blob: cfe47004e01b67fd309d59f6451c6226e10b8691 [file] [log] [blame]
use crate::dep_graph::{DepNode, DepNodeIndex, SerializedDepNodeIndex};
use crate::mir::interpret::{AllocDecodingSession, AllocDecodingState};
use crate::mir::{self, interpret};
use crate::ty::codec::{RefDecodable, TyDecoder, TyEncoder};
use crate::ty::context::TyCtxt;
use crate::ty::{self, Ty};
use rustc_data_structures::fingerprint::{Fingerprint, FingerprintDecoder, FingerprintEncoder};
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
use rustc_data_structures::sync::{HashMapExt, Lock, Lrc, OnceCell};
use rustc_data_structures::thin_vec::ThinVec;
use rustc_data_structures::unhash::UnhashMap;
use rustc_errors::Diagnostic;
use rustc_hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, LOCAL_CRATE};
use rustc_hir::definitions::DefPathHash;
use rustc_hir::definitions::Definitions;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::{
opaque::{self, FileEncodeResult, FileEncoder},
Decodable, Decoder, Encodable, Encoder,
};
use rustc_session::{CrateDisambiguator, Session};
use rustc_span::hygiene::{
ExpnDataDecodeMode, ExpnDataEncodeMode, ExpnId, HygieneDecodeContext, HygieneEncodeContext,
SyntaxContext, SyntaxContextData,
};
use rustc_span::source_map::{SourceMap, StableSourceFileId};
use rustc_span::CachingSourceMapView;
use rustc_span::{BytePos, ExpnData, SourceFile, Span, DUMMY_SP};
use std::collections::hash_map::Entry;
use std::iter::FromIterator;
use std::mem;
const TAG_FILE_FOOTER: u128 = 0xC0FFEE_C0FFEE_C0FFEE_C0FFEE_C0FFEE;
// A normal span encoded with both location information and a `SyntaxContext`
const TAG_FULL_SPAN: u8 = 0;
// A partial span with no location information, encoded only with a `SyntaxContext`
const TAG_PARTIAL_SPAN: u8 = 1;
const TAG_SYNTAX_CONTEXT: u8 = 0;
const TAG_EXPN_DATA: u8 = 1;
/// Provides an interface to incremental compilation data cached from the
/// previous compilation session. This data will eventually include the results
/// of a few selected queries (like `typeck` and `mir_optimized`) and
/// any diagnostics that have been emitted during a query.
pub struct OnDiskCache<'sess> {
// The complete cache data in serialized form.
serialized_data: Vec<u8>,
// Collects all `Diagnostic`s emitted during the current compilation
// session.
current_diagnostics: Lock<FxHashMap<DepNodeIndex, Vec<Diagnostic>>>,
prev_cnums: Vec<(u32, String, CrateDisambiguator)>,
cnum_map: OnceCell<IndexVec<CrateNum, Option<CrateNum>>>,
source_map: &'sess SourceMap,
file_index_to_stable_id: FxHashMap<SourceFileIndex, StableSourceFileId>,
// Caches that are populated lazily during decoding.
file_index_to_file: Lock<FxHashMap<SourceFileIndex, Lrc<SourceFile>>>,
// A map from dep-node to the position of the cached query result in
// `serialized_data`.
query_result_index: FxHashMap<SerializedDepNodeIndex, AbsoluteBytePos>,
// A map from dep-node to the position of any associated diagnostics in
// `serialized_data`.
prev_diagnostics_index: FxHashMap<SerializedDepNodeIndex, AbsoluteBytePos>,
alloc_decoding_state: AllocDecodingState,
// A map from syntax context ids to the position of their associated
// `SyntaxContextData`. We use a `u32` instead of a `SyntaxContext`
// to represent the fact that we are storing *encoded* ids. When we decode
// a `SyntaxContext`, a new id will be allocated from the global `HygieneData`,
// which will almost certainly be different than the serialized id.
syntax_contexts: FxHashMap<u32, AbsoluteBytePos>,
// A map from the `DefPathHash` of an `ExpnId` to the position
// of their associated `ExpnData`. Ideally, we would store a `DefId`,
// but we need to decode this before we've constructed a `TyCtxt` (which
// makes it difficult to decode a `DefId`).
