blob: 314af77f2ca1681779b3426dd43ba95404337622 [file] [log] [blame]
//! For each definition, we track the following data. A definition
//! here is defined somewhat circularly as "something with a `DefId`",
//! but it generally corresponds to things like structs, enums, etc.
//! There are also some rather random cases (like const initializer
//! expressions) that are mostly just leftovers.
pub use crate::def_id::DefPathHash;
use crate::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use crate::hir;
use crate::hir_id::DUMMY_HIR_ID;
use rustc_ast::ast;
use rustc_ast::crate_disambiguator::CrateDisambiguator;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::StableHasher;
use rustc_index::vec::IndexVec;
use rustc_span::hygiene::ExpnId;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use log::debug;
use std::fmt::Write;
use std::hash::Hash;
/// The `DefPathTable` maps `DefIndex`es to `DefKey`s and vice versa.
/// Internally the `DefPathTable` holds a tree of `DefKey`s, where each `DefKey`
/// stores the `DefIndex` of its parent.
/// There is one `DefPathTable` for each crate.
#[derive(Clone, Default, RustcDecodable, RustcEncodable)]
pub struct DefPathTable {
index_to_key: IndexVec<DefIndex, DefKey>,
def_path_hashes: IndexVec<DefIndex, DefPathHash>,
}
impl DefPathTable {
fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash) -> DefIndex {
let index = {
let index = DefIndex::from(self.index_to_key.len());
debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index);
self.index_to_key.push(key);
index
};
self.def_path_hashes.push(def_path_hash);
debug_assert!(self.def_path_hashes.len() == self.index_to_key.len());
index
}
pub fn next_id(&self) -> DefIndex {
DefIndex::from(self.index_to_key.len())
}
#[inline(always)]
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.index_to_key[index]
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
let hash = self.def_path_hashes[index];
debug!("def_path_hash({:?}) = {:?}", index, hash);
hash
}
pub fn add_def_path_hashes_to(&self, cnum: CrateNum, out: &mut FxHashMap<DefPathHash, DefId>) {
out.extend(self.def_path_hashes.iter().enumerate().map(|(index, &hash)| {
let def_id = DefId { krate: cnum, index: DefIndex::from(index) };
(hash, def_id)
}));
}
pub fn size(&self) -> usize {
self.index_to_key.len()
}
}
/// The definition table containing node definitions.
/// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a
/// mapping from `NodeId`s to local `DefId`s.
#[derive(Clone, Default)]
pub struct Definitions {
table: DefPathTable,
def_id_to_span: IndexVec<LocalDefId, Span>,
// FIXME(eddyb) don't go through `ast::NodeId` to convert between `HirId`
// and `LocalDefId` - ideally all `LocalDefId`s would be HIR owners.
node_id_to_def_id: FxHashMap<ast::NodeId, LocalDefId>,
def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>,
pub(super) node_id_to_hir_id: IndexVec<ast::NodeId, hir::HirId>,
/// The reverse mapping of `node_id_to_hir_id`.
pub(super) hir_id_to_node_id: FxHashMap<hir::HirId, ast::NodeId>,
/// If `ExpnId` is an ID of some macro expansion,
/// then `DefId` is the normal module (`mod`) in which the expanded macro was defined.
parent_modules_of_macro_defs: FxHashMap<ExpnId, DefId>,
/// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
expansions_that_defined: FxHashMap<LocalDefId, ExpnId>,
next_disambiguator: FxHashMap<(LocalDefId, DefPathData), u32>,
/// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
/// we know what parent node that fragment should be attached to thanks to this table.
invocation_parents: FxHashMap<ExpnId, LocalDefId>,
/// Indices of unnamed struct or variant fields with unresolved attributes.
placeholder_field_indices: FxHashMap<ast::NodeId, usize>,
}
/// A unique identifier that we can use to lookup a definition
/// precisely. It combines the index of the definition's parent (if
/// any) with a `DisambiguatedDefPathData`.
#[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)]
pub struct DefKey {
/// The parent path.
pub parent: Option<DefIndex>,
/// The identifier of this node.
pub disambiguated_data: DisambiguatedDefPathData,
}
impl DefKey {
fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash {
let mut hasher = StableHasher::new();
// We hash a `0u8` here to disambiguate between regular `DefPath` hashes,
// and the special "root_parent" below.
