blob: c944c9e22e032f6b45780590021dd89a83cc6865 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for XLA JIT compiler."""
import platform
import unittest
import numpy as np
import six
from tensorflow.compiler.tests import xla_test
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack # pylint: disable=g-direct-tensorflow-import
from tensorflow.python.ops import bitwise_ops
from tensorflow.python.ops import gen_functional_ops
from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import googletest
def nhwc_to_format(x, data_format):
"""Converts a numpy array from NHWC format to `data_format`."""
rank = len(x.shape)
if data_format == "NCHW":
return np.transpose(x, [0, rank - 1] + list(range(1, rank - 1)))
elif data_format == "NHWC":
return x
else:
raise ValueError("Unknown format {}".format(data_format))
class UnaryOpsTest(xla_test.XLATestCase):
"""Test cases for unary operators."""
def _assertOpOutputMatchesExpected(self,
op,
inp,
expected,
equality_test=None,
rtol=1e-3,
atol=1e-5):
"""Verifies that 'op' produces 'expected' when fed input 'inp' .
Args:
op: operator to test
inp: numpy input array to use as input to 'op'.
expected: numpy array representing the expected output of 'op'.
equality_test: either None, or a function that tests two numpy arrays for
equality. If None, self.assertAllClose is used.
rtol: relative tolerance for equality test.
atol: absolute tolerance for equality test.
"""
with self.session() as session:
with self.test_scope():
pinp = array_ops.placeholder(
dtypes.as_dtype(inp.dtype), inp.shape, name="a")
output = op(pinp)
result = session.run(output, {pinp: inp})
if equality_test is None:
self.assertEqual(output.dtype, expected.dtype)
self.assertAllCloseAccordingToType(
expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03)
else:
equality_test(result, expected, rtol=rtol, atol=atol)
def ListsAreClose(self, result, expected, rtol, atol):
"""Tests closeness of two lists of floats."""
self.assertEqual(len(result), len(expected))
for i in range(len(result)):
self.assertAllClose(result[i], expected[i], rtol, atol)
def AssertCloseAndSorted(self, result, expected, rtol, atol):
"""Tests that result and expeted are both close and sorted."""
self.assertAllClose(result, expected, rtol, atol)
self.assertAllEqual(np.sort(result), result)
def AssertAllEqual(self, result, expected, rtol, atol):
"""Tests that result and expeted are exactly equal."""
self.assertAllEqual(result, expected)
def testAllTypeOps(self):
for dtype in self.numeric_types - {np.int8, np.uint8}:
self._assertOpOutputMatchesExpected(
array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype),
np.array(
[[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.diag_part,
np.arange(36).reshape([2, 3, 2, 3]).astype(dtype),
np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype),
np.array(
[[[[1, 0], [0, 0]], [[0, 2], [0, 0]]], [[[0, 0], [3, 0]],
[[0, 0], [0, 4]]]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.identity,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[-1, 1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.prevent_gradient,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[-1, 1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.squeeze,
np.array([[[[[]]]]], dtype=dtype),
expected=np.array([], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.squeeze,
np.array([[[1], [2]]], dtype=dtype),
expected=np.array([1, 2], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.squeeze,
np.array([[[1]], [[2]]], dtype=dtype),
expected=np.array([1, 2], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.squeeze,
np.array([[[1, 2], [3, 4]]], dtype=dtype),
expected=np.array([[1, 2], [3, 4]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.stop_gradient,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[-1, 1]], dtype=dtype))
def testLog(self):
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
tol = 1e-4 if dtype == np.float32 else 1e-9
# pylint: disable=invalid-unary-operand-type
x = np.linspace(-np.e, np.e, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
x = np.linspace(0., np.pi * 1e30, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
def testSin(self):
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
tol = 1e-6 if dtype == np.float32 else 1e-12