// Note that these `DefPathHashes` correspond to both local and foreign
// `ExpnData` (e.g `ExpnData.krate` may not be `LOCAL_CRATE`). Alternatively,
// we could look up the `ExpnData` from the metadata of foreign crates,
// but it seemed easier to have `OnDiskCache` be independent of the `CStore`.
expn_data: FxHashMap<u32, AbsoluteBytePos>,
// Additional information used when decoding hygiene data.
hygiene_context: HygieneDecodeContext,
// Maps `DefPathHash`es to their `RawDefId`s from the *previous*
// compilation session. This is used as an initial 'guess' when
// we try to map a `DefPathHash` to its `DefId` in the current compilation
// session.
foreign_def_path_hashes: UnhashMap<DefPathHash, RawDefId>,
// The *next* compilation sessison's `foreign_def_path_hashes` - at
// the end of our current compilation session, this will get written
// out to the `foreign_def_path_hashes` field of the `Footer`, which
// will become `foreign_def_path_hashes` of the next compilation session.
// This stores any `DefPathHash` that we may need to map to a `DefId`
// during the next compilation session.
latest_foreign_def_path_hashes: Lock<UnhashMap<DefPathHash, RawDefId>>,
// Maps `DefPathHashes` to their corresponding `LocalDefId`s for all
// local items in the current compilation session. This is only populated
// when we are in incremental mode and have loaded a pre-existing cache
// from disk, since this map is only used when deserializing a `DefPathHash`
// from the incremental cache.
local_def_path_hash_to_def_id: UnhashMap<DefPathHash, LocalDefId>,
// Caches all lookups of `DefPathHashes`, both for local and foreign
// definitions. A definition from the previous compilation session
// may no longer exist in the current compilation session, so
// we use `Option<DefId>` so that we can cache a lookup failure.
def_path_hash_to_def_id_cache: Lock<UnhashMap<DefPathHash, Option<DefId>>>,
}
// This type is used only for serialization and deserialization.
#[derive(Encodable, Decodable)]
struct Footer {
file_index_to_stable_id: FxHashMap<SourceFileIndex, StableSourceFileId>,
prev_cnums: Vec<(u32, String, CrateDisambiguator)>,
query_result_index: EncodedQueryResultIndex,
diagnostics_index: EncodedQueryResultIndex,
// The location of all allocations.
interpret_alloc_index: Vec<u32>,
// See `OnDiskCache.syntax_contexts`
syntax_contexts: FxHashMap<u32, AbsoluteBytePos>,
// See `OnDiskCache.expn_data`
expn_data: FxHashMap<u32, AbsoluteBytePos>,
foreign_def_path_hashes: UnhashMap<DefPathHash, RawDefId>,
}
type EncodedQueryResultIndex = Vec<(SerializedDepNodeIndex, AbsoluteBytePos)>;
type EncodedDiagnosticsIndex = Vec<(SerializedDepNodeIndex, AbsoluteBytePos)>;
type EncodedDiagnostics = Vec<Diagnostic>;
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Encodable, Decodable)]
struct SourceFileIndex(u32);
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, Encodable, Decodable)]
struct AbsoluteBytePos(u32);
impl AbsoluteBytePos {
fn new(pos: usize) -> AbsoluteBytePos {
debug_assert!(pos <= u32::MAX as usize);
AbsoluteBytePos(pos as u32)
}
fn to_usize(self) -> usize {
self.0 as usize
}
}
/// Represents a potentially invalid `DefId`. This is used during incremental
/// compilation to represent a `DefId` from the *previous* compilation session,
/// which may no longer be valid. This is used to help map a `DefPathHash`
/// to a `DefId` in the current compilation session.