0u8.hash(&mut hasher);
parent_hash.hash(&mut hasher);
let DisambiguatedDefPathData { ref data, disambiguator } = self.disambiguated_data;
::std::mem::discriminant(data).hash(&mut hasher);
if let Some(name) = data.get_opt_name() {
// Get a stable hash by considering the symbol chars rather than
// the symbol index.
name.as_str().hash(&mut hasher);
}
disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
fn root_parent_stable_hash(
crate_name: &str,
crate_disambiguator: CrateDisambiguator,
) -> DefPathHash {
let mut hasher = StableHasher::new();
// Disambiguate this from a regular `DefPath` hash; see `compute_stable_hash()` above.
1u8.hash(&mut hasher);
crate_name.hash(&mut hasher);
crate_disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
}
/// A pair of `DefPathData` and an integer disambiguator. The integer is
/// normally `0`, but in the event that there are multiple defs with the
/// same `parent` and `data`, we use this field to disambiguate
/// between them. This introduces some artificial ordering dependency
/// but means that if you have, e.g., two impls for the same type in
/// the same module, they do get distinct `DefId`s.
#[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)]
pub struct DisambiguatedDefPathData {
pub data: DefPathData,
pub disambiguator: u32,
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct DefPath {
/// The path leading from the crate root to the item.
pub data: Vec<DisambiguatedDefPathData>,
/// The crate root this path is relative to.
pub krate: CrateNum,
}
impl DefPath {
pub fn is_local(&self) -> bool {
self.krate == LOCAL_CRATE
}
pub fn make<FN>(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath
where
FN: FnMut(DefIndex) -> DefKey,
{
let mut data = vec![];
let mut index = Some(start_index);
loop {
debug!("DefPath::make: krate={:?} index={:?}", krate, index);
let p = index.unwrap();
let key = get_key(p);
debug!("DefPath::make: key={:?}", key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
break;
}
_ => {
data.push(key.disambiguated_data);
index = key.parent;
}
}
}
data.reverse();
DefPath { data, krate }
}
/// Returns a string representation of the `DefPath` without
/// the crate-prefix. This method is useful if you don't have
/// a `TyCtxt` available.
pub fn to_string_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
for component in &self.data {
write!(s, "::{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap();
}
s
}
/// Returns a filename-friendly string for the `DefPath`, with the
/// crate-prefix.
pub fn to_string_friendly<F>(&self, crate_imported_name: F) -> String
where
F: FnOnce(CrateNum) -> Symbol,
{
let crate_name_str = crate_imported_name(self.krate).as_str();
let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16);
write!(s, "::{}", crate_name_str).unwrap();
for component in &self.data {
if component.disambiguator == 0 {
write!(s, "::{}", component.data.as_symbol()).unwrap();
} else {
write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap();
}
}
s
}
/// Returns a filename-friendly string of the `DefPath`, without
/// the crate-prefix. This method is useful if you don't have
/// a `TyCtxt` available.
pub fn to_filename_friendly_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
let mut opt_delimiter = None;
for component in &self.data {
opt_delimiter.map(|d| s.push(d));
opt_delimiter = Some('-');
if component.disambiguator == 0 {
write!(s, "{}", component.data.as_symbol()).unwrap();
} else {
write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap();
}
}
s
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum DefPathData {
// Root: these should only be used for the root nodes, because
// they are treated specially by the `def_path` function.
/// The crate root (marker).
CrateRoot,
// Catch-all for random `DefId` things like `DUMMY_NODE_ID`.
Misc,
// Different kinds of items and item-like things:
/// An impl.
Impl,
/// Something in the type namespace.
TypeNs(Symbol),
/// Something in the value namespace.
ValueNs(Symbol),
/// Something in the macro namespace.
MacroNs(Symbol),
/// Something in the lifetime namespace.
LifetimeNs(Symbol),
/// A closure expression.
ClosureExpr,
// Subportions of items:
/// Implicit constructor for a unit or tuple-like struct or enum variant.
Ctor,
/// A constant expression (see `{ast,hir}::AnonConst`).