x = np.linspace(-4 * np.e, 4 * np.e, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=tol)
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=tol)
if dtype == np.float64:
x = np.linspace(0., np.e * 1e8, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=1e-5)
def testCos(self):
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
tol = 1e-6 if dtype == np.float32 else 1e-12
x = np.linspace(-4 * np.e, 4 * np.e, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=tol)
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=tol)
if dtype == np.float64:
x = np.linspace(0., np.e * 1e8, num=1000, dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=1e-5)
def testFloatOps(self):
for dtype in self.float_types:
x = np.arange(-0.90, 0.90, 0.25)
self._assertOpOutputMatchesExpected(
math_ops.acos, x.astype(dtype), expected=np.arccos(x).astype(dtype))
self._assertOpOutputMatchesExpected(
math_ops.asin, x.astype(dtype), expected=np.arcsin(x).astype(dtype))
x = np.arange(-3, 3).reshape(1, 3, 2)
self._assertOpOutputMatchesExpected(
math_ops.atan, x.astype(dtype), expected=np.arctan(x).astype(dtype))
self._assertOpOutputMatchesExpected(
math_ops.acosh,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array(
[0, 1.3169579, 1.76274717, 2.06343707], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.asinh,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array(
[0.88137359, 1.44363548, 1.81844646, 2.09471255], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.atanh,
np.array([0.1, 0.2, 0.3, 0.4], dtype=dtype),
expected=np.array(
[0.10033535, 0.20273255, 0.3095196, 0.42364893], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.ceil,
np.array([[-1.7, 1.2]], dtype=dtype),
expected=np.array([[-1, 2]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.cosh,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array(
[1.54308063, 3.76219569, 10.067662, 27.30823284], dtype=dtype))
# Disable float16 testing for now
if dtype != np.float16:
x = np.arange(-10, 10, 1).astype(dtype)
with self.session() as session:
erf_x = session.run(math_ops.erf(x))
erfc_x = session.run(math_ops.erfc(x))
self._assertOpOutputMatchesExpected(math_ops.erf, x, expected=erf_x)
self._assertOpOutputMatchesExpected(math_ops.erfc, x, expected=erfc_x)
self._assertOpOutputMatchesExpected(
math_ops.exp,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[0.36787945, 2.7182817]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.expm1,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[-0.63212056, 1.71828183]], dtype=dtype),
rtol=1e-5)
self._assertOpOutputMatchesExpected(
math_ops.floor,
np.array([[-1.7, 1.2]], dtype=dtype),
expected=np.array([[-2, 1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.is_finite,
np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]],
dtype=dtype),
expected=np.array([[0, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=np.bool_))
# Tests for tf.nn ops.
self._assertOpOutputMatchesExpected(
nn_ops.l2_loss, np.array([[[]]], dtype=dtype), expected=dtype(0))
self._assertOpOutputMatchesExpected(nn_ops.l2_loss, dtype(4), dtype(8))
self._assertOpOutputMatchesExpected(
nn_ops.l2_loss, np.array([[-2, 4]], dtype=dtype), expected=dtype(10))
self._assertOpOutputMatchesExpected(
math_ops.reciprocal,
np.array([[1, 2]], dtype=dtype),
expected=np.array([[1, 0.5]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.log,
np.array([[1, 2]], dtype=dtype),
expected=np.array([[0, 0.69314718]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sin,
np.array([[1, 2]], dtype=dtype),
expected=np.array([[0.841478, 0.909302]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.cos,
np.array([[1, 2]], dtype=dtype),
expected=np.array([[0.540297, -0.41614]], dtype=dtype))
# Confirm that log1p will remain precise across a range of small values.
self._assertOpOutputMatchesExpected(
math_ops.log1p,
np.array([[1e-14, 1e-15, 0.6, 2] + [x * 1e-5 for x in range(1, 20)]],
dtype=dtype),
expected=np.log1p(
np.array(
[[1e-14, 1e-15, 0.6, 2] + [x * 1e-5 for x in range(1, 20)]],
dtype=dtype)).astype(dtype),
rtol=1e-15 if dtype == np.float64 else 1e-4,
atol=1e-15 if dtype == np.float64 else 1e-4)
self._assertOpOutputMatchesExpected(
math_ops.rint,
np.array(
[[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5],
[0.5, 1.5, 2.5, 3.5]],
dtype=dtype),
expected=np.array(
