blob: dda31f82d2fdfcec4ed5521919c5b43e7bded74a [file] [log] [blame]
//! This crate is responsible for the part of name resolution that doesn't require type checker.
//!
//! Module structure of the crate is built here.
//! Paths in macros, imports, expressions, types, patterns are resolved here.
//! Label and lifetime names are resolved here as well.
//!
//! Type-relative name resolution (methods, fields, associated items) happens in `rustc_hir_analysis`.
// tidy-alphabetical-start
#![allow(internal_features)]
#![allow(rustc::diagnostic_outside_of_impl)]
#![allow(rustc::potential_query_instability)]
#![allow(rustc::untranslatable_diagnostic)]
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![doc(rust_logo)]
#![feature(assert_matches)]
#![feature(box_patterns)]
#![feature(extract_if)]
#![feature(if_let_guard)]
#![feature(iter_intersperse)]
#![feature(let_chains)]
#![feature(rustc_attrs)]
#![feature(rustdoc_internals)]
// tidy-alphabetical-end
use rustc_arena::{DroplessArena, TypedArena};
use rustc_ast::expand::StrippedCfgItem;
use rustc_ast::node_id::NodeMap;
use rustc_ast::{self as ast, attr, NodeId, CRATE_NODE_ID};
use rustc_ast::{AngleBracketedArg, Crate, Expr, ExprKind, GenericArg, GenericArgs, LitKind, Path};
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::intern::Interned;
use rustc_data_structures::steal::Steal;
use rustc_data_structures::sync::{FreezeReadGuard, Lrc};
use rustc_errors::{Applicability, Diag, ErrCode};
use rustc_expand::base::{DeriveResolution, SyntaxExtension, SyntaxExtensionKind};
use rustc_feature::BUILTIN_ATTRIBUTES;
use rustc_hir::def::Namespace::{self, *};
use rustc_hir::def::NonMacroAttrKind;
use rustc_hir::def::{self, CtorOf, DefKind, DocLinkResMap, LifetimeRes, PartialRes, PerNS};
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalDefIdMap};
use rustc_hir::def_id::{CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::{PrimTy, TraitCandidate};
use rustc_index::IndexVec;
use rustc_metadata::creader::{CStore, CrateLoader};
use rustc_middle::metadata::ModChild;
use rustc_middle::middle::privacy::EffectiveVisibilities;
use rustc_middle::query::Providers;
use rustc_middle::span_bug;
use rustc_middle::ty::{self, DelegationFnSig, Feed, MainDefinition, RegisteredTools};
use rustc_middle::ty::{ResolverGlobalCtxt, ResolverOutputs, TyCtxt, TyCtxtFeed};
use rustc_query_system::ich::StableHashingContext;
use rustc_session::lint::builtin::PRIVATE_MACRO_USE;
use rustc_session::lint::{BuiltinLintDiag, LintBuffer};
use rustc_span::hygiene::{ExpnId, LocalExpnId, MacroKind, SyntaxContext, Transparency};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::cell::{Cell, RefCell};
use std::collections::BTreeSet;
use std::fmt;
use tracing::debug;
use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion};
use effective_visibilities::EffectiveVisibilitiesVisitor;
use errors::{
ParamKindInEnumDiscriminant, ParamKindInNonTrivialAnonConst, ParamKindInTyOfConstParam,
};
use imports::{Import, ImportData, ImportKind, NameResolution};
use late::{HasGenericParams, PathSource, PatternSource, UnnecessaryQualification};
use macros::{MacroRulesBinding, MacroRulesScope, MacroRulesScopeRef};
type Res = def::Res<NodeId>;
mod build_reduced_graph;
mod check_unused;
mod def_collector;
mod diagnostics;
mod effective_visibilities;
mod errors;
mod ident;
mod imports;
mod late;
mod macros;
pub mod rustdoc;
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
#[derive(Debug)]
enum Weak {
Yes,
No,
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum Determinacy {
Determined,
Undetermined,
}
impl Determinacy {
fn determined(determined: bool) -> Determinacy {
if determined { Determinacy::Determined } else { Determinacy::Undetermined }
}
}
/// A specific scope in which a name can be looked up.
/// This enum is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy, Debug)]
enum Scope<'a> {
DeriveHelpers(LocalExpnId),
DeriveHelpersCompat,
MacroRules(MacroRulesScopeRef<'a>),
CrateRoot,
// The node ID is for reporting the `PROC_MACRO_DERIVE_RESOLUTION_FALLBACK`
// lint if it should be reported.
Module(Module<'a>, Option<NodeId>),
MacroUsePrelude,
BuiltinAttrs,
ExternPrelude,
ToolPrelude,
StdLibPrelude,
BuiltinTypes,
}
/// Names from different contexts may want to visit different subsets of all specific scopes
/// with different restrictions when looking up the resolution.
/// This enum is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy, Debug)]
enum ScopeSet<'a> {
/// All scopes with the given namespace.
All(Namespace),
/// Crate root, then extern prelude (used for mixed 2015-2018 mode in macros).
AbsolutePath(Namespace),
/// All scopes with macro namespace and the given macro kind restriction.
Macro(MacroKind),
/// All scopes with the given namespace, used for partially performing late resolution.
/// The node id enables lints and is used for reporting them.
Late(Namespace, Module<'a>, Option<NodeId>),
}
/// Everything you need to know about a name's location to resolve it.
/// Serves as a starting point for the scope visitor.
/// This struct is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy, Debug)]
struct ParentScope<'a> {
module: Module<'a>,
expansion: LocalExpnId,
macro_rules: MacroRulesScopeRef<'a>,
derives: &'a [ast::Path],
}
impl<'a> ParentScope<'a> {
/// Creates a parent scope with the passed argument used as the module scope component,
/// and other scope components set to default empty values.
fn module(module: Module<'a>, resolver: &Resolver<'a, '_>) -> ParentScope<'a> {
ParentScope {
module,
expansion: LocalExpnId::ROOT,
macro_rules: resolver.arenas.alloc_macro_rules_scope(MacroRulesScope::Empty),
derives: &[],
}
}
}
#[derive(Copy, Debug, Clone)]
enum ImplTraitContext {
Existential,
Universal,
}
/// Used for tracking import use types which will be used for redundant import checking.
/// ### Used::Scope Example
/// ```rust,ignore (redundant_imports)
/// #![deny(unused_imports)]
/// use std::mem::drop;
/// fn main() {
/// let s = Box::new(32);
/// drop(s);
/// }
/// ```
/// Used::Other is for other situations like module-relative uses.
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
enum Used {
Scope,
Other,
}
#[derive(Debug)]
struct BindingError {
name: Symbol,
origin: BTreeSet<Span>,
target: BTreeSet<Span>,
could_be_path: bool,
}
#[derive(Debug)]
enum ResolutionError<'a> {
/// Error E0401: can't use type or const parameters from outer item.
GenericParamsFromOuterItem(Res, HasGenericParams, DefKind),
/// Error E0403: the name is already used for a type or const parameter in this generic
/// parameter list.
NameAlreadyUsedInParameterList(Symbol, Span),
/// Error E0407: method is not a member of trait.
MethodNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0437: type is not a member of trait.
TypeNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0438: const is not a member of trait.
ConstNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0408: variable `{}` is not bound in all patterns.
VariableNotBoundInPattern(BindingError, ParentScope<'a>),
/// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
VariableBoundWithDifferentMode(Symbol, Span),
/// Error E0415: identifier is bound more than once in this parameter list.
IdentifierBoundMoreThanOnceInParameterList(Symbol),
/// Error E0416: identifier is bound more than once in the same pattern.
IdentifierBoundMoreThanOnceInSamePattern(Symbol),
/// Error E0426: use of undeclared label.
UndeclaredLabel { name: Symbol, suggestion: Option<LabelSuggestion> },
/// Error E0429: `self` imports are only allowed within a `{ }` list.
SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span },
/// Error E0430: `self` import can only appear once in the list.
SelfImportCanOnlyAppearOnceInTheList,
/// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
SelfImportOnlyInImportListWithNonEmptyPrefix,
/// Error E0433: failed to resolve.
FailedToResolve {
segment: Option<Symbol>,
label: String,
suggestion: Option<Suggestion>,
module: Option<ModuleOrUniformRoot<'a>>,
},
/// Error E0434: can't capture dynamic environment in a fn item.
CannotCaptureDynamicEnvironmentInFnItem,
/// Error E0435: attempt to use a non-constant value in a constant.
AttemptToUseNonConstantValueInConstant(
Ident,
/* suggestion */ &'static str,
/* current */ &'static str,
),
/// Error E0530: `X` bindings cannot shadow `Y`s.
BindingShadowsSomethingUnacceptable {
shadowing_binding: PatternSource,
name: Symbol,
participle: &'static str,
article: &'static str,
shadowed_binding: Res,
shadowed_binding_span: Span,
},
/// Error E0128: generic parameters with a default cannot use forward-declared identifiers.
ForwardDeclaredGenericParam,
/// ERROR E0770: the type of const parameters must not depend on other generic parameters.
ParamInTyOfConstParam { name: Symbol, param_kind: Option<ParamKindInTyOfConstParam> },
/// generic parameters must not be used inside const evaluations.