#[derive(Encodable, Decodable, Copy, Clone, Debug)]
crate struct RawDefId {
// We deliberately do not use `CrateNum` and `DefIndex`
// here, since a crate/index from the previous compilation
// session may no longer exist.
pub krate: u32,
pub index: u32,
}
fn make_local_def_path_hash_map(definitions: &Definitions) -> UnhashMap<DefPathHash, LocalDefId> {
UnhashMap::from_iter(
definitions
.def_path_table()
.all_def_path_hashes_and_def_ids(LOCAL_CRATE)
.map(|(hash, def_id)| (hash, def_id.as_local().unwrap())),
)
}
impl<'sess> OnDiskCache<'sess> {
/// Creates a new `OnDiskCache` instance from the serialized data in `data`.
pub fn new(
sess: &'sess Session,
data: Vec<u8>,
start_pos: usize,
definitions: &Definitions,
) -> Self {
debug_assert!(sess.opts.incremental.is_some());
// Wrap in a scope so we can borrow `data`.
let footer: Footer = {
let mut decoder = opaque::Decoder::new(&data[..], start_pos);
// Decode the *position* of the footer, which can be found in the
// last 8 bytes of the file.
decoder.set_position(data.len() - IntEncodedWithFixedSize::ENCODED_SIZE);
let footer_pos = IntEncodedWithFixedSize::decode(&mut decoder)
.expect("error while trying to decode footer position")
.0 as usize;
// Decode the file footer, which contains all the lookup tables, etc.
decoder.set_position(footer_pos);
decode_tagged(&mut decoder, TAG_FILE_FOOTER)
.expect("error while trying to decode footer position")
};
Self {
serialized_data: data,
file_index_to_stable_id: footer.file_index_to_stable_id,
file_index_to_file: Default::default(),
prev_cnums: footer.prev_cnums,
cnum_map: OnceCell::new(),
source_map: sess.source_map(),
current_diagnostics: Default::default(),
query_result_index: footer.query_result_index.into_iter().collect(),
prev_diagnostics_index: footer.diagnostics_index.into_iter().collect(),
alloc_decoding_state: AllocDecodingState::new(footer.interpret_alloc_index),
syntax_contexts: footer.syntax_contexts,
expn_data: footer.expn_data,
hygiene_context: Default::default(),
foreign_def_path_hashes: footer.foreign_def_path_hashes,
latest_foreign_def_path_hashes: Default::default(),
local_def_path_hash_to_def_id: make_local_def_path_hash_map(definitions),
def_path_hash_to_def_id_cache: Default::default(),
}
}
pub fn new_empty(source_map: &'sess SourceMap) -> Self {
Self {
serialized_data: Vec::new(),
file_index_to_stable_id: Default::default(),
file_index_to_file: Default::default(),
prev_cnums: vec![],
cnum_map: OnceCell::new(),
source_map,
current_diagnostics: Default::default(),
query_result_index: Default::default(),
prev_diagnostics_index: Default::default(),
alloc_decoding_state: AllocDecodingState::new(Vec::new()),
syntax_contexts: FxHashMap::default(),
expn_data: FxHashMap::default(),
hygiene_context: Default::default(),
foreign_def_path_hashes: Default::default(),
latest_foreign_def_path_hashes: Default::default(),
local_def_path_hash_to_def_id: Default::default(),
def_path_hash_to_def_id_cache: Default::default(),
}
}
pub fn serialize<'tcx>(
&self,
tcx: TyCtxt<'tcx>,
encoder: &mut FileEncoder,
) -> FileEncodeResult {
// Serializing the `DepGraph` should not modify it.
tcx.dep_graph.with_ignore(|| {
// Allocate `SourceFileIndex`es.