[[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.round,
np.array(
[[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5],
[0.5, 1.5, 2.5, 3.5]],
dtype=dtype),
expected=np.array(
[[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.rsqrt,
np.array([[4, 16]], dtype=dtype),
expected=np.array([[0.5, 0.25]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sigmoid,
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
expected=np.array(
[[0.7310586, 0.7310586, 0.7310586, 0.7310586],
[0.7310586, 0.880797, 0.95257413, 0.98201376]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sigmoid,
np.array([-300, -150, 0, 150, 300], dtype=dtype),
expected=np.array([0, 0, 0.5, 1, 1], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sinh,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array(
[1.17520119, 3.62686041, 10.01787493, 27.2899172], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sqrt,
np.array([[4, 9]], dtype=dtype),
expected=np.array([[2, 3]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.tan,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array(
[1.55740772, -2.18503986, -0.14254654, 1.15782128], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.tanh,
np.array([[1, 2, 3, 4], [np.inf, -np.inf, np.nan, 20],
[19, -19, 22, -22]],
dtype=dtype),
expected=np.array(
[[0.76159418, 0.96402758, 0.99505478, 0.99932933],
[1.0, -1.0, np.nan, 1.0], [1.0, -1.0, 1.0, -1.0]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.log_softmax,
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
expected=np.array(
[[-1.3862944, -1.3862944, -1.3862944, -1.3862944],
[-3.4401896, -2.4401896, -1.4401897, -0.44018969]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.elu,
np.array([[-1, 0, 1, -1e-6]], dtype=dtype),
expected=np.array([[-0.63212056, 0, 1, -9.999995e-07]], dtype=dtype),
rtol=1e-5,
atol=1e-6)
self._assertOpOutputMatchesExpected(
nn_ops.selu,
np.array([[-1, 0, 1, -1e-5]], dtype=dtype),
expected=np.array(
[[-1.11133074, 0., 1.05070099, -1.758090550379974e-05]],
dtype=dtype),
rtol=1e-5,
atol=1e-6)
self._assertOpOutputMatchesExpected(
nn_ops.relu,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[0, 1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.relu6,
np.array([[-0.05, 6.05, 5]], dtype=dtype),
expected=np.array([[0, 6, 5]], dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.leaky_relu,
np.array([[-2, -1, 0, 1, 2]], dtype=dtype),
expected=np.array([[-0.4, -0.2, 0.0, 1.0, 2.0]], dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.softmax,
np.array([1, 2, 3, 4], dtype=dtype),
expected=np.array([0.032058604, 0.087144323, 0.23688284, 0.64391428],
dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.softmax,
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
expected=np.array(
[[0.25, 0.25, 0.25, 0.25],
[0.032058604, 0.087144323, 0.23688284, 0.64391428]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.softmax,
np.array([[[1, 1], [1, 1]], [[1, 2], [3, 4]]], dtype=dtype),
expected=np.array(
[[[0.5, 0.5], [0.5, 0.5]],
[[0.26894142, 0.73105858], [0.26894142, 0.73105858]]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
nn_ops.softsign,
np.array([[-2, -1, 0, 1, 2]], dtype=dtype),
expected=np.array(
[[-0.66666669, -0.5, 0, 0.5, 0.66666669]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.sign,
np.array([[-2.0, -1.0, -0.0, +0.0, 1.0, 2.0,
float("nan")]],
dtype=dtype),
expected=np.array([[-1.0, -1.0, -0.0, +0.0, 1.0, 1.0,
float("nan")]],
dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.is_finite,
np.array([[42, float("inf"), -123], [float("nan"), 0, -0.0]],
dtype=dtype),
expected=np.array([[True, False, True], [False, True, True]],
dtype=np.bool_))
self._assertOpOutputMatchesExpected(
math_ops.lgamma,
np.array(0.5, dtype=dtype),
expected=np.array(np.log(np.pi) / 2, dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.lgamma,
np.array(
[[1, 2, 3], [4, 5, 6], [1 / 2, 3 / 2, 5 / 2],
[-3 / 2, -7 / 2, -11 / 2]],
dtype=dtype),
expected=np.array(
[
[0, 0, np.log(2.0)],
[np.log(6.0), np.log(24.0),
np.log(120)],
[
np.log(np.pi) / 2,
np.log(np.pi) / 2 - np.log(2),
np.log(np.pi) / 2 - np.log(4) + np.log(3)
],
[
np.log(np.pi) / 2 - np.log(3) + np.log(4),
np.log(np.pi) / 2 - np.log(105) + np.log(16),
np.log(np.pi) / 2 - np.log(10395) + np.log(64),
],
],
dtype=dtype))
