blob: 61c187cf7c43cfb71531b2e74c6b0220ef0fda85 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for stateless random-number generation ops."""
import functools
import os
from absl.testing import parameterized
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.python.client import device_lib
from tensorflow.python.eager import def_function
from tensorflow.python.framework import config
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.kernel_tests.random import util as \
random_test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_stateless_random_ops_v2
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import stateless_random_ops as stateless
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def xla_device():
devices = device_lib.list_local_devices()
def find_type(device_type):
for d in devices:
if d.device_type == device_type:
return d
return None
d = find_type('TPU') or find_type('XLA_GPU') or find_type('XLA_CPU')
if d is None:
raise ValueError('Cannot find any XLA device. Available devices:\n%s' %
devices)
return d
def _allowed_types(include_int=False):
allowed_types = {
dtypes.float64, dtypes.float32, dtypes.float16, dtypes.bfloat16
}
if include_int:
allowed_types.update({dtypes.int32, dtypes.int64})
return allowed_types
class StatelessRandomOpsTest(xla_test.XLATestCase, parameterized.TestCase):
"""Test cases for stateless random-number generator operators."""
def _random_types(self, include_int=False):
return self.all_tf_types & _allowed_types(include_int)
@test_util.run_v2_only
def testForcedCompile(self):
"""Tests whole-function forced-compilation.
This test checks that stateless_random_* can be used in forced-compilation
scenarios (e.g. TPU). The new version of stateless_random_* requires the
intermediate tensor `alg` to be compile-time constant, so we need to check
that this requirement won't prevent `seed` from depending on variables.
"""
if config.list_logical_devices('TPU'):
self.skipTest('To accommodate OSS, experimental_compile support for TPU '
'is not linked in.')
# GPU doesn't support int32 variables, so we use int64.
v = variables.Variable([1, 2], dtype=dtypes.int64)
@def_function.function(experimental_compile=True)
def f():
key, counter = (
gen_stateless_random_ops_v2.stateless_random_get_key_counter(
seed=math_ops.cast(v.read_value(), dtypes.int32)))
alg = gen_stateless_random_ops_v2.stateless_random_get_alg()
return gen_stateless_random_ops_v2.stateless_random_normal_v2(
shape=[], key=key, counter=counter, alg=alg)
f()
@test_util.run_v2_only
def testGetKeyCounterAlg(self):
seed = [1, 2]
key, counter = gen_stateless_random_ops_v2.stateless_random_get_key_counter(
seed)
self.assertAllEqual(key.shape, [1])
self.assertAllEqual(counter.shape, [2])
alg = gen_stateless_random_ops_v2.stateless_random_get_alg()
self.assertAllEqual(alg.shape, [])
@parameterized.named_parameters(
('_%s_%s' % (op_id, alg_id), op, alg_group) # pylint: disable=g-complex-comprehension
for alg_id, alg_group in enumerate([
[
stateless.Algorithm.PHILOX, stateless.Algorithm.PHILOX.value,
'philox'
],
[
stateless.Algorithm.THREEFRY, stateless.Algorithm.THREEFRY.value,
'threefry'
],
[
stateless.Algorithm.AUTO_SELECT,
stateless.Algorithm.AUTO_SELECT.value, 'auto_select', None
],
])
for op_id, op in enumerate([
stateless.stateless_random_normal,
stateless.stateless_truncated_normal,
functools.partial(
stateless.stateless_random_uniform,
dtype=dtypes.uint32,
minval=None,
maxval=None),
functools.partial(
stateless.stateless_random_uniform,
dtype=dtypes.int32,
maxval=100),
functools.partial(
stateless.stateless_random_uniform, dtype=dtypes.float32),
]))
@test_util.run_v2_only
def testAlg(self, op, alg_group):
"""Tests all values of `alg`."""
if config.list_logical_devices('TPU') or config.list_logical_devices('GPU'):
self.skipTest('Only _cpu tests linked in support for jit_compile on CPU.')
seed = [1, 2]
shape = [2, 3]
outputs = []
for alg in alg_group:
with ops.device('CPU'):
output = def_function.function(jit_compile=True)(op)(
shape=shape, seed=seed, alg=alg)
self.assertEqual(output.shape, shape)
outputs.append(output)
x = outputs[0]
for y in outputs[1:]:
self.assertAllEqual(x, y)
def testLargeNormal(self):
"""Tests an OOM bug of StatelessRandomNormalV2 on TPU."""
