the wrapped variable, SavedModel with
# AggregatingVariable are identical to SavedModel with normal variables.
resource_list = self._v._export_to_saved_model_graph(object_map, tensor_map, # pylint:disable=protected-access
options, **kwargs)
object_map[self] = object_map[self._v]
return resource_list
# pylint: disable=multiple-statements
def __add__(self, o):
return self._v + o
def __radd__(self, o):
return o + self._v
def __sub__(self, o):
return self._v - o
def __rsub__(self, o):
return o - self._v
def __mul__(self, o):
return self._v * o
def __rmul__(self, o):
return o * self._v
def __truediv__(self, o):
return self._v / o
def __rtruediv__(self, o):
return o / self._v
def __floordiv__(self, o):
return self._v // o
def __rfloordiv__(self, o):
return o // self._v
def __mod__(self, o):
return self._v % o
def __rmod__(self, o):
return o % self._v
def __lt__(self, o):
return self._v < o
def __le__(self, o):
return self._v <= o
def __gt__(self, o):
return self._v > o
def __ge__(self, o):
return self._v >= o
def __and__(self, o):
return self._v & o
def __rand__(self, o):
return o & self._v
def __or__(self, o):
return self._v | o
def __ror__(self, o):
return o | self._v
def __xor__(self, o):
return self._v ^ o
def __rxor__(self, o):
return o ^ self._v
def __getitem__(self, o):
return self._v[o]
def __pow__(self, o, modulo=None):
return pow(self._v, o, modulo)
def __rpow__(self, o):
return pow(o, self._v)
def __invert__(self):
return ~self._v
def __neg__(self):
return -self._v
def __abs__(self):
return abs(self._v)
def __div__(self, o):
try:
return self._v.__div__(o)
except AttributeError:
# See https://docs.python.org/3/library/constants.html#NotImplemented
return NotImplemented
def __rdiv__(self, o):
try:
return self._v.__rdiv__(o)
except AttributeError:
# See https://docs.python.org/3/library/constants.html#NotImplemented
return NotImplemented
def __matmul__(self, o):
try:
return self._v.__matmul__(o)
except AttributeError:
# See https://docs.python.org/3/library/constants.html#NotImplemented
return NotImplemented
def __rmatmul__(self, o):
try:
return self._v.__rmatmul__(o)
except AttributeError:
# See https://docs.python.org/3/library/constants.html#NotImplemented
return NotImplemented
def __str__(self):
return str(self._v)
def __repr__(self):
return repr(self._v)
def _should_act_as_resource_variable(self):
"""Pass resource_variable_ops.is_resource_variable check."""
pass
def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False):
return self._v._dense_var_to_tensor(dtype=dtype, name=name, as_ref=as_ref) # pylint: disable=protected-access
class CachingVariable(resource_variable_ops.BaseResourceVariable, core.Tensor):
"""A wrapper around a variable that caches read value locally."""
def __init__(self, v):
self._v = v
self._cache = None
self._current_new_cache_scope_count = 0
def get(self):
return self._v
def __getattr__(self, name):
return getattr(self._v, name)
def read_value(self):
if distribute_utils.caching_scope_local.in_caching_scope():
return self.cached_read_value()
return self._v.read_value()
def sparse_read(self, indices, name=None):
return self._v.sparse_read(indices, name=name)
def cached_read_value(self):
if (distribute_utils.caching_scope_local.new_cache_scope_count >
self._current_new_cache_scope_count):
self._current_new_cache_scope_count += 1
self._cache = None
with ops.device("CPU:0"):
if self._cache is not None:
return self._cache
else:
self._cache = array_ops.identity(self._v)
return self._cache
def assign_sub(self, *args, **kwargs):
return self._v.assign_sub(*args, **kwargs)
def assign_add(self, *args, **kwargs):
return self._v.assign_add(*args, **kwargs)
def assign(self, *args, **kwargs):
return self._v.assign(*args, **kwargs)
@property
def initializer(self):
return self._v.initializer
def initialized_value(self):
return self._v.initialized_value()
@property
def initial_value(self):
return self._v.initial_value
@property
def op(self):
return self._v.op
def value(self):
if distribute_utils.caching_scope_local.in_caching_scope():
return self.cached_read_value()
return self._v.value()
def eval(self, session=None):
return self._v.eval(session)
@property
def graph(self):
return self._v.graph
@property
def device(self):
return self._v.device
@property
def shape(self):
return self._v.shape
@property
def synchronization(self):
return self._v.synchronization
@property
def name(self):
return self._v.name
@property
def trainable(self):
return self._v.trainable
@property
def dtype(self):
return self._v.dtype
@property
def constraint(self):
return self._v.constraint
def __array__(self, dtype=None):
return np.asarray(self.numpy(), dtype=dtype)
def __complex__(self):
return complex(self.value().numpy())
def __int__(self):
return int(self.value().numpy())
def __float__(self):
return float(self.value().numpy())
def numpy(self):
if context.executing_eagerly():
return self.read_value().numpy()
else:
raise NotImplementedError(
"numpy() is only available when eager execution is enabled.")