# The actual result is complex. Take the real part.
self._assertOpOutputMatchesExpected(
math_ops.lgamma,
np.array([-1 / 2, -5 / 2, -9 / 2], dtype=dtype),
expected=np.array(
[
np.log(np.pi) / 2 + np.log(2),
np.log(np.pi) / 2 - np.log(15) + np.log(8),
np.log(np.pi) / 2 - np.log(945) + np.log(32),
],
dtype=dtype),
atol=1e-4)
self._assertOpOutputMatchesExpected(
math_ops.digamma,
np.array(
[[1.0, 0.5, 1 / 3.0], [0.25, 1 / 6.0, 0.125], [2.0, 3.0, 4.0],
[6.0, 8.0, 9.0]],
dtype=dtype),
expected=np.array(
[
[
-np.euler_gamma, -2 * np.log(2) - np.euler_gamma,
-np.pi / 2 / np.sqrt(3) - 3 * np.log(3) / 2 -
np.euler_gamma
],
[
-np.pi / 2 - 3 * np.log(2) - np.euler_gamma,
-np.pi * np.sqrt(3) / 2 - 2 * np.log(2) -
3 * np.log(3) / 2 - np.euler_gamma,
-np.pi / 2 - 4 * np.log(2) -
(np.pi + np.log(2 + np.sqrt(2)) - np.log(2 - np.sqrt(2)))
/ np.sqrt(2) - np.euler_gamma
],
[
1 - np.euler_gamma, 1.5 - np.euler_gamma,
11 / 6.0 - np.euler_gamma
],
[
137 / 60.0 - np.euler_gamma, 363 / 140.0 - np.euler_gamma,
761 / 280.0 - np.euler_gamma
],
],
dtype=dtype))
def testSigmoidNumericalStability(self):
for dtype in self.float_types:
if dtype != np.float16:
self._assertOpOutputMatchesExpected(
lambda x: math_ops.sigmoid(x) / math_ops.log1p(math_ops.exp(x)),
np.array([-40, 40], dtype=dtype),
expected=np.array([1.0, 0.025], dtype=dtype))
def testQuantizeAndDequantize(self):
for dtype in self.float_types:
def quantize_and_dequantize_v2(x):
return array_ops.quantize_and_dequantize(
x, -127, 127, signed_input=True, num_bits=8)
def quantize_and_dequantize_v3(x):
return array_ops.quantize_and_dequantize_v3(
x, -127, 127, num_bits=8, signed_input=True, range_given=False)
def quantize_and_dequantize_v4(x):
return array_ops.quantize_and_dequantize_v2(
x, -127, 127, signed_input=True, num_bits=8)
test_fns = (quantize_and_dequantize_v2, quantize_and_dequantize_v3,
quantize_and_dequantize_v4)
for test_fn in test_fns:
self._assertOpOutputMatchesExpected(
test_fn,
np.array([-1, -0.5, 0, 0.3], dtype=dtype),
expected=np.array([-1., -0.5, 0., 0.296875], dtype=dtype))
def quantize_and_dequantize_v2_round_half_up(x):
return array_ops.quantize_and_dequantize(
x,
-1.0,
1.0,
signed_input=True,
num_bits=8,
range_given=True,
round_mode="HALF_UP")
self._assertOpOutputMatchesExpected(
quantize_and_dequantize_v2_round_half_up,
np.array([-0.8, -0.4, 0, 0.3, 0.8, -2, 33], dtype=dtype),
expected=np.array([
-102.0 / 127,
-51.0 / 127,
0,
38.0 / 127,
102.0 / 127,
-128.0 / 127,
1,
],
dtype=dtype))
def quantize_and_dequantize_v2_round_half_to_even(x):
return array_ops.quantize_and_dequantize(
x,
-1.0,
1.0,
signed_input=True,
num_bits=8,
range_given=True,
round_mode="HALF_TO_EVEN")
self._assertOpOutputMatchesExpected(
quantize_and_dequantize_v2_round_half_to_even,
np.array([-0.8, -0.4, 0, 0.3, 0.8, -2, 33], dtype=dtype),
expected=np.array([
-102.0 / 127,
-51.0 / 127,
0,
38.0 / 127,
102.0 / 127,
-128.0 / 127,
1,
],
dtype=dtype))
def testComplexOps(self):
for dtype in self.complex_types:
self._assertOpOutputMatchesExpected(
math_ops.acosh,
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
expected=np.arccosh(
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.asinh,
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
expected=np.arcsinh(
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.atanh,
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
expected=np.arctanh(
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.cosh,
np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype),
expected=np.cosh(np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.sinh,
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
expected=np.sinh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.exp,
np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype),
expected=np.exp(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.expm1,
np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype),
expected=np.expm1(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype)),
rtol=1e-6,
atol=1e-6)