///
/// This error is only emitted when using `min_const_generics`.
ParamInNonTrivialAnonConst { name: Symbol, param_kind: ParamKindInNonTrivialAnonConst },
/// generic parameters must not be used inside enum discriminants.
///
/// This error is emitted even with `generic_const_exprs`.
ParamInEnumDiscriminant { name: Symbol, param_kind: ParamKindInEnumDiscriminant },
/// Error E0735: generic parameters with a default cannot use `Self`
SelfInGenericParamDefault,
/// Error E0767: use of unreachable label
UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option<LabelSuggestion> },
/// Error E0323, E0324, E0325: mismatch between trait item and impl item.
TraitImplMismatch {
name: Symbol,
kind: &'static str,
trait_path: String,
trait_item_span: Span,
code: ErrCode,
},
/// Error E0201: multiple impl items for the same trait item.
TraitImplDuplicate { name: Symbol, trait_item_span: Span, old_span: Span },
/// Inline asm `sym` operand must refer to a `fn` or `static`.
InvalidAsmSym,
/// `self` used instead of `Self` in a generic parameter
LowercaseSelf,
/// A never pattern has a binding.
BindingInNeverPattern,
}
enum VisResolutionError<'a> {
Relative2018(Span, &'a ast::Path),
AncestorOnly(Span),
FailedToResolve(Span, String, Option<Suggestion>),
ExpectedFound(Span, String, Res),
Indeterminate(Span),
ModuleOnly(Span),
}
/// A minimal representation of a path segment. We use this in resolve because we synthesize 'path
/// segments' which don't have the rest of an AST or HIR `PathSegment`.
#[derive(Clone, Copy, Debug)]
struct Segment {
ident: Ident,
id: Option<NodeId>,
/// Signals whether this `PathSegment` has generic arguments. Used to avoid providing
/// nonsensical suggestions.
has_generic_args: bool,
/// Signals whether this `PathSegment` has lifetime arguments.
has_lifetime_args: bool,
args_span: Span,
}
impl Segment {
fn from_path(path: &Path) -> Vec<Segment> {
path.segments.iter().map(|s| s.into()).collect()
}
fn from_ident(ident: Ident) -> Segment {
Segment {
ident,
id: None,
has_generic_args: false,
has_lifetime_args: false,
args_span: DUMMY_SP,
}
}
fn from_ident_and_id(ident: Ident, id: NodeId) -> Segment {
Segment {
ident,
id: Some(id),
has_generic_args: false,
has_lifetime_args: false,
args_span: DUMMY_SP,
}
}
fn names_to_string(segments: &[Segment]) -> String {
names_to_string(&segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
}
}
impl<'a> From<&'a ast::PathSegment> for Segment {
fn from(seg: &'a ast::PathSegment) -> Segment {
let has_generic_args = seg.args.is_some();
let (args_span, has_lifetime_args) = if let Some(args) = seg.args.as_deref() {
match args {
GenericArgs::AngleBracketed(args) => {
let found_lifetimes = args
.args
.iter()
.any(|arg| matches!(arg, AngleBracketedArg::Arg(GenericArg::Lifetime(_))));
(args.span, found_lifetimes)
}
GenericArgs::Parenthesized(args) => (args.span, true),
}
} else {
(DUMMY_SP, false)
};
Segment {
ident: seg.ident,
id: Some(seg.id),
has_generic_args,
has_lifetime_args,
args_span,
}
}
}
/// An intermediate resolution result.
///
/// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
/// items are visible in their whole block, while `Res`es only from the place they are defined
/// forward.
#[derive(Debug, Copy, Clone)]
enum LexicalScopeBinding<'a> {
Item(NameBinding<'a>),
Res(Res),
}
impl<'a> LexicalScopeBinding<'a> {
fn res(self) -> Res {
match self {
LexicalScopeBinding::Item(binding) => binding.res(),
LexicalScopeBinding::Res(res) => res,
}
}
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum ModuleOrUniformRoot<'a> {
/// Regular module.
Module(Module<'a>),
/// Virtual module that denotes resolution in crate root with fallback to extern prelude.
CrateRootAndExternPrelude,
/// Virtual module that denotes resolution in extern prelude.
/// Used for paths starting with `::` on 2018 edition.
ExternPrelude,
/// Virtual module that denotes resolution in current scope.
/// Used only for resolving single-segment imports. The reason it exists is that import paths
/// are always split into two parts, the first of which should be some kind of module.
CurrentScope,
}
#[derive(Debug)]
enum PathResult<'a> {
Module(ModuleOrUniformRoot<'a>),
NonModule(PartialRes),
Indeterminate,
Failed {
span: Span,
label: String,
suggestion: Option<Suggestion>,
is_error_from_last_segment: bool,
/// The final module being resolved, for instance:
///
/// ```compile_fail
/// mod a {
/// mod b {
/// mod c {}
/// }
/// }
///
/// use a::not_exist::c;
/// ```
///
/// In this case, `module` will point to `a`.
module: Option<ModuleOrUniformRoot<'a>>,
/// The segment name of target
segment_name: Symbol,
},
}
impl<'a> PathResult<'a> {
fn failed(
ident: Ident,
is_error_from_last_segment: bool,
finalize: bool,
module: Option<ModuleOrUniformRoot<'a>>,
label_and_suggestion: impl FnOnce() -> (String, Option<Suggestion>),
) -> PathResult<'a> {
let (label, suggestion) =
if finalize { label_and_suggestion() } else { (String::new(), None) };
PathResult::Failed {
span: ident.span,
segment_name: ident.name,
label,
suggestion,
is_error_from_last_segment,
module,
}
}
}
#[derive(Debug)]
enum ModuleKind {
/// An anonymous module; e.g., just a block.
///
/// ```
/// fn main() {
/// fn f() {} // (1)
/// { // This is an anonymous module
/// f(); // This resolves to (2) as we are inside the block.
/// fn f() {} // (2)
/// }
/// f(); // Resolves to (1)
/// }
/// ```
Block,
/// Any module with a name.
///
/// This could be:
///
/// * A normal module – either `mod from_file;` or `mod from_block { }` –
/// or the crate root (which is conceptually a top-level module).
/// Note that the crate root's [name][Self::name] will be [`kw::Empty`].
/// * A trait or an enum (it implicitly contains associated types, methods and variant
/// constructors).
Def(DefKind, DefId, Symbol),
}
impl ModuleKind {
/// Get name of the module.
fn name(&self) -> Option<Symbol> {
match self {
ModuleKind::Block => None,
ModuleKind::Def(.., name) => Some(*name),
}
}
}
/// A key that identifies a binding in a given `Module`.
///
/// Multiple bindings in the same module can have the same key (in a valid
/// program) if all but one of them come from glob imports.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
struct BindingKey {
/// The identifier for the binding, always the `normalize_to_macros_2_0` version of the
/// identifier.
ident: Ident,
ns: Namespace,
/// 0 if ident is not `_`, otherwise a value that's unique to the specific
/// `_` in the expanded AST that introduced this binding.
disambiguator: u32,
}
impl BindingKey {
fn new(ident: Ident, ns: Namespace) -> Self {
let ident = ident.normalize_to_macros_2_0();
BindingKey { ident, ns, disambiguator: 0 }
}
}
type Resolutions<'a> = RefCell<FxIndexMap<BindingKey, &'a RefCell<NameResolution<'a>>>>;
/// One node in the tree of modules.
///
/// Note that a "module" in resolve is broader than a `mod` that you declare in Rust code. It may be one of these:
///
/// * `mod`
/// * crate root (aka, top-level anonymous module)
/// * `enum`
/// * `trait`
/// * curly-braced block with statements
///
/// You can use [`ModuleData::kind`] to determine the kind of module this is.
struct ModuleData<'a> {
/// The direct parent module (it may not be a `mod`, however).
parent: Option<Module<'a>>,
/// What kind of module this is, because this may not be a `mod`.
kind: ModuleKind,
/// Mapping between names and their (possibly in-progress) resolutions in this module.