def __str__(self):
return str(self._v)
def __repr__(self):
return repr(self._v)
def _should_act_as_resource_variable(self):
"""Pass resource_variable_ops.is_resource_variable check."""
pass
def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False):
if distribute_utils.caching_scope_local.in_caching_scope():
return self.cached_read_value()
return self._v._dense_var_to_tensor(dtype=dtype, name=name, as_ref=False) # pylint: disable=protected-access
@classmethod
def _overload_overloadable_operators(cls):
"""Register overloads for all operators."""
for operator in ops.Tensor.OVERLOADABLE_OPERATORS:
# Overloading __eq__ or __ne__ does not work as expected.
if operator == "__eq__" or operator == "__ne__":
continue
cls._tensor_overload_operator(operator)
@classmethod
def _tensor_overload_operator(cls, operator):
"""Delegate an operator overload to `ops.Tensor`."""
tensor_operator = getattr(ops.Tensor, operator)
def _operator(v, *args, **kwargs):
return tensor_operator(v.value(), *args, **kwargs) # pylint: disable=protected-access
setattr(cls, operator, _operator)
def _gather_saveables_for_checkpoint(self):
return {trackable.VARIABLE_VALUE_KEY: self._v}
def _export_to_saved_model_graph(self, object_map, tensor_map,
options, **kwargs):
"""For implementing `Trackable`."""
# By delegating this method to the wrapped variable, SavedModel with
# AggregatingVariable are identical to SavedModel with normal variables.
resource_list = self._v._export_to_saved_model_graph(object_map, tensor_map, # pylint:disable=protected-access
options, **kwargs)
object_map[self] = object_map[self._v]
return resource_list
# Register a conversion function which reads the value of the variable,
# allowing instances of the class to be used as tensors.
def _tensor_conversion_aggregate(var, dtype=None, name=None, as_ref=False):
return var._dense_var_to_tensor(dtype, name, as_ref) # pylint: disable=protected-access
tensor_conversion_registry.register_tensor_conversion_function(
AggregatingVariable, _tensor_conversion_aggregate)
# Register a conversion function which reads the value of the variable,
# allowing instances of the class to be used as tensors.
def _tensor_conversion_caching(var, dtype=None, name=None, as_ref=False):
return var._dense_var_to_tensor(dtype, name, as_ref) # pylint: disable=protected-access
tensor_conversion_registry.register_tensor_conversion_function(
CachingVariable, _tensor_conversion_caching)
CachingVariable._overload_overloadable_operators() # pylint: disable=protected-access
class PerWorkerVariable(resource_variable_ops.BaseResourceVariable):
"""A wrapper around unsynced variables created on workers.
Overrides the Variable's handle to use the appropriate worker's variable
handle at call time. In doing so this class can support the built-in
`Variable` methods, but it is experimental.
All per-worker values can be read and retrieved as a list via
`PerWorkerVariable.read_all()`.