# For real part close to zero, or imaginary part close to a multiple of
# pi.
self._assertOpOutputMatchesExpected(
math_ops.expm1,
np.array([[1e-11 + 1j, -1e-11 - 1j, 1. + 1e-11j,
-1. - 1e-11j, 1e-13j + 1e-13j]], dtype=dtype),
# TODO(srvasude): Use numpy as the source of truth after we depend on
# latest numpy with this pull request:
# https://github.com/numpy/numpy/pull/15110.
# The numbers below were generated by scipy.special.expm1.
expected=np.array([[
-4.59697694e-01+8.41470985e-01j,
-4.59697694e-01-8.41470985e-01j,
1.71828183e+00+2.71828183e-11j,
-6.32120559e-01-3.67879441e-12j,
-2.00000000e-26+2.00000000e-13j]], dtype=dtype),
rtol=1e-09,
atol=1e-20)
self._assertOpOutputMatchesExpected(
math_ops.reciprocal,
np.array([[1, 2j, 2 + 3j]], dtype=dtype),
expected=1.0 / np.array([[1, 2j, 2 + 3j]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.log,
np.array([[5j, 3 - 2j]], dtype=dtype),
expected=np.log(np.array([[5j, 3 - 2j]], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.sin,
np.array([[5j, 3 - 2j]], dtype=dtype),
expected=np.sin(np.array([[5j, 3 - 2j]], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.cos,
np.array([[5j, 3 - 2j]], dtype=dtype),
expected=np.cos(np.array([[5j, 3 - 2j]], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.log1p,
np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype),
expected=np.log1p(
np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype)),
rtol=1e-4,
atol=1e-6)
val = np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)
self._assertOpOutputMatchesExpected(
math_ops.rsqrt, val, expected=1 / np.sqrt(val))
self._assertOpOutputMatchesExpected(
math_ops.sigmoid, val, expected=1 / (1 + np.exp(-val)))
self._assertOpOutputMatchesExpected(
math_ops.sqrt, val, expected=np.sqrt(val))
self._assertOpOutputMatchesExpected(
math_ops.tanh,
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
expected=np.tanh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.tan,
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
expected=np.tan(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
ctypes = {np.complex64: np.float32, np.complex128: np.float64}
self._assertOpOutputMatchesExpected(
math_ops.abs,
np.array([[3 - 4j, -1j, np.inf]], dtype=dtype),
expected=np.array([[5, 1, np.inf]], dtype=ctypes[dtype]))
self._assertOpOutputMatchesExpected(
math_ops.negative,
np.array([[-1 + 2j, -3j]], dtype=dtype),
expected=np.array([[1 - 2j, 3j]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.square,
np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype),
expected=np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype)**2)
self._assertOpOutputMatchesExpected(
array_ops.zeros_like,
np.array([[4j, 3 - 2j], [2, -1j]], dtype=dtype),
expected=np.array([[0, 0], [0, 0]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.ones_like,
np.array([[-4j, 3 + 2j], [2, -1j]], dtype=dtype),
expected=np.array([[1, 1], [1, 1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.angle,
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
expected=np.angle(np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype)))
self._assertOpOutputMatchesExpected(
math_ops.conj,
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
expected=np.array([1 - 3j, -4 - 7j, 2.7, 3j], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.imag,
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
expected=np.array([3, 7, 0, -3], dtype=ctypes[dtype]))
self._assertOpOutputMatchesExpected(
math_ops.real,
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
expected=np.array([1, -4, 2.7, 0], dtype=ctypes[dtype]))
def testIntOps(self):
for dtype in self.int_types:
self._assertOpOutputMatchesExpected(
bitwise_ops.invert,
np.array([0, -1, 1, 16, 42], dtype=dtype),
expected=np.array([-1, 0, -2, -17, -43], dtype=dtype))
# Test population_count for array inputs.
raw_inputs = [
0, 1, -1, 3, -3, 5, -5, 14, -14, 127, 128, 255, 256, 65535, 65536,
2**31 - 1, 2**31, 2**32 - 1, 2**32, -2**32 + 1, -2**32, -2**63 + 1,
2**63 - 1
]
# Only choose inputs which fit in the int dtype.
raw_inputs = list(
filter(lambda x: np.iinfo(dtype).min <= x <= np.iinfo(dtype).max,
raw_inputs))
inputs = np.array(raw_inputs, dtype=dtype)
def count_bits(x):
return sum(bin(z).count("1") for z in six.iterbytes(x.tobytes()))
truth = [count_bits(x) for x in inputs]
self._assertOpOutputMatchesExpected(
bitwise_ops.population_count,
inputs,
expected=np.array(truth, dtype=np.uint8),
equality_test=self.AssertAllEqual)
# Test population_count for scalar inputs.
for raw_inp in raw_inputs:
inp = dtype(raw_inp)
truth = count_bits(inp)
self._assertOpOutputMatchesExpected(
bitwise_ops.population_count,
inp,
expected=np.uint8(truth),
equality_test=self.AssertAllEqual)
def testNumericOps(self):
for dtype in self.numeric_types - {np.int8, np.uint8}:
self._assertOpOutputMatchesExpected(
math_ops.abs,
np.array([[2, -1]], dtype=dtype),
expected=np.array([[2, 1]], dtype=np.real(dtype(0)).dtype))
self._assertOpOutputMatchesExpected(
math_ops.negative,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([[1, -1]], dtype=dtype))
self._assertOpOutputMatchesExpected(
math_ops.square,
np.array([[-2, 3]], dtype=dtype),
expected=np.array([[4, 9]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.zeros_like,
np.array([[4, 3], [2, 1]], dtype=dtype),
expected=np.array([[0, 0], [0, 0]], dtype=dtype))
self._assertOpOutputMatchesExpected(
array_ops.ones_like,
np.array([[4, 3], [2, 1]], dtype=dtype),
expected=np.array([[1, 1], [1, 1]], dtype=dtype))