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
key, counter, alg = (gen_stateless_random_ops_v2.
stateless_random_get_key_counter_alg(seed_t))
x = gen_stateless_random_ops_v2.stateless_random_normal_v2(
shape=[1024, 32000], key=key, counter=counter, dtype=dtypes.float32,
alg=alg)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertAllEqual([1024, 32000], y.shape)
key, counter = (gen_stateless_random_ops_v2.
stateless_random_get_key_counter(seed_t))
alg = gen_stateless_random_ops_v2.stateless_random_get_alg()
x = gen_stateless_random_ops_v2.stateless_random_normal_v2(
shape=[1024, 32000], key=key, counter=counter, dtype=dtypes.float32,
alg=alg)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertAllEqual([1024, 32000], y.shape)
@parameterized.named_parameters(
(f'_{op_name}_{shape}_{dtype.name}', stateless_op, shape, dtype) # pylint: disable=g-complex-comprehension
for dtype in _allowed_types() for shape in ((), (3,), (2, 5))
for op_name, stateless_op in (
('uniform', stateless.stateless_random_uniform),
('normal', stateless.stateless_random_normal),
))
def testDeterminism(self, stateless_op, shape, dtype):
# Stateless values should be equal iff the seeds are equal (roughly)
seeds = [(x, y) for x in range(-2, 3) for y in range(-2, 3)] * 3 # pylint: disable=g-complex-comprehension
with self.session(), self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
pure = stateless_op(shape, seed=seed_t, dtype=dtype)
values = [(seed, pure.eval(feed_dict={seed_t: seed})) for seed in seeds]
for s0, v0 in values:
for s1, v1 in values:
if s0 == s1:
self.assertAllEqual(v0, v1)
else:
# The resolutions of float16 and bfloat16 are too low, so
# in some cases (e.g. scalar shape) different seeds may
# lead to the same output. So we skip those dtypes.
if not (dtype in (dtypes.bfloat16, dtypes.float16) and shape == ()): # pylint: disable=g-explicit-bool-comparison
self.assertNotAllEqual(v0, v1)
def testRandomUniformIsInRange(self):
with self.session() as sess, self.test_scope():
for dtype in self._random_types(include_int=True):
maxval = 1
if dtype.is_integer:
maxval = 100
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
x = stateless.stateless_random_uniform(
shape=[1000], seed=seed_t, maxval=maxval, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertTrue(np.all(y >= 0))
self.assertTrue(np.all(y < maxval))
@parameterized.named_parameters(
(f'_{alg.name}_{dtype.name}_{seed}', alg, dtype, seed) # pylint: disable=g-complex-comprehension
for seed in ([1, 2], [12, 23], [123, 456], [565656, 121212])
for dtype in _allowed_types(include_int=True)
for alg in list(stateless.Algorithm))
def testDistributionOfStatelessRandomUniform(self, alg, dtype, seed):
"""Use Pearson's Chi-squared test to test for uniformity."""
philox = stateless.Algorithm.PHILOX
auto_select = stateless.Algorithm.AUTO_SELECT
device = xla_device()
if 'CPU' in device.device_type:
device_type = 'CPU'
elif 'GPU' in device.device_type:
device_type = 'GPU'
elif device.device_type == 'TPU':
device_type = 'TPU'
else:
device_type = None
bad_combos1 = [
(dtypes.int32, [123, 456]),
(dtypes.int64, [123, 456]),
(dtypes.float16, [565656, 121212]),
(dtypes.bfloat16, [1, 2]),
]
bad_combos2 = [
(dtypes.int32, [1, 2]),
(dtypes.int32, [12, 23]),
]
# TODO(b/244649364): Investigate why these combinations fail.
if (device_type in ('CPU', 'GPU') and alg in (philox, auto_select) and
(dtype, seed) in bad_combos1 or device_type == 'TPU' and
(alg == philox and
(dtype, seed) in bad_combos1 or alg == auto_select and
(dtype, seed) in bad_combos2)):
self.skipTest(
'This (device, alg, dtype, seed) combination fails (b/244649364).')
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 1000
maxval = 1
if dtype.is_integer:
maxval = 100
x = stateless.stateless_random_uniform(
shape=[n], seed=seed_t, maxval=maxval, dtype=dtype, alg=alg)
y = sess.run(x, {seed_t: seed})
# Convert y to float and normalize its value to range [0, 1) when
# maxval != 1.
y = y.astype(float) / maxval
# Tests that the values are distributed amongst 10 bins with equal
# probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
# p=0.05. This test is probabilistic and would be flaky if the random
# seed were not fixed.
self.assertLess(random_test_util.chi_squared(y, 10), 16.92)
def testRandomNormalIsFinite(self):
with self.session() as sess, self.test_scope():
for dtype in self._random_types():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
x = stateless.stateless_random_normal(
shape=[10000], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertTrue(np.all(np.isfinite(y)))
@parameterized.named_parameters(
(f'_{dtype.name}_{seed}', dtype, seed) # pylint: disable=g-complex-comprehension
for seed in ([1, 2], [12, 23], [123, 456], [25252, 314159])
for dtype in _allowed_types())
def testDistributionOfStatelessRandomNormal(self, dtype, seed):
"""Use Anderson-Darling test to test distribution appears normal."""