/// Resolutions in modules from other crates are not populated until accessed.
lazy_resolutions: Resolutions<'a>,
/// True if this is a module from other crate that needs to be populated on access.
populate_on_access: Cell<bool>,
/// Macro invocations that can expand into items in this module.
unexpanded_invocations: RefCell<FxHashSet<LocalExpnId>>,
/// Whether `#[no_implicit_prelude]` is active.
no_implicit_prelude: bool,
glob_importers: RefCell<Vec<Import<'a>>>,
globs: RefCell<Vec<Import<'a>>>,
/// Used to memoize the traits in this module for faster searches through all traits in scope.
traits: RefCell<Option<Box<[(Ident, NameBinding<'a>)]>>>,
/// Span of the module itself. Used for error reporting.
span: Span,
expansion: ExpnId,
}
/// All modules are unique and allocated on a same arena,
/// so we can use referential equality to compare them.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[rustc_pass_by_value]
struct Module<'a>(Interned<'a, ModuleData<'a>>);
impl<'a> ModuleData<'a> {
fn new(
parent: Option<Module<'a>>,
kind: ModuleKind,
expansion: ExpnId,
span: Span,
no_implicit_prelude: bool,
) -> Self {
let is_foreign = match kind {
ModuleKind::Def(_, def_id, _) => !def_id.is_local(),
ModuleKind::Block => false,
};
ModuleData {
parent,
kind,
lazy_resolutions: Default::default(),
populate_on_access: Cell::new(is_foreign),
unexpanded_invocations: Default::default(),
no_implicit_prelude,
glob_importers: RefCell::new(Vec::new()),
globs: RefCell::new(Vec::new()),
traits: RefCell::new(None),
span,
expansion,
}
}
}
impl<'a> Module<'a> {
fn for_each_child<'tcx, R, F>(self, resolver: &mut R, mut f: F)
where
R: AsMut<Resolver<'a, 'tcx>>,
F: FnMut(&mut R, Ident, Namespace, NameBinding<'a>),
{
for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() {
if let Some(binding) = name_resolution.borrow().binding {
f(resolver, key.ident, key.ns, binding);
}
}
}
/// This modifies `self` in place. The traits will be stored in `self.traits`.
fn ensure_traits<'tcx, R>(self, resolver: &mut R)
where
R: AsMut<Resolver<'a, 'tcx>>,
{
let mut traits = self.traits.borrow_mut();
if traits.is_none() {
let mut collected_traits = Vec::new();
self.for_each_child(resolver, |_, name, ns, binding| {
if ns != TypeNS {
return;
}
if let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = binding.res() {
collected_traits.push((name, binding))
}
});
*traits = Some(collected_traits.into_boxed_slice());
}
}
fn res(self) -> Option<Res> {
match self.kind {
ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
_ => None,
}
}
// Public for rustdoc.
fn def_id(self) -> DefId {
self.opt_def_id().expect("`ModuleData::def_id` is called on a block module")
}
fn opt_def_id(self) -> Option<DefId> {
match self.kind {
ModuleKind::Def(_, def_id, _) => Some(def_id),
_ => None,
}
}
// `self` resolves to the first module ancestor that `is_normal`.
fn is_normal(self) -> bool {
matches!(self.kind, ModuleKind::Def(DefKind::Mod, _, _))
}
fn is_trait(self) -> bool {
matches!(self.kind, ModuleKind::Def(DefKind::Trait, _, _))
}
fn nearest_item_scope(self) -> Module<'a> {
match self.kind {
ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => {
self.parent.expect("enum or trait module without a parent")
}
_ => self,
}
}
/// The [`DefId`] of the nearest `mod` item ancestor (which may be this module).
/// This may be the crate root.
fn nearest_parent_mod(self) -> DefId {
match self.kind {
ModuleKind::Def(DefKind::Mod, def_id, _) => def_id,
_ => self.parent.expect("non-root module without parent").nearest_parent_mod(),
}
}
fn is_ancestor_of(self, mut other: Self) -> bool {
while self != other {
if let Some(parent) = other.parent {
other = parent;
} else {
return false;
}
}
true
}
}
impl<'a> std::ops::Deref for Module<'a> {
type Target = ModuleData<'a>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'a> fmt::Debug for Module<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.res())
}
}
/// Records a possibly-private value, type, or module definition.
#[derive(Clone, Debug)]
struct NameBindingData<'a> {
kind: NameBindingKind<'a>,
ambiguity: Option<(NameBinding<'a>, AmbiguityKind)>,
warn_ambiguity: bool,
expansion: LocalExpnId,
span: Span,
vis: ty::Visibility<DefId>,
}
/// All name bindings are unique and allocated on a same arena,
/// so we can use referential equality to compare them.
type NameBinding<'a> = Interned<'a, NameBindingData<'a>>;
trait ToNameBinding<'a> {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> NameBinding<'a>;
}
impl<'a> ToNameBinding<'a> for NameBinding<'a> {
fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> NameBinding<'a> {
self
}
}
#[derive(Clone, Debug)]
enum NameBindingKind<'a> {
Res(Res),
Module(Module<'a>),
Import { binding: NameBinding<'a>, import: Import<'a> },
}
impl<'a> NameBindingKind<'a> {
/// Is this a name binding of an import?
fn is_import(&self) -> bool {
matches!(*self, NameBindingKind::Import { .. })
}
}
#[derive(Debug)]
struct PrivacyError<'a> {
ident: Ident,
binding: NameBinding<'a>,
dedup_span: Span,
outermost_res: Option<(Res, Ident)>,
parent_scope: ParentScope<'a>,
/// Is the format `use a::{b,c}`?
single_nested: bool,
}
#[derive(Debug)]
struct UseError<'a> {
err: Diag<'a>,
/// Candidates which user could `use` to access the missing type.
candidates: Vec<ImportSuggestion>,
/// The `DefId` of the module to place the use-statements in.
def_id: DefId,
/// Whether the diagnostic should say "instead" (as in `consider importing ... instead`).
instead: bool,
/// Extra free-form suggestion.
suggestion: Option<(Span, &'static str, String, Applicability)>,
/// Path `Segment`s at the place of use that failed. Used for accurate suggestion after telling
/// the user to import the item directly.
path: Vec<Segment>,
/// Whether the expected source is a call
is_call: bool,
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum AmbiguityKind {
BuiltinAttr,
DeriveHelper,
MacroRulesVsModularized,
GlobVsOuter,
GlobVsGlob,
GlobVsExpanded,
MoreExpandedVsOuter,
}
impl AmbiguityKind {
fn descr(self) -> &'static str {
match self {
AmbiguityKind::BuiltinAttr => "a name conflict with a builtin attribute",
AmbiguityKind::DeriveHelper => "a name conflict with a derive helper attribute",
AmbiguityKind::MacroRulesVsModularized => {
"a conflict between a `macro_rules` name and a non-`macro_rules` name from another module"
}
AmbiguityKind::GlobVsOuter => {
"a conflict between a name from a glob import and an outer scope during import or macro resolution"
}
AmbiguityKind::GlobVsGlob => "multiple glob imports of a name in the same module",
AmbiguityKind::GlobVsExpanded => {
"a conflict between a name from a glob import and a macro-expanded name in the same module during import or macro resolution"
}
AmbiguityKind::MoreExpandedVsOuter => {
"a conflict between a macro-expanded name and a less macro-expanded name from outer scope during import or macro resolution"
}
}
}
}
/// Miscellaneous bits of metadata for better ambiguity error reporting.
#[derive(Clone, Copy, PartialEq)]
enum AmbiguityErrorMisc {
SuggestCrate,
SuggestSelf,
FromPrelude,
None,
}
struct AmbiguityError<'a> {
kind: AmbiguityKind,
ident: Ident,
b1: NameBinding<'a>,
b2: NameBinding<'a>,
misc1: AmbiguityErrorMisc,
misc2: AmbiguityErrorMisc,
warning: bool,
}
impl<'a> NameBindingData<'a> {
fn module(&self) -> Option<Module<'a>> {
match self.kind {
NameBindingKind::Module(module) => Some(module),
NameBindingKind::Import { binding, .. } => binding.module(),
_ => None,
}
}
fn res(&self) -> Res {
match self.kind {
NameBindingKind::Res(res) => res,
NameBindingKind::Module(module) => module.res().unwrap(),
NameBindingKind::Import { binding, .. } => binding.res(),
}
}
fn is_ambiguity(&self) -> bool {
self.ambiguity.is_some()
|| match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
_ => false,
}
}
fn is_warn_ambiguity(&self) -> bool {
self.warn_ambiguity
|| match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_warn_ambiguity(),
_ => false,
}
}
fn is_possibly_imported_variant(&self) -> bool {
match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(),
NameBindingKind::Res(Res::Def(
DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..),
_,
)) => true,
NameBindingKind::Res(..) | NameBindingKind::Module(..) => false,
}
}
fn is_extern_crate(&self) -> bool {
match self.kind {
NameBindingKind::Import { import, .. } => {
matches!(import.kind, ImportKind::ExternCrate { .. })
}
NameBindingKind::Module(module)
if let ModuleKind::Def(DefKind::Mod, def_id, _) = module.kind =>
{
def_id.is_crate_root()
}
_ => false,
}
}
fn is_import(&self) -> bool {
matches!(self.kind, NameBindingKind::Import { .. })
}
/// The binding introduced by `#[macro_export] macro_rules` is a public import, but it might
/// not be perceived as such by users, so treat it as a non-import in some diagnostics.
fn is_import_user_facing(&self) -> bool {
matches!(self.kind, NameBindingKind::Import { import, .. }
if !matches!(import.kind, ImportKind::MacroExport))
}
fn is_glob_import(&self) -> bool {
match self.kind {
NameBindingKind::Import { import, .. } => import.is_glob(),
_ => false,
}
}
fn is_importable(&self) -> bool {
!matches!(
self.res(),
Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _)
)
}
fn macro_kind(&self) -> Option<MacroKind> {
self.res().macro_kind()
}
// Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
// at some expansion round `max(invoc, binding)` when they both emerged from macros.
// Then this function returns `true` if `self` may emerge from a macro *after* that
// in some later round and screw up our previously found resolution.