# TODO(phawkins): these tests fail unless fastmath optimizations
# are disabled. Use more robust IsInf/IsNaN detection and enable these
# tests.
@unittest.skip("test case fails in fast-math mode")
def testIsInfAndIsNan(self):
for dtype in self.float_types:
self._assertOpOutputMatchesExpected(
math_ops.is_inf,
np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]],
dtype=dtype),
expected=np.array([[1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.bool_))
self._assertOpOutputMatchesExpected(
math_ops.is_nan,
np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]],
dtype=dtype),
expected=np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.bool_))
self._assertOpOutputMatchesExpected(
math_ops.sign,
np.array([[np.nan]], dtype=dtype),
expected=np.array([[0.0]], dtype=dtype))
def testLogicalOps(self):
self._assertOpOutputMatchesExpected(
math_ops.logical_not,
np.array([[True, False], [False, True]], dtype=np.bool_),
expected=np.array([[False, True], [True, False]], dtype=np.bool_))
def testBiasAddGrad(self):
self._assertOpOutputMatchesExpected(
gen_nn_ops.bias_add_grad,
np.array([[1., 2.], [3., 4.]], dtype=np.float32),
expected=np.array([4., 6.], dtype=np.float32))
self._assertOpOutputMatchesExpected(
lambda x: gen_nn_ops.bias_add_grad(x, data_format="NCHW"),
np.array(
[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]], dtype=np.float32),
expected=np.array([14., 22.], dtype=np.float32))
def testCast(self):
types = {
dtypes.bool, dtypes.float32, dtypes.float64, dtypes.complex64,
dtypes.int32, dtypes.int64, dtypes.uint32, dtypes.uint64
}
for src_type in types:
for dst_type in types:
self._testCast(src_type, dst_type)
def testCastFp8(self):
if platform.system() == "Darwin":
# TODO(b/271327511): Fix issue where casts to FP8 very rarely result in
# NaN on Mac
self.skipTest("Casts to FP8 sometimes result in NaN on Mac")
fp8_types = {dtypes.float8_e5m2, dtypes.float8_e4m3fn}
other_types = {
dtypes.bool, dtypes.float32, dtypes.float64, dtypes.complex64,
dtypes.int32, dtypes.int64, dtypes.uint32, dtypes.uint64
}
for fp8_type in fp8_types:
for other_type in other_types | fp8_types:
self._testCast(fp8_type, other_type)
self._testCast(other_type, fp8_type)
def _testCast(self, src_type, dst_type):
with self.subTest(src_type=src_type, dst_type=dst_type):
shapes = [[], [4], [2, 3], [2, 0, 4]]
src_np_dtype = src_type.as_numpy_dtype
dst_np_dtype = dst_type.as_numpy_dtype
for shape in shapes:
src = np.arange(np.prod(shape)).astype(src_np_dtype)
if src_type in self.complex_tf_types:
src += (np.arange(np.prod(shape)) * 2j).astype(src_np_dtype)
src = src.reshape(shape)
dst = src.astype(dst_np_dtype)
self._assertOpOutputMatchesExpected(
lambda x, dst_type=dst_type: math_ops.cast(x, dst_type),
src,
expected=dst)
# Check special values.
if src_type.is_integer:
imin = np.iinfo(src_np_dtype).min
imax = np.iinfo(src_np_dtype).max
src = np.array([imin, imax, 0, 1, -1], dtype=src_np_dtype)
elif src_type in self.float_tf_types:
if dst_type.is_integer:
imin = np.iinfo(dst_np_dtype).min
imax = np.iinfo(dst_np_dtype).max // 2
src = np.array([imin, imax, 0, 1], dtype=src_np_dtype)
elif dst_type in self.float_tf_types:
fmin = np.finfo(dst_np_dtype).min
fmax = np.finfo(dst_np_dtype).max
tiny = np.finfo(dst_np_dtype).tiny
eps = np.finfo(dst_np_dtype).eps
src = np.array(
[fmin, fmax, np.nan, eps, -eps, tiny, -tiny, np.inf, -np.inf],
dtype=src_np_dtype)
dst = src.astype(dst_np_dtype)
self._assertOpOutputMatchesExpected(
lambda x, dst_type=dst_type: math_ops.cast(x, dst_type),
src,
expected=dst)
def testBitcast(self):
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.int32),
np.array([1, 0x3f800000], np.int32),
expected=np.array([1, 0x3f800000], np.int32))
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.float32),
np.array([1, 0x3f800000], np.int32),
expected=np.array([1e-45, 1.0], np.float32))
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.int32),
np.array([1e-45, 1.0], np.float32),
expected=np.array([1, 0x3f800000], np.int32))
if np.int64 in self.numeric_types:
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.int64),
np.array([1, 0x100000003f800000], np.uint64),