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 1000
x = stateless.stateless_random_normal(shape=[n], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: seed})
# The constant 2.492 is the 5% critical value for the Anderson-Darling
# test where the mean and variance are known. This test is probabilistic
# so to avoid flakiness the seed is fixed.
self.assertLess(random_test_util.anderson_darling(y.astype(float)), 2.492)
@parameterized.named_parameters(
(f'_{dtype.name}', dtype) for dtype in _allowed_types())
def testTruncatedNormal(self, dtype):
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 10000000
x = stateless.stateless_truncated_normal(
shape=[n], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
is_megacore = 'megacore' in os.environ.get('TEST_TARGET', '').lower()
if dtype == dtypes.float16:
if is_megacore:
mean_atol = 2e-3
else:
mean_atol = 7e-4
else:
mean_atol = 5e-4
if dtype == dtypes.float16 and is_megacore:
median_atol = 2e-3
else:
median_atol = 8e-4
if dtype == dtypes.bfloat16:
variance_rtol = 6e-3
elif dtype == dtypes.float16:
variance_rtol = 3e-3
else:
variance_rtol = 1e-3
random_test_util.test_truncated_normal(
self.assertEqual,
self.assertAllClose,
n,
y,
mean_atol=mean_atol,
median_atol=median_atol,
variance_rtol=variance_rtol)
def _testParameterizedTruncatedNormal(self,
means,
stddevs,
minvals,
maxvals,
variance_rtol=None):
for dtype in self._random_types():
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = int(10e7)
x = stateless.stateless_parameterized_truncated_normal(
shape=[n],
seed=seed_t,
means=means,
stddevs=stddevs,
minvals=minvals,
maxvals=maxvals)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
if variance_rtol is None:
variance_rtol = 6e-3 if dtype == dtypes.bfloat16 else 1e-3
random_test_util.test_truncated_normal(
self.assertEqual,
self.assertAllClose,
n,
y,
means=means,
stddevs=stddevs,
minvals=minvals,
maxvals=maxvals,
mean_atol=1e-3,
median_atol=1e-3,
variance_rtol=variance_rtol)
def testParameterizedTruncatedNormalDefault(self):
self._testParameterizedTruncatedNormal(0., 1., -2., 2.)
def testParameterizedTruncatedNormalShifted(self):
self._testParameterizedTruncatedNormal(-1., 1., -2., 2.)
def testParameterizedTruncatedNormalRightTail(self):
self.skipTest('b/276957102')
self._testParameterizedTruncatedNormal(0., 1., 4., 20., variance_rtol=2e-2)
def testParameterizedTruncatedNormalLeftTail(self):
self.skipTest('b/276957102')
self._testParameterizedTruncatedNormal(
0., 1., -20., -4., variance_rtol=5e-2)
def testParameterizedTruncatedNormalLeftTailTwoSidedBounds(self):
self._testParameterizedTruncatedNormal(
0., 1., -6., -3., variance_rtol=5e-2)
def testParameterizedTruncatedNormalSmallStddev(self):
self._testParameterizedTruncatedNormal(0., 0.1, 0.05, 0.10)
def testParameterizedTruncatedNormalBroadcast(self):
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
means = array_ops.zeros([2], dtype=dtypes.float32)
stddevs = array_ops.ones([3, 1], dtype=dtypes.float32)
minvals = -array_ops.ones([5, 1, 1], dtype=dtypes.float32)
maxvals = array_ops.ones([7, 1, 1, 1], dtype=dtypes.float32)
shape = [11, 7, 5, 3, 2]
x = stateless.stateless_parameterized_truncated_normal(
shape=shape,
seed=seed_t,
means=means,
stddevs=stddevs,
minvals=minvals,
maxvals=maxvals)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertEqual((11, 7, 5, 3, 2), y.shape)
class StatelessRandomOpsBenchmark(test.Benchmark):
"""Microbenchmarks for the stateless random ops."""
def _benchmarkUniform(self, name, dtype, use_xla_jit):
def builder_fn():
shape = (10, 1000, 1000)
seed_var = variables.Variable((312, 456),
dtype=dtypes.int32,
name='input')
random_t = stateless.stateless_random_uniform(
shape, seed=seed_var, dtype=dtype)
return '%s.shape%s' % (name, shape), [random_t]
xla_test.Benchmark(self, builder_fn, use_xla_jit=use_xla_jit, device='cpu')
def benchmarkUniformF16(self):
self._benchmarkUniform(
'uniform_f16', dtype=dtypes.float16, use_xla_jit=False)
def benchmarkUniformF32(self):
self._benchmarkUniform(
'uniform_f32', dtype=dtypes.float32, use_xla_jit=False)
def benchmarkUniformF64(self):
self._benchmarkUniform(
'uniform_f64', dtype=dtypes.float64, use_xla_jit=False)
def benchmarkUniformF16XLA(self):
self._benchmarkUniform(
'uniform_f16', dtype=dtypes.float16, use_xla_jit=True)
def benchmarkUniformF32XLA(self):
self._benchmarkUniform(
'uniform_f32', dtype=dtypes.float32, use_xla_jit=True)
def benchmarkUniformF64XLA(self):
self._benchmarkUniform(
'uniform_f64', dtype=dtypes.float64, use_xla_jit=True)
if __name__ == '__main__':
config.set_soft_device_placement(False)
test.main()