AnonConst,
/// An `impl Trait` type node.
ImplTrait,
}
impl Definitions {
pub fn def_path_table(&self) -> &DefPathTable {
&self.table
}
/// Gets the number of definitions.
pub fn def_index_count(&self) -> usize {
self.table.index_to_key.len()
}
pub fn def_key(&self, id: LocalDefId) -> DefKey {
self.table.def_key(id.local_def_index)
}
#[inline(always)]
pub fn def_path_hash(&self, id: LocalDefId) -> DefPathHash {
self.table.def_path_hash(id.local_def_index)
}
/// Returns the path from the crate root to `index`. The root
/// nodes are not included in the path (i.e., this will be an
/// empty vector for the crate root). For an inlined item, this
/// will be the path of the item in the external crate (but the
/// path will begin with the path to the external crate).
pub fn def_path(&self, id: LocalDefId) -> DefPath {
DefPath::make(LOCAL_CRATE, id.local_def_index, |index| {
self.def_key(LocalDefId { local_def_index: index })
})
}
#[inline]
pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option<LocalDefId> {
self.node_id_to_def_id.get(&node).copied()
}
// FIXME(eddyb) this function can and should return `LocalDefId`.
#[inline]
pub fn local_def_id(&self, node: ast::NodeId) -> DefId {
self.opt_local_def_id(node).unwrap().to_def_id()
}
#[inline]
pub fn as_local_node_id(&self, def_id: DefId) -> Option<ast::NodeId> {
if let Some(def_id) = def_id.as_local() {
let node_id = self.def_id_to_node_id[def_id];
if node_id != ast::DUMMY_NODE_ID {
return Some(node_id);
}
}
None
}
#[inline]
pub fn as_local_hir_id(&self, def_id: DefId) -> Option<hir::HirId> {
if let Some(def_id) = def_id.as_local() {
let hir_id = self.local_def_id_to_hir_id(def_id);
if hir_id != DUMMY_HIR_ID { Some(hir_id) } else { None }
} else {
None
}
}
#[inline]
pub fn hir_id_to_node_id(&self, hir_id: hir::HirId) -> ast::NodeId {
self.hir_id_to_node_id[&hir_id]
}
#[inline]
pub fn node_id_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId {
self.node_id_to_hir_id[node_id]
}
#[inline]
pub fn local_def_id_to_hir_id(&self, id: LocalDefId) -> hir::HirId {
let node_id = self.def_id_to_node_id[id];
self.node_id_to_hir_id[node_id]
}
/// Retrieves the span of the given `DefId` if `DefId` is in the local crate.
#[inline]
pub fn opt_span(&self, def_id: DefId) -> Option<Span> {
if let Some(def_id) = def_id.as_local() { Some(self.def_id_to_span[def_id]) } else { None }
}
/// Adds a root definition (no parent) and a few other reserved definitions.
pub fn create_root_def(
&mut self,
crate_name: &str,
crate_disambiguator: CrateDisambiguator,
) -> LocalDefId {
let key = DefKey {
parent: None,
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::CrateRoot,
disambiguator: 0,
},
};
let parent_hash = DefKey::root_parent_stable_hash(crate_name, crate_disambiguator);
let def_path_hash = key.compute_stable_hash(parent_hash);
// Create the definition.
let root = LocalDefId { local_def_index: self.table.allocate(key, def_path_hash) };
assert_eq!(root.local_def_index, CRATE_DEF_INDEX);
assert_eq!(self.def_id_to_node_id.push(ast::CRATE_NODE_ID), root);
assert_eq!(self.def_id_to_span.push(rustc_span::DUMMY_SP), root);
self.node_id_to_def_id.insert(ast::CRATE_NODE_ID, root);
self.set_invocation_parent(ExpnId::root(), root);
root
}
/// Adds a definition with a parent definition.
pub fn create_def_with_parent(
&mut self,
parent: LocalDefId,
node_id: ast::NodeId,
data: DefPathData,
expn_id: ExpnId,
span: Span,
) -> LocalDefId {
debug!(
"create_def_with_parent(parent={:?}, node_id={:?}, data={:?})",
parent, node_id, data
);
assert!(
!self.node_id_to_def_id.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.table.def_key(self.node_id_to_def_id[&node_id].local_def_index),
);
// The root node must be created with `create_root_def()`.