let (file_to_file_index, file_index_to_stable_id) = {
let files = tcx.sess.source_map().files();
let mut file_to_file_index =
FxHashMap::with_capacity_and_hasher(files.len(), Default::default());
let mut file_index_to_stable_id =
FxHashMap::with_capacity_and_hasher(files.len(), Default::default());
for (index, file) in files.iter().enumerate() {
let index = SourceFileIndex(index as u32);
let file_ptr: *const SourceFile = &**file as *const _;
file_to_file_index.insert(file_ptr, index);
file_index_to_stable_id.insert(index, StableSourceFileId::new(&file));
}
(file_to_file_index, file_index_to_stable_id)
};
// Register any dep nodes that we reused from the previous session,
// but didn't `DepNode::construct` in this session. This ensures
// that their `DefPathHash` to `RawDefId` mappings are registered
// in 'latest_foreign_def_path_hashes' if necessary, since that
// normally happens in `DepNode::construct`.
tcx.dep_graph.register_reused_dep_nodes(tcx);
// Load everything into memory so we can write it out to the on-disk
// cache. The vast majority of cacheable query results should already
// be in memory, so this should be a cheap operation.
// Do this *before* we clone 'latest_foreign_def_path_hashes', since
// loading existing queries may cause us to create new DepNodes, which
// may in turn end up invoking `store_foreign_def_id_hash`
tcx.dep_graph.exec_cache_promotions(tcx);
let latest_foreign_def_path_hashes = self.latest_foreign_def_path_hashes.lock().clone();
let hygiene_encode_context = HygieneEncodeContext::default();
let mut encoder = CacheEncoder {
tcx,
encoder,
type_shorthands: Default::default(),
predicate_shorthands: Default::default(),
interpret_allocs: Default::default(),
source_map: CachingSourceMapView::new(tcx.sess.source_map()),
file_to_file_index,
hygiene_context: &hygiene_encode_context,
latest_foreign_def_path_hashes,
};
// Encode query results.
let mut query_result_index = EncodedQueryResultIndex::new();
tcx.sess.time("encode_query_results", || -> FileEncodeResult {
let enc = &mut encoder;
let qri = &mut query_result_index;
macro_rules! encode_queries {
($($query:ident,)*) => {
$(
encode_query_results::<ty::query::queries::$query<'_>>(
tcx,
enc,
qri
)?;
)*
}
}
rustc_cached_queries!(encode_queries!);
Ok(())
})?;
// Encode diagnostics.
let diagnostics_index: EncodedDiagnosticsIndex = self
.current_diagnostics
.borrow()
.iter()
.map(
|(dep_node_index, diagnostics)| -> Result<_, <FileEncoder as Encoder>::Error> {
let pos = AbsoluteBytePos::new(encoder.position());
// Let's make sure we get the expected type here.
let diagnostics: &EncodedDiagnostics = diagnostics;
let dep_node_index = SerializedDepNodeIndex::new(dep_node_index.index());
encoder.encode_tagged(dep_node_index, diagnostics)?;
Ok((dep_node_index, pos))
},
)
.collect::<Result<_, _>>()?;
let interpret_alloc_index = {
let mut interpret_alloc_index = Vec::new();
let mut n = 0;
loop {
let new_n = encoder.interpret_allocs.len();
// If we have found new IDs, serialize those too.
if n == new_n {
// Otherwise, abort.
break;
}
interpret_alloc_index.reserve(new_n - n);
for idx in n..new_n {
let id = encoder.interpret_allocs[idx];
let pos = encoder.position() as u32;
interpret_alloc_index.push(pos);
interpret::specialized_encode_alloc_id(&mut encoder, tcx, id)?;
}
n = new_n;
}
interpret_alloc_index
};
let sorted_cnums = sorted_cnums_including_local_crate(tcx);
let prev_cnums: Vec<_> = sorted_cnums
.iter()
.map(|&cnum| {
let crate_name = tcx.original_crate_name(cnum).to_string();
let crate_disambiguator = tcx.crate_disambiguator(cnum);
(cnum.as_u32(), crate_name, crate_disambiguator)
})
.collect();
let mut syntax_contexts = FxHashMap::default();
let mut expn_ids = FxHashMap::default();
// Encode all hygiene data (`SyntaxContextData` and `ExpnData`) from the current
// session.