expected=np.array([1, 0x100000003f800000], np.int64))
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.uint64),
np.array([1, 0x100000003f800000], np.int64),
expected=np.array([1, 0x100000003f800000], np.uint64))
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.float64),
np.array(
[0, 0x3FF0000000000000, 0xc3af161421c8e000, 0x4032000000000007],
np.uint64,
),
expected=np.array(
[0, 1.0, -1.12e+18, 18.000000000000024869], np.float64
),
atol=0
)
def testBitcastInt8ToFloat(self):
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.float32),
np.array([[1, 0, 0, 0], [0xd0, 0x0f, 0x49, 0x40]], np.int8),
expected=np.array([1e-45, 3.14159], np.float32))
self._assertOpOutputMatchesExpected(
lambda x: array_ops.bitcast(x, dtypes.np.int8),
np.array([1e-45, 3.14159], np.float32),
expected=np.array([[1, 0, 0, 0], [0xd0, 0x0f, 0x49, 0x40]], np.int8))
def testInvertPermutation(self):
for np_dtype in [np.int32, np.int64]:
self._assertOpOutputMatchesExpected(
array_ops.invert_permutation,
np.array([1, 2, 0], np_dtype),
expected=np.array([2, 0, 1], dtype=np_dtype))
def testInvertPermutationTwiceIsNoop(self):
def invert_twice(x):
return array_ops.invert_permutation(array_ops.invert_permutation(x))
for np_dtype in [np.int32, np.int64]:
self._assertOpOutputMatchesExpected(
invert_twice,
np.array([1, 2, 0], np_dtype),
expected=np.array([1, 2, 0], dtype=np_dtype))
def testRank(self):
rank_op = lambda x: array_ops.rank_internal(x, optimize=False)
for dtype in self.numeric_types:
self._assertOpOutputMatchesExpected(
rank_op, dtype(7), expected=np.int32(0))
self._assertOpOutputMatchesExpected(
rank_op, np.array([[], []], dtype=dtype), expected=np.int32(2))
self._assertOpOutputMatchesExpected(
rank_op, np.array([-1, 1], dtype=dtype), expected=np.int32(1))
self._assertOpOutputMatchesExpected(
rank_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2))
self._assertOpOutputMatchesExpected(
rank_op,
np.array([[-1], [1], [4]], dtype=dtype),
expected=np.int32(2))
def testShape(self):
shape_op = lambda x: array_ops.shape_internal(x, optimize=False)
for dtype in self.numeric_types:
self._assertOpOutputMatchesExpected(
shape_op, dtype(7), expected=np.array([], dtype=np.int32))
self._assertOpOutputMatchesExpected(
shape_op,
np.array([[], []], dtype=dtype),
expected=np.array([2, 0], dtype=np.int32))
self._assertOpOutputMatchesExpected(
shape_op,
np.array([-1, 1], dtype=dtype),
expected=np.array([2], dtype=np.int32))
self._assertOpOutputMatchesExpected(
shape_op,
np.array([[-1, 1]], dtype=dtype),
expected=np.array([1, 2], dtype=np.int32))
self._assertOpOutputMatchesExpected(
shape_op,
np.array([[-1], [1], [4]], dtype=dtype),
expected=np.array([3, 1], dtype=np.int32))
def testSize(self):
size_op = lambda x: array_ops.size_internal(x, optimize=False)
for dtype in self.numeric_types:
self._assertOpOutputMatchesExpected(
size_op, dtype(7), expected=np.int32(1))
self._assertOpOutputMatchesExpected(
size_op, np.array([[], []], dtype=dtype), expected=np.int32(0))
self._assertOpOutputMatchesExpected(
size_op, np.array([-1, 1], dtype=dtype), expected=np.int32(2))
self._assertOpOutputMatchesExpected(
size_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2))
self._assertOpOutputMatchesExpected(
size_op,
np.array([[-1], [1], [4]], dtype=dtype),
expected=np.int32(3))
def testSizeWithInt64OutType(self):
def size_op(x):
return array_ops.size_internal(x, optimize=False, out_type=np.int64)
for dtype in self.numeric_types:
self._assertOpOutputMatchesExpected(
size_op,
np.array([[-1], [1], [4]], dtype=dtype),
expected=np.int64(3))
def testUnpack(self):
self._assertOpOutputMatchesExpected(
array_ops_stack.unstack,
np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32),
expected=[
np.array([1., 2.], dtype=np.float32),
np.array([3., 4.], dtype=np.float32),
np.array([5., 6.], dtype=np.float32),
],
equality_test=self.ListsAreClose)
self._assertOpOutputMatchesExpected(
lambda x: array_ops_stack.unstack(x, axis=1),
np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32),
expected=[
np.array([1., 3., 5.], dtype=np.float32),
np.array([2., 4., 6.], dtype=np.float32),
],
equality_test=self.ListsAreClose)