"""
def __init__(self, strategy, next_creator, **kwargs):
self._coordinator = strategy._cluster_coordinator
self._per_worker_vars = None
self._next_creator = functools.partial(next_creator, **kwargs)
self._coordinator_instance = next_creator(**kwargs)
# Set ResourceVariable attributes based on kwargs
if kwargs.get("in_graph_mode") is None:
with ops.init_scope():
self._in_graph_mode = not context.executing_eagerly()
else:
self._in_graph_mode = kwargs["in_graph_mode"]
self._cached_value = None
self._shape = (
tensor_shape.as_shape(kwargs["shape"]) if kwargs.get("shape") else None
)
self._dtype = (
dtypes.as_dtype(kwargs["dtype"]) if kwargs.get("dtype") else None
)
self._trainable = False # not supported
self._unique_id = kwargs.get("unique_id")
if kwargs.get("handle_name") is None:
self._handle_name = "Variable:0"
else:
self._handle_name = kwargs["handle_name"] + ":0"
@classmethod
def _variable_call(cls, *args, **kwargs):
"""Override to be a no-op to avoid metaclass creating ResourceVariables."""
return None
@property
def handle(self):
self._maybe_create_per_worker_vars()
closure, spec = self.handle_call_time_value()
return ops.get_default_graph().capture_call_time_value(
closure,
spec)
def handle_call_time_value(self):
"""Returns a closure to run for a handle at call time and its spec.
This function is called in self.handle to create a placeholder
which returns a handle on some worker or on the coordinator.
"""
def closure():
dispatch_context = coordinator_context.get_current_dispatch_context()
if dispatch_context:
remote_value = self._per_worker_vars._values[ # pylint: disable=protected-access
dispatch_context.worker_index]
ret = dispatch_context.maybe_get_remote_value(remote_value)
return ret.handle
else:
# Only needed for tracing
return self._coordinator_instance.handle
return closure, tensor_spec.TensorSpec(
shape=self.shape, dtype=dtypes.resource)
def _maybe_create_per_worker_vars(self):
"""Create variable on each worker if it hasn't been created."""
if not self._per_worker_vars:
self._per_worker_vars = (
self._coordinator._create_per_worker_resources(self._next_creator)) # pylint: disable=protected-access
def read_all(self):
"""Synchronously read variables from all workers into a list of Tensors."""
return [wv.get() for wv in self._per_worker_vars._values] # pylint: disable=protected-access
class DistributedTable(lookup_ops.StaticHashTable):
"""A distributed StaticHashTable for ParameterServerStrategy.
An instance of DistributedTable has copies of a StaticHashTable and its
resource handle on the coordinator of each worker, created at the
DistributedTable instance initialization time with initializers on each
worker. Users can call methods on a DistributedTable as if it were a
StaticHashTable, which leads to execution with the resource local to the
consumer worker (or the coordinator, if calling from the coordinator). This
implementation relies on the fact that the methods of StaticHashTable are
queried with the resource handle (instead of the python object).
Currently, at saving time, a DistributedTable is saved as a StaticHashTable on
the coordinator, and restoring a DistributedTable from SavedModel is not
supported.
"""
def __init__(self, strategy, wrapped_creator):
distribute_lib.distribution_strategy_input_api_counter.get_cell(
self.__class__.__name__, "PSSDistributedLookupTable").increase_by(1)
self._coordinator_instance = wrapped_creator()
self._wrapped_creator = wrapped_creator
self._coordinator = strategy._cluster_coordinator
# self._distributed_table is a RemoteValue mapping worker_index to
# RemoteValue that wraps a resource handle on the worker
self._distributed_table = None
self._distributed_table_creation_lock = threading.Lock()
if not save_context.in_save_context():
self._maybe_build_distributed_table()
def __getattr__(self, attr):