hygiene_encode_context.encode(
&mut encoder,
|encoder, index, ctxt_data| -> FileEncodeResult {
let pos = AbsoluteBytePos::new(encoder.position());
encoder.encode_tagged(TAG_SYNTAX_CONTEXT, ctxt_data)?;
syntax_contexts.insert(index, pos);
Ok(())
},
|encoder, index, expn_data| -> FileEncodeResult {
let pos = AbsoluteBytePos::new(encoder.position());
encoder.encode_tagged(TAG_EXPN_DATA, expn_data)?;
expn_ids.insert(index, pos);
Ok(())
},
)?;
let foreign_def_path_hashes =
std::mem::take(&mut encoder.latest_foreign_def_path_hashes);
// `Encode the file footer.
let footer_pos = encoder.position() as u64;
encoder.encode_tagged(
TAG_FILE_FOOTER,
&Footer {
file_index_to_stable_id,
prev_cnums,
query_result_index,
diagnostics_index,
interpret_alloc_index,
syntax_contexts,
expn_data: expn_ids,
foreign_def_path_hashes,
},
)?;
// Encode the position of the footer as the last 8 bytes of the
// file so we know where to look for it.
IntEncodedWithFixedSize(footer_pos).encode(encoder.encoder)?;
// DO NOT WRITE ANYTHING TO THE ENCODER AFTER THIS POINT! The address
// of the footer must be the last thing in the data stream.
return Ok(());
fn sorted_cnums_including_local_crate(tcx: TyCtxt<'_>) -> Vec<CrateNum> {
let mut cnums = vec![LOCAL_CRATE];
cnums.extend_from_slice(&tcx.crates()[..]);
cnums.sort_unstable();
// Just to be sure...
cnums.dedup();
cnums
}
})
}
/// Loads a diagnostic emitted during the previous compilation session.
pub fn load_diagnostics(
&self,
tcx: TyCtxt<'_>,
dep_node_index: SerializedDepNodeIndex,
) -> Vec<Diagnostic> {
let diagnostics: Option<EncodedDiagnostics> =
self.load_indexed(tcx, dep_node_index, &self.prev_diagnostics_index, "diagnostics");
diagnostics.unwrap_or_default()
}
/// Stores a diagnostic emitted during the current compilation session.
/// Anything stored like this will be available via `load_diagnostics` in
/// the next compilation session.
#[inline(never)]
#[cold]
pub fn store_diagnostics(
&self,
dep_node_index: DepNodeIndex,
diagnostics: ThinVec<Diagnostic>,
) {
let mut current_diagnostics = self.current_diagnostics.borrow_mut();
let prev = current_diagnostics.insert(dep_node_index, diagnostics.into());
debug_assert!(prev.is_none());
}
fn get_raw_def_id(&self, hash: &DefPathHash) -> Option<RawDefId> {
self.foreign_def_path_hashes.get(hash).copied()
}
fn try_remap_cnum(&self, tcx: TyCtxt<'_>, cnum: u32) -> Option<CrateNum> {
let cnum_map =
self.cnum_map.get_or_init(|| Self::compute_cnum_map(tcx, &self.prev_cnums[..]));
debug!("try_remap_cnum({}): cnum_map={:?}", cnum, cnum_map);
cnum_map[CrateNum::from_u32(cnum)]
}
pub(crate) fn store_foreign_def_id_hash(&self, def_id: DefId, hash: DefPathHash) {
// We may overwrite an existing entry, but it will have the same value,
// so it's fine
self.latest_foreign_def_path_hashes
.lock()
.insert(hash, RawDefId { krate: def_id.krate.as_u32(), index: def_id.index.as_u32() });
}
/// If the given `dep_node`'s hash still exists in the current compilation,
/// and its current `DefId` is foreign, calls `store_foreign_def_id` with it.