assert!(data != DefPathData::CrateRoot);
// Find the next free disambiguator for this key.
let disambiguator = {
let next_disamb = self.next_disambiguator.entry((parent, data)).or_insert(0);
let disambiguator = *next_disamb;
*next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow");
disambiguator
};
let key = DefKey {
parent: Some(parent.local_def_index),
disambiguated_data: DisambiguatedDefPathData { data, disambiguator },
};
let parent_hash = self.table.def_path_hash(parent.local_def_index);
let def_path_hash = key.compute_stable_hash(parent_hash);
debug!("create_def_with_parent: after disambiguation, key = {:?}", key);
// Create the definition.
let def_id = LocalDefId { local_def_index: self.table.allocate(key, def_path_hash) };
assert_eq!(self.def_id_to_node_id.push(node_id), def_id);
assert_eq!(self.def_id_to_span.push(span), def_id);
// Some things for which we allocate `LocalDefId`s don't correspond to
// anything in the AST, so they don't have a `NodeId`. For these cases
// we don't need a mapping from `NodeId` to `LocalDefId`.
if node_id != ast::DUMMY_NODE_ID {
debug!("create_def_with_parent: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
self.node_id_to_def_id.insert(node_id, def_id);
}
if expn_id != ExpnId::root() {
self.expansions_that_defined.insert(def_id, expn_id);
}
def_id
}
/// Initializes the `ast::NodeId` to `HirId` mapping once it has been generated during
/// AST to HIR lowering.
pub fn init_node_id_to_hir_id_mapping(&mut self, mapping: IndexVec<ast::NodeId, hir::HirId>) {
assert!(
self.node_id_to_hir_id.is_empty(),
"trying to initialize `NodeId` -> `HirId` mapping twice"
);
self.node_id_to_hir_id = mapping;
// Build the reverse mapping of `node_id_to_hir_id`.
self.hir_id_to_node_id = self
.node_id_to_hir_id
.iter_enumerated()
.map(|(node_id, &hir_id)| (hir_id, node_id))
.collect();
}
pub fn expansion_that_defined(&self, id: LocalDefId) -> ExpnId {
self.expansions_that_defined.get(&id).copied().unwrap_or(ExpnId::root())
}
pub fn parent_module_of_macro_def(&self, expn_id: ExpnId) -> DefId {
self.parent_modules_of_macro_defs[&expn_id]
}
pub fn add_parent_module_of_macro_def(&mut self, expn_id: ExpnId, module: DefId) {
self.parent_modules_of_macro_defs.insert(expn_id, module);
}
pub fn invocation_parent(&self, invoc_id: ExpnId) -> LocalDefId {
self.invocation_parents[&invoc_id]
}
pub fn set_invocation_parent(&mut self, invoc_id: ExpnId, parent: LocalDefId) {
let old_parent = self.invocation_parents.insert(invoc_id, parent);
assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation");
}
pub fn placeholder_field_index(&self, node_id: ast::NodeId) -> usize {
self.placeholder_field_indices[&node_id]
}
pub fn set_placeholder_field_index(&mut self, node_id: ast::NodeId, index: usize) {
let old_index = self.placeholder_field_indices.insert(node_id, index);
assert!(old_index.is_none(), "placeholder field index is reset for a node ID");
}
}
impl DefPathData {
pub fn get_opt_name(&self) -> Option<Symbol> {
use self::DefPathData::*;
match *self {
TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => Some(name),
Impl | CrateRoot | Misc | ClosureExpr | Ctor | AnonConst | ImplTrait => None,
}
}
pub fn as_symbol(&self) -> Symbol {
use self::DefPathData::*;
match *self {
TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => name,
// Note that this does not show up in user print-outs.
CrateRoot => sym::double_braced_crate,
Impl => sym::double_braced_impl,
Misc => sym::double_braced_misc,
ClosureExpr => sym::double_braced_closure,
Ctor => sym::double_braced_constructor,
AnonConst => sym::double_braced_constant,
ImplTrait => sym::double_braced_opaque,
}
}
pub fn to_string(&self) -> String {
self.as_symbol().to_string()
}
}