def testDepthToSpace(self):
def make_op(data_format):
def op(x):
return array_ops.depth_to_space(
x, block_size=2, data_format=data_format)
return op
for dtype in self.numeric_types:
for data_format in ["NCHW", "NHWC"]:
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format),
expected=nhwc_to_format(
np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format))
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array(
[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype),
data_format),
expected=nhwc_to_format(
np.array(
[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]],
dtype=dtype), data_format))
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array(
[[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
[13, 14, 15, 16]]]],
dtype=dtype), data_format),
expected=nhwc_to_format(
np.array(
[[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]],
dtype=dtype), data_format))
self._assertOpOutputMatchesExpected(
make_op("NCHW_VECT_C"),
np.arange(32, dtype=dtype).reshape((1, 8, 1, 1, 4)),
expected=np.array([[[[[0, 1, 2, 3], [8, 9, 10, 11]],
[[16, 17, 18, 19], [24, 25, 26, 27]]],
[[[4, 5, 6, 7], [12, 13, 14, 15]],
[[20, 21, 22, 23], [28, 29, 30, 31]]]]],
dtype=dtype))
def testSpaceToDepth(self):
def make_op(data_format):
def op(x):
return array_ops.space_to_depth(
x, block_size=2, data_format=data_format)
return op
for dtype in self.numeric_types:
for data_format in ["NCHW", "NHWC"]:
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format),
expected=nhwc_to_format(
np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format))
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array(
[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]],
dtype=dtype), data_format),
expected=nhwc_to_format(
np.array(
[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype),
data_format))
self._assertOpOutputMatchesExpected(
make_op(data_format),
nhwc_to_format(
np.array(
[[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]],
dtype=dtype), data_format),
expected=nhwc_to_format(
np.array(
[[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
[13, 14, 15, 16]]]],
dtype=dtype), data_format))
self._assertOpOutputMatchesExpected(
make_op("NCHW_VECT_C"),
np.arange(32, dtype=dtype).reshape((1, 2, 2, 2, 4)),
expected=np.array(
[[[[[0, 1, 2, 3]]], [[[16, 17, 18, 19]]], [[[4, 5, 6, 7]]],
[[[20, 21, 22, 23]]], [[[8, 9, 10, 11]]], [[[24, 25, 26, 27]]],
[[[12, 13, 14, 15]]], [[[28, 29, 30, 31]]]]],
dtype=dtype))
def _assertSoftplusMatchesExpected(self,
features,
dtype,
equality_test=None,
rtol=1e-6,
atol=9.1e-6):
features = np.array(features, dtype=dtype)
zero = np.asarray(0).astype(dtype)
expected = np.logaddexp(zero, features).astype(dtype)
self._assertOpOutputMatchesExpected(
nn_ops.softplus,
features,
expected=expected,
equality_test=equality_test,
rtol=rtol,
atol=atol)
def testSoftplus(self):
for dtype in self.float_types & {dtypes.float32, dtypes.float64}:
self._assertSoftplusMatchesExpected([[-2, 0, 8]], dtype)
self._assertSoftplusMatchesExpected(
[[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]], dtype)
if dtype == dtypes.bfloat16.as_numpy_dtype:
log_eps = np.log(np.finfo(np.float32).eps)
else:
log_eps = np.log(np.finfo(dtype).eps)
one = dtype(1)
ten = dtype(10)
self._assertSoftplusMatchesExpected([
log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten,
-log_eps, -log_eps - one, -log_eps + one, -log_eps - ten,
-log_eps + ten
], dtype)
self._assertSoftplusMatchesExpected(
[0.69302183, 0.69324386],
dtype,
equality_test=self.AssertCloseAndSorted,
rtol=9e-5,
atol=9e-5)
def testToBool(self):
for dtype in self.numeric_types - self.complex_types:
self._assertOpOutputMatchesExpected(
gen_functional_ops.to_bool,
np.array(5, dtype=dtype),
expected=np.array(True))
self._assertOpOutputMatchesExpected(
gen_functional_ops.to_bool,
np.array(0, dtype=dtype),
expected=np.array(False))
self._assertOpOutputMatchesExpected(
gen_functional_ops.to_bool,
np.array([], dtype=dtype),
expected=np.array(False))
self._assertOpOutputMatchesExpected(
gen_functional_ops.to_bool,
np.array([1, 2, 3], dtype=dtype),
expected=np.array(True))
if __name__ == "__main__":
googletest.main()