///
/// Normally, `store_foreign_def_id_hash` can be called directly by
/// the dependency graph when we construct a `DepNode`. However,
/// when we re-use a deserialized `DepNode` from the previous compilation
/// session, we only have the `DefPathHash` available. This method is used
/// to that any `DepNode` that we re-use has a `DefPathHash` -> `RawId` written
/// out for usage in the next compilation session.
pub fn register_reused_dep_node(&self, tcx: TyCtxt<'tcx>, dep_node: &DepNode) {
// For reused dep nodes, we only need to store the mapping if the node
// is one whose query key we can reconstruct from the hash. We use the
// mapping to aid that reconstruction in the next session. While we also
// use it to decode `DefId`s we encoded in the cache as `DefPathHashes`,
// they're already registered during `DefId` encoding.
if dep_node.kind.can_reconstruct_query_key() {
let hash = DefPathHash(dep_node.hash.into());
// We can't simply copy the `RawDefId` from `foreign_def_path_hashes` to
// `latest_foreign_def_path_hashes`, since the `RawDefId` might have
// changed in the current compilation session (e.g. we've added/removed crates,
// or added/removed definitions before/after the target definition).
if let Some(def_id) = self.def_path_hash_to_def_id(tcx, hash) {
if !def_id.is_local() {
self.store_foreign_def_id_hash(def_id, hash);
}
}
}
}
/// Returns the cached query result if there is something in the cache for
/// the given `SerializedDepNodeIndex`; otherwise returns `None`.
crate fn try_load_query_result<'tcx, T>(
&self,
tcx: TyCtxt<'tcx>,
dep_node_index: SerializedDepNodeIndex,
) -> Option<T>
where
T: for<'a> Decodable<CacheDecoder<'a, 'tcx>>,
{
self.load_indexed(tcx, dep_node_index, &self.query_result_index, "query result")
}
/// Stores a diagnostic emitted during computation of an anonymous query.
/// Since many anonymous queries can share the same `DepNode`, we aggregate
/// them -- as opposed to regular queries where we assume that there is a
/// 1:1 relationship between query-key and `DepNode`.
#[inline(never)]
#[cold]
pub fn store_diagnostics_for_anon_node(
&self,
dep_node_index: DepNodeIndex,
diagnostics: ThinVec<Diagnostic>,
) {
let mut current_diagnostics = self.current_diagnostics.borrow_mut();
let x = current_diagnostics.entry(dep_node_index).or_insert(Vec::new());
x.extend(Into::<Vec<_>>::into(diagnostics));
}
fn load_indexed<'tcx, T>(
&self,
tcx: TyCtxt<'tcx>,
dep_node_index: SerializedDepNodeIndex,
index: &FxHashMap<SerializedDepNodeIndex, AbsoluteBytePos>,
debug_tag: &'static str,
) -> Option<T>
where
T: for<'a> Decodable<CacheDecoder<'a, 'tcx>>,
{
let pos = index.get(&dep_node_index).cloned()?;
self.with_decoder(tcx, pos, |decoder| match decode_tagged(decoder, dep_node_index) {
Ok(v) => Some(v),
Err(e) => bug!("could not decode cached {}: {}", debug_tag, e),
})
}
fn with_decoder<'a, 'tcx, T, F: FnOnce(&mut CacheDecoder<'sess, 'tcx>) -> T>(
&'sess self,
tcx: TyCtxt<'tcx>,
pos: AbsoluteBytePos,
f: F,
) -> T
where
T: Decodable<CacheDecoder<'a, 'tcx>>,
{
let cnum_map =
self.cnum_map.get_or_init(|| Self::compute_cnum_map(tcx, &self.prev_cnums[..]));
let mut decoder = CacheDecoder {
tcx,
opaque: opaque::Decoder::new(&self.serialized_data[..], pos.to_usize()),
source_map: self.source_map,
cnum_map,
file_index_to_file: &self.file_index_to_file,
file_index_to_stable_id: &self.file_index_to_stable_id,
alloc_decoding_session: self.alloc_decoding_state.new_decoding_session(),
syntax_contexts: &self.syntax_contexts,
expn_data: &self.expn_data,
hygiene_context: &self.hygiene_context,
};
f(&mut decoder)
}
// This function builds mapping from previous-session-`CrateNum` to
// current-session-`CrateNum`. There might be `CrateNum`s from the previous
// `Session` that don't occur in the current one. For these, the mapping
// maps to None.