// See more detailed explanation in
// https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
fn may_appear_after(
&self,
invoc_parent_expansion: LocalExpnId,
binding: NameBinding<'_>,
) -> bool {
// self > max(invoc, binding) => !(self <= invoc || self <= binding)
// Expansions are partially ordered, so "may appear after" is an inversion of
// "certainly appears before or simultaneously" and includes unordered cases.
let self_parent_expansion = self.expansion;
let other_parent_expansion = binding.expansion;
let certainly_before_other_or_simultaneously =
other_parent_expansion.is_descendant_of(self_parent_expansion);
let certainly_before_invoc_or_simultaneously =
invoc_parent_expansion.is_descendant_of(self_parent_expansion);
!(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
}
// Its purpose is to postpone the determination of a single binding because
// we can't predict whether it will be overwritten by recently expanded macros.
// FIXME: How can we integrate it with the `update_resolution`?
fn determined(&self) -> bool {
match &self.kind {
NameBindingKind::Import { binding, import, .. } if import.is_glob() => {
import.parent_scope.module.unexpanded_invocations.borrow().is_empty()
&& binding.determined()
}
_ => true,
}
}
}
#[derive(Default, Clone)]
struct ExternPreludeEntry<'a> {
binding: Option<NameBinding<'a>>,
introduced_by_item: bool,
}
impl ExternPreludeEntry<'_> {
fn is_import(&self) -> bool {
self.binding.is_some_and(|binding| binding.is_import())
}
}
/// Used for better errors for E0773
enum BuiltinMacroState {
NotYetSeen(SyntaxExtensionKind),
AlreadySeen(Span),
}
struct DeriveData {
resolutions: Vec<DeriveResolution>,
helper_attrs: Vec<(usize, Ident)>,
has_derive_copy: bool,
}
struct MacroData {
ext: Lrc<SyntaxExtension>,
rule_spans: Vec<(usize, Span)>,
macro_rules: bool,
}
impl MacroData {
fn new(ext: Lrc<SyntaxExtension>) -> MacroData {
MacroData { ext, rule_spans: Vec::new(), macro_rules: false }
}
}
/// The main resolver class.
///
/// This is the visitor that walks the whole crate.
pub struct Resolver<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
/// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
graph_root: Module<'a>,
prelude: Option<Module<'a>>,
extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
/// N.B., this is used only for better diagnostics, not name resolution itself.
field_def_ids: LocalDefIdMap<&'tcx [DefId]>,
/// Span of the privacy modifier in fields of an item `DefId` accessible with dot syntax.
/// Used for hints during error reporting.
field_visibility_spans: FxHashMap<DefId, Vec<Span>>,
/// All imports known to succeed or fail.
determined_imports: Vec<Import<'a>>,
/// All non-determined imports.
indeterminate_imports: Vec<Import<'a>>,
// Spans for local variables found during pattern resolution.
// Used for suggestions during error reporting.
pat_span_map: NodeMap<Span>,
/// Resolutions for nodes that have a single resolution.
partial_res_map: NodeMap<PartialRes>,
/// Resolutions for import nodes, which have multiple resolutions in different namespaces.
import_res_map: NodeMap<PerNS<Option<Res>>>,
/// Resolutions for labels (node IDs of their corresponding blocks or loops).
label_res_map: NodeMap<NodeId>,
/// Resolutions for lifetimes.
lifetimes_res_map: NodeMap<LifetimeRes>,
/// Lifetime parameters that lowering will have to introduce.
extra_lifetime_params_map: NodeMap<Vec<(Ident, NodeId, LifetimeRes)>>,
/// `CrateNum` resolutions of `extern crate` items.
extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
module_children: LocalDefIdMap<Vec<ModChild>>,
trait_map: NodeMap<Vec<TraitCandidate>>,
/// A map from nodes to anonymous modules.
/// Anonymous modules are pseudo-modules that are implicitly created around items
/// contained within blocks.
///
/// For example, if we have this:
///
/// fn f() {
/// fn g() {
/// ...
/// }
/// }
///
/// There will be an anonymous module created around `g` with the ID of the
/// entry block for `f`.
block_map: NodeMap<Module<'a>>,
/// A fake module that contains no definition and no prelude. Used so that
/// some AST passes can generate identifiers that only resolve to local or
/// lang items.
empty_module: Module<'a>,
module_map: FxHashMap<DefId, Module<'a>>,
binding_parent_modules: FxHashMap<NameBinding<'a>, Module<'a>>,
underscore_disambiguator: u32,
/// Disambiguator for anonymous adts.
empty_disambiguator: u32,
/// Maps glob imports to the names of items actually imported.
glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
visibilities_for_hashing: Vec<(LocalDefId, ty::Visibility)>,
used_imports: FxHashSet<NodeId>,
maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
/// Privacy errors are delayed until the end in order to deduplicate them.
privacy_errors: Vec<PrivacyError<'a>>,
/// Ambiguity errors are delayed for deduplication.
ambiguity_errors: Vec<AmbiguityError<'a>>,
/// `use` injections are delayed for better placement and deduplication.
use_injections: Vec<UseError<'tcx>>,
/// Crate-local macro expanded `macro_export` referred to by a module-relative path.
macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
arenas: &'a ResolverArenas<'a>,
dummy_binding: NameBinding<'a>,
builtin_types_bindings: FxHashMap<Symbol, NameBinding<'a>>,
builtin_attrs_bindings: FxHashMap<Symbol, NameBinding<'a>>,
registered_tool_bindings: FxHashMap<Ident, NameBinding<'a>>,
/// Binding for implicitly declared names that come with a module,
/// like `self` (not yet used), or `crate`/`$crate` (for root modules).
module_self_bindings: FxHashMap<Module<'a>, NameBinding<'a>>,
used_extern_options: FxHashSet<Symbol>,
macro_names: FxHashSet<Ident>,
builtin_macros: FxHashMap<Symbol, BuiltinMacroState>,
registered_tools: &'tcx RegisteredTools,
macro_use_prelude: FxHashMap<Symbol, NameBinding<'a>>,
macro_map: FxHashMap<DefId, MacroData>,
dummy_ext_bang: Lrc<SyntaxExtension>,
dummy_ext_derive: Lrc<SyntaxExtension>,
non_macro_attr: MacroData,
local_macro_def_scopes: FxHashMap<LocalDefId, Module<'a>>,
ast_transform_scopes: FxHashMap<LocalExpnId, Module<'a>>,
unused_macros: FxHashMap<LocalDefId, (NodeId, Ident)>,
unused_macro_rules: FxHashMap<(LocalDefId, usize), (Ident, Span)>,
proc_macro_stubs: FxHashSet<LocalDefId>,
/// Traces collected during macro resolution and validated when it's complete.
single_segment_macro_resolutions:
Vec<(Ident, MacroKind, ParentScope<'a>, Option<NameBinding<'a>>)>,
multi_segment_macro_resolutions:
Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>, Option<Res>)>,
builtin_attrs: Vec<(Ident, ParentScope<'a>)>,
/// `derive(Copy)` marks items they are applied to so they are treated specially later.
/// Derive macros cannot modify the item themselves and have to store the markers in the global
/// context, so they attach the markers to derive container IDs using this resolver table.
containers_deriving_copy: FxHashSet<LocalExpnId>,
/// Parent scopes in which the macros were invoked.
/// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere.
invocation_parent_scopes: FxHashMap<LocalExpnId, ParentScope<'a>>,
/// `macro_rules` scopes *produced* by expanding the macro invocations,
/// include all the `macro_rules` items and other invocations generated by them.
output_macro_rules_scopes: FxHashMap<LocalExpnId, MacroRulesScopeRef<'a>>,
/// `macro_rules` scopes produced by `macro_rules` item definitions.
macro_rules_scopes: FxHashMap<LocalDefId, MacroRulesScopeRef<'a>>,
/// Helper attributes that are in scope for the given expansion.
helper_attrs: FxHashMap<LocalExpnId, Vec<(Ident, NameBinding<'a>)>>,
/// Ready or in-progress results of resolving paths inside the `#[derive(...)]` attribute
/// with the given `ExpnId`.
derive_data: FxHashMap<LocalExpnId, DeriveData>,
/// Avoid duplicated errors for "name already defined".
name_already_seen: FxHashMap<Symbol, Span>,
potentially_unused_imports: Vec<Import<'a>>,
potentially_unnecessary_qualifications: Vec<UnnecessaryQualification<'a>>,
/// Table for mapping struct IDs into struct constructor IDs,
/// it's not used during normal resolution, only for better error reporting.
/// Also includes of list of each fields visibility
struct_constructors: LocalDefIdMap<(Res, ty::Visibility<DefId>, Vec<ty::Visibility<DefId>>)>,
/// Features declared for this crate.
declared_features: FxHashSet<Symbol>,
lint_buffer: LintBuffer,
next_node_id: NodeId,
node_id_to_def_id: NodeMap<Feed<'tcx, LocalDefId>>,
def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>,
/// Indices of unnamed struct or variant fields with unresolved attributes.
placeholder_field_indices: FxHashMap<NodeId, usize>,
/// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
/// we know what parent node that fragment should be attached to thanks to this table,
/// and how the `impl Trait` fragments were introduced.
invocation_parents: FxHashMap<LocalExpnId, (LocalDefId, ImplTraitContext)>,
/// Some way to know that we are in a *trait* impl in `visit_assoc_item`.