# This allows copy.copy(DistributedTable), e.g. at saving time.
# (DistributedVariable uses the same fix.) When copying an object, copy.copy
# doesn't invoke its __init__ method, instead it makes a new empty object,
# then copies the attributes over. copy.copy looks for attributes like
# "__setstate__" in case the object implements its custom unpickling. Since
# DistributedTable doesn't have those attributes defined, __getattr__ will
# be invoked, which tries to access the `_coordinator_instance` attribute.
# But that doesn't exist either because this is an empty object, and again
# __getattr__ is invoked, leading to an infinite recursion.
if attr == "_coordinator_instance":
raise AttributeError()
if attr in self._coordinator_instance.__dict__:
attr_value = self._coordinator_instance.__dict__[attr]
if callable(attr_value):
def wrapper(*args, **kwargs):
return attr_value(self, *args, **kwargs)
return wrapper
elif isinstance(attr_value, property):
return attr_value
else:
return getattr(self._coordinator_instance, attr)
else:
return getattr(self._coordinator_instance, attr)
def resource_handle_call_time_value(self):
"""Returns a closure to run for a resource handle at call time and its spec.
This function is called in self.resource_handle to create a placeholder
which returns a resource handle on some worker or on the coordinator.
"""
def closure():
# function to be evaluated at function call time, returning a nest of
# tensors compatible with `spec`.
dispatch_context = coordinator_context.get_current_dispatch_context()
if dispatch_context:
remote_value = self._distributed_table._values[ # pylint: disable=protected-access
dispatch_context.worker_index]
ret = dispatch_context.maybe_get_remote_value(remote_value)
return ret
else:
return self._coordinator_instance.resource_handle
return closure, tensor_spec.TensorSpec([], dtype=dtypes.resource)
def _maybe_build_distributed_table(self):
"""Create table objects and resources on each worker if hasn't been created."""
with self._distributed_table_creation_lock:
if not self._distributed_table:
def create_copy():
new_table = self._wrapped_creator()
ret = new_table.resource_handle
return ret
self._distributed_table = (
self._coordinator._create_per_worker_resources(create_copy)) # pylint: disable=protected-access
@property
def resource_handle(self):
if context.executing_eagerly() or save_context.in_save_context():
return self._coordinator_instance.resource_handle
else:
self._maybe_build_distributed_table()
closure, spec = self.resource_handle_call_time_value()
return ops.get_default_graph().capture_call_time_value(
closure,
spec,
default_value=self._coordinator_instance.resource_handle)
@property
def is_distributed_table(self):
return True
def __tf_experimental_restore_capture__(
self, concrete_function, internal_capture):
closure, spec = self.resource_handle_call_time_value()
concrete_function.graph.replace_capture_with_deferred_capture(
self._coordinator_instance.resource_handle,
closure,
spec,
default_value=self._coordinator_instance.resource_handle,
placeholder=internal_capture)
return concrete_function.graph.deferred_external_captures[-1]
_local_resource_restore_context = threading.local()
def get_current_local_resource_restore_context():
try:
return _local_resource_restore_context.current
except AttributeError:
return None
@contextlib.contextmanager
def with_local_resource_restore_context(instance):
previous_context = getattr(_local_resource_restore_context, "current", None)
_local_resource_restore_context.current = LocalResourceRestoreContext(
instance)
yield
_local_resource_restore_context.current = previous_context
class LocalResourceRestoreContext(object):
"""Class holding information of a distributed instance, e.g. StaticHashTable.
Pairing use with context manager `with_local_resource_restore_context` allows
operations under this context manager to conveniently gets information of a
component of the `RestoredDistributedTable` (and other restored distributed
`CapturableResource` if we're supporting their distribution in the future),
instead of looking it up from the mapping of the worker-to-resource handle.
This is especially useful when we know which instance the operations should
execute with and the mapping is not available yet.
"""
def __init__(self, instance):
self.instance = instance
class RestoredDistributedTable(DistributedTable):
"""A restored and distributed StaticHashTable for ParameterServerStrategy."""
def __init__(self, strategy, wrapped_creator):
# Wait for all resource functions to have been set before building the table
self._has_resource_functions = threading.Condition()
super().__init__(strategy, wrapped_creator)
def resource_handle_call_time_value(self):
"""Returns a closure to run for a resource handle at call time and its spec.