/// FIXME: Replace with a more general AST map (together with some other fields).
trait_impl_items: FxHashSet<LocalDefId>,
legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
/// Amount of lifetime parameters for each item in the crate.
item_generics_num_lifetimes: FxHashMap<LocalDefId, usize>,
delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
main_def: Option<MainDefinition>,
trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
/// A list of proc macro LocalDefIds, written out in the order in which
/// they are declared in the static array generated by proc_macro_harness.
proc_macros: Vec<NodeId>,
confused_type_with_std_module: FxHashMap<Span, Span>,
/// Whether lifetime elision was successful.
lifetime_elision_allowed: FxHashSet<NodeId>,
/// Names of items that were stripped out via cfg with their corresponding cfg meta item.
stripped_cfg_items: Vec<StrippedCfgItem<NodeId>>,
effective_visibilities: EffectiveVisibilities,
doc_link_resolutions: FxHashMap<LocalDefId, DocLinkResMap>,
doc_link_traits_in_scope: FxHashMap<LocalDefId, Vec<DefId>>,
all_macro_rules: FxHashMap<Symbol, Res>,
}
/// Nothing really interesting here; it just provides memory for the rest of the crate.
#[derive(Default)]
pub struct ResolverArenas<'a> {
modules: TypedArena<ModuleData<'a>>,
local_modules: RefCell<Vec<Module<'a>>>,
imports: TypedArena<ImportData<'a>>,
name_resolutions: TypedArena<RefCell<NameResolution<'a>>>,
ast_paths: TypedArena<ast::Path>,
dropless: DroplessArena,
}
impl<'a> ResolverArenas<'a> {
fn new_module(
&'a self,
parent: Option<Module<'a>>,
kind: ModuleKind,
expn_id: ExpnId,
span: Span,
no_implicit_prelude: bool,
module_map: &mut FxHashMap<DefId, Module<'a>>,
module_self_bindings: &mut FxHashMap<Module<'a>, NameBinding<'a>>,
) -> Module<'a> {
let module = Module(Interned::new_unchecked(self.modules.alloc(ModuleData::new(
parent,
kind,
expn_id,
span,
no_implicit_prelude,
))));
let def_id = module.opt_def_id();
if def_id.map_or(true, |def_id| def_id.is_local()) {
self.local_modules.borrow_mut().push(module);
}
if let Some(def_id) = def_id {
module_map.insert(def_id, module);
let vis = ty::Visibility::<DefId>::Public;
let binding = (module, vis, module.span, LocalExpnId::ROOT).to_name_binding(self);
module_self_bindings.insert(module, binding);
}
module
}
fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
self.local_modules.borrow()
}
fn alloc_name_binding(&'a self, name_binding: NameBindingData<'a>) -> NameBinding<'a> {
Interned::new_unchecked(self.dropless.alloc(name_binding))
}
fn alloc_import(&'a self, import: ImportData<'a>) -> Import<'a> {
Interned::new_unchecked(self.imports.alloc(import))
}
fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
self.name_resolutions.alloc(Default::default())
}
fn alloc_macro_rules_scope(&'a self, scope: MacroRulesScope<'a>) -> MacroRulesScopeRef<'a> {
Interned::new_unchecked(self.dropless.alloc(Cell::new(scope)))
}
fn alloc_macro_rules_binding(
&'a self,
binding: MacroRulesBinding<'a>,
) -> &'a MacroRulesBinding<'a> {
self.dropless.alloc(binding)
}
fn alloc_ast_paths(&'a self, paths: &[ast::Path]) -> &'a [ast::Path] {
self.ast_paths.alloc_from_iter(paths.iter().cloned())
}
fn alloc_pattern_spans(&'a self, spans: impl Iterator<Item = Span>) -> &'a [Span] {
self.dropless.alloc_from_iter(spans)
}
}
impl<'a, 'tcx> AsMut<Resolver<'a, 'tcx>> for Resolver<'a, 'tcx> {
fn as_mut(&mut self) -> &mut Resolver<'a, 'tcx> {
self
}
}
impl<'tcx> Resolver<'_, 'tcx> {
fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
self.opt_feed(node).map(|f| f.key())
}
fn local_def_id(&self, node: NodeId) -> LocalDefId {
self.feed(node).key()
}
fn opt_feed(&self, node: NodeId) -> Option<Feed<'tcx, LocalDefId>> {
self.node_id_to_def_id.get(&node).copied()
}
fn feed(&self, node: NodeId) -> Feed<'tcx, LocalDefId> {
self.opt_feed(node).unwrap_or_else(|| panic!("no entry for node id: `{node:?}`"))
}
fn local_def_kind(&self, node: NodeId) -> DefKind {
self.tcx.def_kind(self.local_def_id(node))
}
/// Adds a definition with a parent definition.
fn create_def(
&mut self,
parent: LocalDefId,
node_id: ast::NodeId,
name: Symbol,
def_kind: DefKind,
expn_id: ExpnId,
span: Span,
) -> TyCtxtFeed<'tcx, LocalDefId> {
let data = def_kind.def_path_data(name);
assert!(
!self.node_id_to_def_id.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.tcx.definitions_untracked().def_key(self.node_id_to_def_id[&node_id].key()),
);
// FIXME: remove `def_span` body, pass in the right spans here and call `tcx.at().create_def()`
let feed = self.tcx.create_def(parent, name, def_kind);
let def_id = feed.def_id();
// Create the definition.
if expn_id != ExpnId::root() {
self.expn_that_defined.insert(def_id, expn_id);
}
// A relative span's parent must be an absolute span.
debug_assert_eq!(span.data_untracked().parent, None);
let _id = self.tcx.untracked().source_span.push(span);
debug_assert_eq!(_id, def_id);
// Some things for which we allocate `LocalDefId`s don't correspond to
// anything in the AST, so they don't have a `NodeId`. For these cases
// we don't need a mapping from `NodeId` to `LocalDefId`.
if node_id != ast::DUMMY_NODE_ID {
debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
self.node_id_to_def_id.insert(node_id, feed.downgrade());
}
assert_eq!(self.def_id_to_node_id.push(node_id), def_id);
feed
}
fn item_generics_num_lifetimes(&self, def_id: DefId) -> usize {
if let Some(def_id) = def_id.as_local() {
self.item_generics_num_lifetimes[&def_id]
} else {
self.tcx.generics_of(def_id).own_counts().lifetimes
}
}
pub fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'a, 'tcx> Resolver<'a, 'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
attrs: &[ast::Attribute],
crate_span: Span,
arenas: &'a ResolverArenas<'a>,
) -> Resolver<'a, 'tcx> {
let root_def_id = CRATE_DEF_ID.to_def_id();
let mut module_map = FxHashMap::default();
let mut module_self_bindings = FxHashMap::default();
let graph_root = arenas.new_module(
None,
ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty),
ExpnId::root(),
crate_span,
attr::contains_name(attrs, sym::no_implicit_prelude),
&mut module_map,
&mut module_self_bindings,
);
let empty_module = arenas.new_module(
None,
ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty),
ExpnId::root(),
DUMMY_SP,
true,
&mut FxHashMap::default(),
&mut FxHashMap::default(),
);
let mut def_id_to_node_id = IndexVec::default();
assert_eq!(def_id_to_node_id.push(CRATE_NODE_ID), CRATE_DEF_ID);
let mut node_id_to_def_id = NodeMap::default();
let crate_feed = tcx.create_local_crate_def_id(crate_span);
crate_feed.def_kind(DefKind::Mod);
let crate_feed = crate_feed.downgrade();
node_id_to_def_id.insert(CRATE_NODE_ID, crate_feed);
let mut invocation_parents = FxHashMap::default();
invocation_parents.insert(LocalExpnId::ROOT, (CRATE_DEF_ID, ImplTraitContext::Existential));
let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> = tcx
.sess
.opts
.externs
.iter()
.filter(|(_, entry)| entry.add_prelude)
.map(|(name, _)| (Ident::from_str(name), Default::default()))
.collect();
if !attr::contains_name(attrs, sym::no_core) {
extern_prelude.insert(Ident::with_dummy_span(sym::core), Default::default());
if !attr::contains_name(attrs, sym::no_std) {
extern_prelude.insert(Ident::with_dummy_span(sym::std), Default::default());
}
}
let registered_tools = tcx.registered_tools(());
let features = tcx.features();
let pub_vis = ty::Visibility::<DefId>::Public;
let edition = tcx.sess.edition();
let mut resolver = Resolver {
tcx,
expn_that_defined: Default::default(),
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root,
prelude: None,
extern_prelude,
field_def_ids: Default::default(),
field_visibility_spans: FxHashMap::default(),
determined_imports: Vec::new(),
indeterminate_imports: Vec::new(),
pat_span_map: Default::default(),
partial_res_map: Default::default(),
import_res_map: Default::default(),
label_res_map: Default::default(),
lifetimes_res_map: Default::default(),
extra_lifetime_params_map: Default::default(),
extern_crate_map: Default::default(),
module_children: Default::default(),
trait_map: NodeMap::default(),
underscore_disambiguator: 0,
empty_disambiguator: 0,
empty_module,
module_map,
block_map: Default::default(),
binding_parent_modules: FxHashMap::default(),
ast_transform_scopes: FxHashMap::default(),
glob_map: Default::default(),
visibilities_for_hashing: Default::default(),
used_imports: FxHashSet::default(),
maybe_unused_trait_imports: Default::default(),
privacy_errors: Vec::new(),
ambiguity_errors: Vec::new(),
use_injections: Vec::new(),
macro_expanded_macro_export_errors: BTreeSet::new(),
arenas,
dummy_binding: (Res::Err, pub_vis, DUMMY_SP, LocalExpnId::ROOT).to_name_binding(arenas),
builtin_types_bindings: PrimTy::ALL
.iter()
.map(|prim_ty| {
let binding = (Res::PrimTy(*prim_ty), pub_vis, DUMMY_SP, LocalExpnId::ROOT)
.to_name_binding(arenas);
(prim_ty.name(), binding)
})
.collect(),
builtin_attrs_bindings: BUILTIN_ATTRIBUTES
.iter()
.map(|builtin_attr| {
let res = Res::NonMacroAttr(NonMacroAttrKind::Builtin(builtin_attr.name));
let binding =
(res, pub_vis, DUMMY_SP, LocalExpnId::ROOT).to_name_binding(arenas);
(builtin_attr.name, binding)
})
.collect(),
registered_tool_bindings: registered_tools
.iter()
.map(|ident| {
let binding = (Res::ToolMod, pub_vis, ident.span, LocalExpnId::ROOT)
.to_name_binding(arenas);
(*ident, binding)
})
.collect(),
module_self_bindings,
used_extern_options: Default::default(),
macro_names: FxHashSet::default(),
builtin_macros: Default::default(),
registered_tools,
macro_use_prelude: FxHashMap::default(),
macro_map: FxHashMap::default(),
dummy_ext_bang: Lrc::new(SyntaxExtension::dummy_bang(edition)),
dummy_ext_derive: Lrc::new(SyntaxExtension::dummy_derive(edition)),
non_macro_attr: MacroData::new(Lrc::new(SyntaxExtension::non_macro_attr(edition))),
invocation_parent_scopes: Default::default(),
output_macro_rules_scopes: Default::default(),
macro_rules_scopes: Default::default(),
helper_attrs: Default::default(),
derive_data: Default::default(),
local_macro_def_scopes: FxHashMap::default(),
name_already_seen: FxHashMap::default(),
potentially_unused_imports: Vec::new(),
potentially_unnecessary_qualifications: Default::default(),
struct_constructors: Default::default(),
unused_macros: Default::default(),
unused_macro_rules: Default::default(),
proc_macro_stubs: Default::default(),
single_segment_macro_resolutions: Default::default(),
multi_segment_macro_resolutions: Default::default(),
builtin_attrs: Default::default(),
containers_deriving_copy: Default::default(),
declared_features: features.declared_features.clone(),
lint_buffer: LintBuffer::default(),
next_node_id: CRATE_NODE_ID,
node_id_to_def_id,
def_id_to_node_id,
placeholder_field_indices: Default::default(),
invocation_parents,
trait_impl_items: Default::default(),
legacy_const_generic_args: Default::default(),
item_generics_num_lifetimes: Default::default(),
main_def: Default::default(),
trait_impls: Default::default(),
proc_macros: Default::default(),
confused_type_with_std_module: Default::default(),
lifetime_elision_allowed: Default::default(),
stripped_cfg_items: Default::default(),
effective_visibilities: Default::default(),
doc_link_resolutions: Default::default(),
doc_link_traits_in_scope: Default::default(),
all_macro_rules: Default::default(),
delegation_fn_sigs: Default::default(),
};
let root_parent_scope = ParentScope::module(graph_root, &resolver);
resolver.invocation_parent_scopes.insert(LocalExpnId::ROOT, root_parent_scope);
resolver.feed_visibility(crate_feed, ty::Visibility::Public);
resolver
}
fn new_module(
&mut self,
parent: Option<Module<'a>>,
kind: ModuleKind,
expn_id: ExpnId,
span: Span,
no_implicit_prelude: bool,
) -> Module<'a> {
let module_map = &mut self.module_map;
let module_self_bindings = &mut self.module_self_bindings;
self.arenas.new_module(
parent,
kind,
expn_id,
span,
no_implicit_prelude,
module_map,
module_self_bindings,
)
}
fn next_node_id(&mut self) -> NodeId {
let start = self.next_node_id;
let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
self.next_node_id = ast::NodeId::from_u32(next);
start
}
fn next_node_ids(&mut self, count: usize) -> std::ops::Range<NodeId> {
let start = self.next_node_id;
let end = start.as_usize().checked_add(count).expect("input too large; ran out of NodeIds");
self.next_node_id = ast::NodeId::from_usize(end);
start..self.next_node_id
}
pub fn lint_buffer(&mut self) -> &mut LintBuffer {
&mut self.lint_buffer
}
pub fn arenas() -> ResolverArenas<'a> {
Default::default()
}
fn feed_visibility(&mut self, feed: Feed<'tcx, LocalDefId>, vis: ty::Visibility) {
let feed = feed.upgrade(self.tcx);
feed.visibility(vis.to_def_id());
self.visibilities_for_hashing.push((feed.def_id(), vis));
}
pub fn into_outputs(self) -> ResolverOutputs {
let proc_macros = self.proc_macros.iter().map(|id| self.local_def_id(*id)).collect();
let expn_that_defined = self.expn_that_defined;
let extern_crate_map = self.extern_crate_map;
let maybe_unused_trait_imports = self.maybe_unused_trait_imports;
let glob_map = self.glob_map;
let main_def = self.main_def;
let confused_type_with_std_module = self.confused_type_with_std_module;
let effective_visibilities = self.effective_visibilities;
let stripped_cfg_items = Steal::new(
self.stripped_cfg_items
.into_iter()
.filter_map(|item| {
let parent_module =
self.node_id_to_def_id.get(&item.parent_module)?.key().to_def_id();
Some(StrippedCfgItem { parent_module, name: item.name, cfg: item.cfg })
})
.collect(),
);
let global_ctxt = ResolverGlobalCtxt {
expn_that_defined,
visibilities_for_hashing: self.visibilities_for_hashing,
effective_visibilities,
extern_crate_map,
module_children: self.module_children,
glob_map,
maybe_unused_trait_imports,
main_def,
trait_impls: self.trait_impls,
proc_macros,
confused_type_with_std_module,
doc_link_resolutions: self.doc_link_resolutions,
doc_link_traits_in_scope: self.doc_link_traits_in_scope,
all_macro_rules: self.all_macro_rules,
stripped_cfg_items,
};
let ast_lowering = ty::ResolverAstLowering {
legacy_const_generic_args: self.legacy_const_generic_args,
partial_res_map: self.partial_res_map,
import_res_map: self.import_res_map,
label_res_map: self.label_res_map,
lifetimes_res_map: self.lifetimes_res_map,
extra_lifetime_params_map: self.extra_lifetime_params_map,
next_node_id: self.next_node_id,
node_id_to_def_id: self
.node_id_to_def_id
.into_items()
.map(|(k, f)| (k, f.key()))
.collect(),
trait_map: self.trait_map,
lifetime_elision_allowed: self.lifetime_elision_allowed,
lint_buffer: Steal::new(self.lint_buffer),
delegation_fn_sigs: self.delegation_fn_sigs,
};
ResolverOutputs { global_ctxt, ast_lowering }
}
fn create_stable_hashing_context(&self) -> StableHashingContext<'_> {
StableHashingContext::new(self.tcx.sess, self.tcx.untracked())
}
fn crate_loader<T>(&mut self, f: impl FnOnce(&mut CrateLoader<'_, '_>) -> T) -> T {
f(&mut CrateLoader::new(
self.tcx,
&mut CStore::from_tcx_mut(self.tcx),
&mut self.used_extern_options,
))
}
fn cstore(&self) -> FreezeReadGuard<'_, CStore> {
CStore::from_tcx(self.tcx)
}
fn dummy_ext(&self, macro_kind: MacroKind) -> Lrc<SyntaxExtension> {
match macro_kind {
MacroKind::Bang => self.dummy_ext_bang.clone(),
MacroKind::Derive => self.dummy_ext_derive.clone(),
MacroKind::Attr => self.non_macro_attr.ext.clone(),
}
}
/// Runs the function on each namespace.
fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
f(self, TypeNS);
f(self, ValueNS);
f(self, MacroNS);
}
fn is_builtin_macro(&mut self, res: Res) -> bool {
self.get_macro(res).is_some_and(|macro_data| macro_data.ext.builtin_name.is_some())
}
fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
loop {
match ctxt.outer_expn_data().macro_def_id {
Some(def_id) => return def_id,
None => ctxt.remove_mark(),
};
}
}
/// Entry point to crate resolution.