This function is called in self.resource_handle to create a placeholder
which returns a resource handle on some worker or on the coordinator.
"""
def closure():
# function to be evaluated at function call time, returning a nest of
# tensors compatible with `spec`.
dispatch_context = coordinator_context.get_current_dispatch_context()
if dispatch_context:
local_resource_restore_context = (
get_current_local_resource_restore_context())
# A LocalResourceRestoreContext is entered in the process of remote
# table creation and initialization if we're in the process of loading
# from a SavedModel. A LocalResourceRestoreContext carries the
# information regarding which table is being created and initialized. In
# order to initialize a table, we need the restored `_initialize`
# function, which captures this closure as table resource. And when this
# closure is executed, we will read the table info from the
# LocalResourceRestoreContext and return its handle, rather than
# following the normal procedure of fetching from
# `self._distributed_table`, because we're still in the middle of
# building `self._distributed_table`.
if local_resource_restore_context:
remote_value = local_resource_restore_context.instance.resource_handle
else:
remote_value = self._distributed_table._values[ # pylint: disable=protected-access
dispatch_context.worker_index]
ret = dispatch_context.maybe_get_remote_value(remote_value)
return ret
else:
return self._coordinator_instance.resource_handle
return closure, tensor_spec.TensorSpec(shape=(), dtype=dtypes.resource)
def __setattr__(self, name, value):
if name in TRACKABLE_RESOURCE_METHODS:
# When a StaticHashTable is loaded with `tf.saved_model.load`, it becomes
# a RestoredResource with dummy `_create_resource`, `_initialize`, and
# `_destroy_resource" methods. Similarly, when loaded with
# `tf.keras.models.load_model`, its initializer becomes a dummy one. In
# both cases, these methods needs to be set to some RestoredFunctions
# through `__setattr__`. Thus we need to store and set these methods for
# the distributed tables (a.k.a. `self._distributed_table`) on the
# workers too, besides setting for the coordinator instance. However, we
# cannot set them at this point, since the distributed tables have not
# been created. We store them in '_restored_function' and set them to the
# distributed tables when they're created in
# `self._maybe_build_distributed_table.create_copy`.
if not hasattr(self, "_restored_function"):
self._restored_function = {}
self._restored_function[name] = value
if all(method in self._restored_function
for method in TRACKABLE_RESOURCE_METHODS):
with self._has_resource_functions:
self._has_resource_functions.notify_all()
return self._coordinator_instance.__setattr__(name, value)
else:
return super(RestoredDistributedTable, self).__setattr__(name, value)
def _create_resource(self):
"""A function that creates a resource handle for a table on coordinator."""
return self._coordinator_instance._create_resource() # pylint: disable=protected-access
def _initialize(self):
"""A function that initializes the resource."""
return self._coordinator_instance._initialize() # pylint: disable=protected-access
def _destroy_resource(self):
"""A function that destroys the resource."""
return self._coordinator_instance._destroy_resource() # pylint: disable=protected-access
def _maybe_build_distributed_table(self):
"""Create table objects and resources on each worker if hasn't been created."""
with self._distributed_table_creation_lock:
if not self._distributed_table:
def create_copy():
new_table = self._wrapped_creator()
# Wait until all resource functions are available before setting them
# on new_table.
with self._has_resource_functions:
while not hasattr(self, "_restored_function") or any(
method not in self._restored_function
for method in TRACKABLE_RESOURCE_METHODS):
self._has_resource_functions.wait()
if hasattr(self, "_restored_function"):
with with_local_resource_restore_context(new_table):
for name, tf_function in self._restored_function.items():
setattr(new_table, name, tf_function)
init_op = new_table._initialize() # pylint: disable=protected-access
if not context.executing_eagerly():
ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
ret = new_table.resource_handle
return ret
self._distributed_table = (
self._coordinator._create_per_worker_resources(create_copy)) # pylint: disable=protected-access