pub fn resolve_crate(&mut self, krate: &Crate) {
self.tcx.sess.time("resolve_crate", || {
self.tcx.sess.time("finalize_imports", || self.finalize_imports());
let exported_ambiguities = self.tcx.sess.time("compute_effective_visibilities", || {
EffectiveVisibilitiesVisitor::compute_effective_visibilities(self, krate)
});
self.tcx.sess.time("check_hidden_glob_reexports", || {
self.check_hidden_glob_reexports(exported_ambiguities)
});
self.tcx
.sess
.time("finalize_macro_resolutions", || self.finalize_macro_resolutions(krate));
self.tcx.sess.time("late_resolve_crate", || self.late_resolve_crate(krate));
self.tcx.sess.time("resolve_main", || self.resolve_main());
self.tcx.sess.time("resolve_check_unused", || self.check_unused(krate));
self.tcx.sess.time("resolve_report_errors", || self.report_errors(krate));
self.tcx
.sess
.time("resolve_postprocess", || self.crate_loader(|c| c.postprocess(krate)));
});
// Make sure we don't mutate the cstore from here on.
self.tcx.untracked().cstore.freeze();
}
fn traits_in_scope(
&mut self,
current_trait: Option<Module<'a>>,
parent_scope: &ParentScope<'a>,
ctxt: SyntaxContext,
assoc_item: Option<(Symbol, Namespace)>,
) -> Vec<TraitCandidate> {
let mut found_traits = Vec::new();
if let Some(module) = current_trait {
if self.trait_may_have_item(Some(module), assoc_item) {
let def_id = module.def_id();
found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] });
}
}
self.visit_scopes(ScopeSet::All(TypeNS), parent_scope, ctxt, |this, scope, _, _| {
match scope {
Scope::Module(module, _) => {
this.traits_in_module(module, assoc_item, &mut found_traits);
}
Scope::StdLibPrelude => {
if let Some(module) = this.prelude {
this.traits_in_module(module, assoc_item, &mut found_traits);
}
}
Scope::ExternPrelude | Scope::ToolPrelude | Scope::BuiltinTypes => {}
_ => unreachable!(),
}
None::<()>
});
found_traits
}
fn traits_in_module(
&mut self,
module: Module<'a>,
assoc_item: Option<(Symbol, Namespace)>,
found_traits: &mut Vec<TraitCandidate>,
) {
module.ensure_traits(self);
let traits = module.traits.borrow();
for (trait_name, trait_binding) in traits.as_ref().unwrap().iter() {
if self.trait_may_have_item(trait_binding.module(), assoc_item) {
let def_id = trait_binding.res().def_id();
let import_ids = self.find_transitive_imports(&trait_binding.kind, *trait_name);
found_traits.push(TraitCandidate { def_id, import_ids });
}
}
}
// List of traits in scope is pruned on best effort basis. We reject traits not having an
// associated item with the given name and namespace (if specified). This is a conservative
// optimization, proper hygienic type-based resolution of associated items is done in typeck.
// We don't reject trait aliases (`trait_module == None`) because we don't have access to their
// associated items.
fn trait_may_have_item(
&mut self,
trait_module: Option<Module<'a>>,
assoc_item: Option<(Symbol, Namespace)>,
) -> bool {
match (trait_module, assoc_item) {
(Some(trait_module), Some((name, ns))) => {
self.resolutions(trait_module).borrow().iter().any(|resolution| {
let (&BindingKey { ident: assoc_ident, ns: assoc_ns, .. }, _) = resolution;
assoc_ns == ns && assoc_ident.name == name
})
}
_ => true,
}
}
fn find_transitive_imports(
&mut self,
mut kind: &NameBindingKind<'_>,
trait_name: Ident,
) -> SmallVec<[LocalDefId; 1]> {
let mut import_ids = smallvec![];
while let NameBindingKind::Import { import, binding, .. } = kind {
if let Some(node_id) = import.id() {
let def_id = self.local_def_id(node_id);
self.maybe_unused_trait_imports.insert(def_id);
import_ids.push(def_id);
}
self.add_to_glob_map(*import, trait_name);
kind = &binding.kind;
}
import_ids
}
fn new_disambiguated_key(&mut self, ident: Ident, ns: Namespace) -> BindingKey {
let ident = ident.normalize_to_macros_2_0();
let disambiguator = if ident.name == kw::Underscore {
self.underscore_disambiguator += 1;
self.underscore_disambiguator
} else if ident.name == kw::Empty {
self.empty_disambiguator += 1;
self.empty_disambiguator
} else {
0
};
BindingKey { ident, ns, disambiguator }
}
fn resolutions(&mut self, module: Module<'a>) -> &'a Resolutions<'a> {
if module.populate_on_access.get() {
module.populate_on_access.set(false);
self.build_reduced_graph_external(module);
}
&module.0.0.lazy_resolutions
}
fn resolution(
&mut self,
module: Module<'a>,
key: BindingKey,
) -> &'a RefCell<NameResolution<'a>> {
*self
.resolutions(module)
.borrow_mut()
.entry(key)
.or_insert_with(|| self.arenas.alloc_name_resolution())
}
/// Test if AmbiguityError ambi is any identical to any one inside ambiguity_errors
fn matches_previous_ambiguity_error(&mut self, ambi: &AmbiguityError<'_>) -> bool {
for ambiguity_error in &self.ambiguity_errors {
// if the span location and ident as well as its span are the same
if ambiguity_error.kind == ambi.kind
&& ambiguity_error.ident == ambi.ident
&& ambiguity_error.ident.span == ambi.ident.span
&& ambiguity_error.b1.span == ambi.b1.span
&& ambiguity_error.b2.span == ambi.b2.span
&& ambiguity_error.misc1 == ambi.misc1
&& ambiguity_error.misc2 == ambi.misc2
{
return true;
}
}
false
}
fn record_use(&mut self, ident: Ident, used_binding: NameBinding<'a>, used: Used) {
self.record_use_inner(ident, used_binding, used, used_binding.warn_ambiguity);
}
fn record_use_inner(
&mut self,
ident: Ident,
used_binding: NameBinding<'a>,
used: Used,
warn_ambiguity: bool,
) {
if let Some((b2, kind)) = used_binding.ambiguity {
let ambiguity_error = AmbiguityError {
kind,
ident,
b1: used_binding,
b2,
misc1: AmbiguityErrorMisc::None,
misc2: AmbiguityErrorMisc::None,
warning: warn_ambiguity,
};
if !self.matches_previous_ambiguity_error(&ambiguity_error) {
// avoid duplicated span information to be emit out
self.ambiguity_errors.push(ambiguity_error);
}
}
if let NameBindingKind::Import { import, binding } = used_binding.kind {
if let ImportKind::MacroUse { warn_private: true } = import.kind {
self.lint_buffer().buffer_lint_with_diagnostic(
PRIVATE_MACRO_USE,
import.root_id,
ident.span,
BuiltinLintDiag::MacroIsPrivate(ident),
);
}
// Avoid marking `extern crate` items that refer to a name from extern prelude,
// but not introduce it, as used if they are accessed from lexical scope.
if used == Used::Scope {
if let Some(entry) = self.extern_prelude.get(&ident.normalize_to_macros_2_0()) {
if !entry.introduced_by_item && entry.binding == Some(used_binding) {
return;
}
}
}
let old_used = import.used.get();
let new_used = Some(used);
if new_used > old_used {
import.used.set(new_used);
}
if let Some(id) = import.id() {
self.used_imports.insert(id);
}
self.add_to_glob_map(import, ident);
self.record_use_inner(
ident,
binding,
Used::Other,
warn_ambiguity || binding.warn_ambiguity,
);
}
}
#[inline]
fn add_to_glob_map(&mut self, import: Import<'_>, ident: Ident) {
if let ImportKind::Glob { id, .. } = import.kind {
let def_id = self.local_def_id(id);
self.glob_map.entry(def_id).or_default().insert(ident.name);
}
}
fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
debug!("resolve_crate_root({:?})", ident);
let mut ctxt = ident.span.ctxt();
let mark = if ident.name == kw::DollarCrate {
// When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
// we don't want to pretend that the `macro_rules!` definition is in the `macro`
// as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks.
// FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
// definitions actually produced by `macro` and `macro` definitions produced by
// `macro_rules!`, but at least such configurations are not stable yet.
ctxt = ctxt.normalize_to_macro_rules();
debug!(
"resolve_crate_root: marks={:?}",
ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::<Vec<_>>()
);
let mut iter = ctxt.marks().into_iter().rev().peekable();
let mut result = None;
// Find the last opaque mark from the end if it exists.
while let Some(&(mark, transparency)) = iter.peek() {
if transparency == Transparency::Opaque {
result = Some(mark);
iter.next();
} else {
break;
}
}
debug!(
"resolve_crate_root: found opaque mark {:?} {:?}",
result,
result.map(|r| r.expn_data())
);
// Then find the last semi-transparent mark from the end if it exists.
for (mark, transparency) in iter {
if transparency == Transparency::SemiTransparent {
result = Some(mark);
} else {
break;
}
}
debug!(
"resolve_crate_root: found semi-transparent mark {:?} {:?}",
result,
result.map(|r| r.expn_data())
);
result
} else {
debug!("resolve_crate_root: not DollarCrate");
ctxt = ctxt.normalize_to_macros_2_0();
ctxt.adjust(ExpnId::root())
};
let module = match mark {
Some(def) => self.expn_def_scope(def),
None => {
debug!(
"resolve_crate_root({:?}): found no mark (ident.span = {:?})",
ident, ident.span
);
return self.graph_root;
}
};
let module = self.expect_module(
module.opt_def_id().map_or(LOCAL_CRATE, |def_id| def_id.krate).as_def_id(),
);
debug!(
"resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})",
ident,
module,
module.kind.name(),
ident.span
);
module
}
fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
let mut module = self.expect_module(module.nearest_parent_mod());
while module.span.ctxt().normalize_to_macros_2_0() != *ctxt {
let parent = module.parent.unwrap_or_else(|| self.expn_def_scope(ctxt.remove_mark()));
module = self.expect_module(parent.nearest_parent_mod());
}
module
}
fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
debug!("(recording res) recording {:?} for {}", resolution, node_id);
if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
panic!("path resolved multiple times ({prev_res:?} before, {resolution:?} now)");
}
}
fn record_pat_span(&mut self, node: NodeId, span: Span) {
debug!("(recording pat) recording {:?} for {:?}", node, span);
self.pat_span_map.insert(node, span);
}
fn is_accessible_from(
&self,
vis: ty::Visibility<impl Into<DefId>>,
module: Module<'a>,
) -> bool {
vis.is_accessible_from(module.nearest_parent_mod(), self.tcx)
}
fn set_binding_parent_module(&mut self, binding: NameBinding<'a>, module: Module<'a>) {
if let Some(old_module) = self.binding_parent_modules.insert(binding, module) {
if module != old_module {
span_bug!(binding.span, "parent module is reset for binding");
}
}
}
fn disambiguate_macro_rules_vs_modularized(
&self,
macro_rules: NameBinding<'a>,
modularized: NameBinding<'a>,
) -> bool {
// Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules"
// is disambiguated to mitigate regressions from macro modularization.
// Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
match (
self.binding_parent_modules.get(&macro_rules),
self.binding_parent_modules.get(&modularized),
) {
(Some(macro_rules), Some(modularized)) => {
macro_rules.nearest_parent_mod() == modularized.nearest_parent_mod()
&& modularized.is_ancestor_of(*macro_rules)
}
_ => false,
}
}
fn extern_prelude_get(&mut self, ident: Ident, finalize: bool) -> Option<NameBinding<'a>> {
if ident.is_path_segment_keyword() {
// Make sure `self`, `super` etc produce an error when passed to here.
return None;
}
let norm_ident = ident.normalize_to_macros_2_0();
let binding = self.extern_prelude.get(&norm_ident).cloned().and_then(|entry| {
Some(if let Some(binding) = entry.binding {
if finalize {
if !entry.is_import() {
self.crate_loader(|c| c.process_path_extern(ident.name, ident.span));
} else if entry.introduced_by_item {
self.record_use(ident, binding, Used::Other);
}
}
binding
} else {
let crate_id = if finalize {
let Some(crate_id) =
self.crate_loader(|c| c.process_path_extern(ident.name, ident.span))
else {
return Some(self.dummy_binding);
};
crate_id
} else {
self.crate_loader(|c| c.maybe_process_path_extern(ident.name))?
};
let crate_root = self.expect_module(crate_id.as_def_id());
let vis = ty::Visibility::<DefId>::Public;
(crate_root, vis, DUMMY_SP, LocalExpnId::ROOT).to_name_binding(self.arenas)
})
});
if let Some(entry) = self.extern_prelude.get_mut(&norm_ident) {
entry.binding = binding;
}
binding
}
/// Rustdoc uses this to resolve doc link paths in a recoverable way. `PathResult<'a>`
/// isn't something that can be returned because it can't be made to live that long,
/// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
/// just that an error occurred.
fn resolve_rustdoc_path(
&mut self,
path_str: &str,
ns: Namespace,
parent_scope: ParentScope<'a>,
) -> Option<Res> {
let mut segments =
Vec::from_iter(path_str.split("::").map(Ident::from_str).map(Segment::from_ident));
if let Some(segment) = segments.first_mut() {
if segment.ident.name == kw::Empty {
segment.ident.name = kw::PathRoot;
}
}
match self.maybe_resolve_path(&segments, Some(ns), &parent_scope) {
PathResult::Module(ModuleOrUniformRoot::Module(module)) => Some(module.res().unwrap()),
PathResult::NonModule(path_res) => path_res.full_res(),
PathResult::Module(ModuleOrUniformRoot::ExternPrelude) | PathResult::Failed { .. } => {
None
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
}
}
/// Retrieves definition span of the given `DefId`.
fn def_span(&self, def_id: DefId) -> Span {
match def_id.as_local() {
Some(def_id) => self.tcx.source_span(def_id),
// Query `def_span` is not used because hashing its result span is expensive.
None => self.cstore().def_span_untracked(def_id, self.tcx.sess),
}
}
fn field_def_ids(&self, def_id: DefId) -> Option<&'tcx [DefId]> {
match def_id.as_local() {
Some(def_id) => self.field_def_ids.get(&def_id).copied(),
None => Some(self.tcx.associated_item_def_ids(def_id)),
}
}
/// Checks if an expression refers to a function marked with
/// `#[rustc_legacy_const_generics]` and returns the argument index list
/// from the attribute.
fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option<Vec<usize>> {
if let ExprKind::Path(None, path) = &expr.kind {
// Don't perform legacy const generics rewriting if the path already
// has generic arguments.
if path.segments.last().unwrap().args.is_some() {
return None;
}
let res = self.partial_res_map.get(&expr.id)?.full_res()?;
if let Res::Def(def::DefKind::Fn, def_id) = res {
// We only support cross-crate argument rewriting. Uses
// within the same crate should be updated to use the new
// const generics style.
if def_id.is_local() {
return None;
}
if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
return v.clone();
}
let attr = self.tcx.get_attr(def_id, sym::rustc_legacy_const_generics)?;
let mut ret = Vec::new();
for meta in attr.meta_item_list()? {
match meta.lit()?.kind {
LitKind::Int(a, _) => ret.push(a.get() as usize),
_ => panic!("invalid arg index"),
}
}
// Cache the lookup to avoid parsing attributes for an item multiple times.
self.legacy_const_generic_args.insert(def_id, Some(ret.clone()));
return Some(ret);
}
}
None
}
fn resolve_main(&mut self) {
let module = self.graph_root;
let ident = Ident::with_dummy_span(sym::main);
let parent_scope = &ParentScope::module(module, self);
let Ok(name_binding) = self.maybe_resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ValueNS,
parent_scope,
) else {
return;
};
let res = name_binding.res();
let is_import = name_binding.is_import();
let span = name_binding.span;
if let Res::Def(DefKind::Fn, _) = res {
self.record_use(ident, name_binding, Used::Other);
}
self.main_def = Some(MainDefinition { res, is_import, span });
}
}
fn names_to_string(names: &[Symbol]) -> String {
let mut result = String::new();
for (i, name) in names.iter().filter(|name| **name != kw::PathRoot).enumerate() {
if i > 0 {
result.push_str("::");
}
if Ident::with_dummy_span(*name).is_raw_guess() {
result.push_str("r#");
}
result.push_str(name.as_str());
}
result
}
fn path_names_to_string(path: &Path) -> String {
names_to_string(&path.segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
}
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(module: Module<'_>) -> Option<String> {
let mut names = Vec::new();
fn collect_mod(names: &mut Vec<Symbol>, module: Module<'_>) {
if let ModuleKind::Def(.., name) = module.kind {
if let Some(parent) = module.parent {
names.push(name);
collect_mod(names, parent);
}
} else {
names.push(Symbol::intern("<opaque>"));
collect_mod(names, module.parent.unwrap());
}
}
collect_mod(&mut names, module);
if names.is_empty() {
return None;
}
names.reverse();
Some(names_to_string(&names))
}
#[derive(Copy, Clone, Debug)]
struct Finalize {
/// Node ID for linting.
node_id: NodeId,
/// Span of the whole path or some its characteristic fragment.
/// E.g. span of `b` in `foo::{a, b, c}`, or full span for regular paths.
path_span: Span,
/// Span of the path start, suitable for prepending something to it.
/// E.g. span of `foo` in `foo::{a, b, c}`, or full span for regular paths.
root_span: Span,
/// Whether to report privacy errors or silently return "no resolution" for them,
/// similarly to speculative resolution.
report_private: bool,
/// Tracks whether an item is used in scope or used relatively to a module.
used: Used,
}
impl Finalize {
fn new(node_id: NodeId, path_span: Span) -> Finalize {
Finalize::with_root_span(node_id, path_span, path_span)
}
fn with_root_span(node_id: NodeId, path_span: Span, root_span: Span) -> Finalize {
Finalize { node_id, path_span, root_span, report_private: true, used: Used::Other }
}
}
pub fn provide(providers: &mut Providers) {
providers.registered_tools = macros::registered_tools;
}