fn compute_cnum_map(
tcx: TyCtxt<'_>,
prev_cnums: &[(u32, String, CrateDisambiguator)],
) -> IndexVec<CrateNum, Option<CrateNum>> {
tcx.dep_graph.with_ignore(|| {
let current_cnums = tcx
.all_crate_nums(LOCAL_CRATE)
.iter()
.map(|&cnum| {
let crate_name = tcx.original_crate_name(cnum).to_string();
let crate_disambiguator = tcx.crate_disambiguator(cnum);
((crate_name, crate_disambiguator), cnum)
})
.collect::<FxHashMap<_, _>>();
let map_size = prev_cnums.iter().map(|&(cnum, ..)| cnum).max().unwrap_or(0) + 1;
let mut map = IndexVec::from_elem_n(None, map_size as usize);
for &(prev_cnum, ref crate_name, crate_disambiguator) in prev_cnums {
let key = (crate_name.clone(), crate_disambiguator);
map[CrateNum::from_u32(prev_cnum)] = current_cnums.get(&key).cloned();
}
map[LOCAL_CRATE] = Some(LOCAL_CRATE);
map
})
}
/// Converts a `DefPathHash` to its corresponding `DefId` in the current compilation
/// session, if it still exists. This is used during incremental compilation to
/// turn a deserialized `DefPathHash` into its current `DefId`.
pub(crate) fn def_path_hash_to_def_id(
&self,
tcx: TyCtxt<'tcx>,
hash: DefPathHash,
) -> Option<DefId> {
let mut cache = self.def_path_hash_to_def_id_cache.lock();
match cache.entry(hash) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
debug!("def_path_hash_to_def_id({:?})", hash);
// Check if the `DefPathHash` corresponds to a definition in the current
// crate
if let Some(def_id) = self.local_def_path_hash_to_def_id.get(&hash).cloned() {
let def_id = def_id.to_def_id();
e.insert(Some(def_id));
return Some(def_id);
}
// This `raw_def_id` represents the `DefId` of this `DefPathHash` in
// the *previous* compliation session. The `DefPathHash` includes the
// owning crate, so if the corresponding definition still exists in the
// current compilation session, the crate is guaranteed to be the same
// (otherwise, we would compute a different `DefPathHash`).
let raw_def_id = self.get_raw_def_id(&hash)?;
debug!("def_path_hash_to_def_id({:?}): raw_def_id = {:?}", hash, raw_def_id);
// If the owning crate no longer exists, the corresponding definition definitely
// no longer exists.
let krate = self.try_remap_cnum(tcx, raw_def_id.krate)?;
debug!("def_path_hash_to_def_id({:?}): krate = {:?}", hash, krate);
// If our `DefPathHash` corresponded to a definition in the local crate,
// we should have either found it in `local_def_path_hash_to_def_id`, or
// never attempted to load it in the first place. Any query result or `DepNode`
// that references a local `DefId` should depend on some HIR-related `DepNode`.
// If a local definition is removed/modified such that its old `DefPathHash`
// no longer has a corresponding definition, that HIR-related `DepNode` should
// end up red. This should prevent us from ever calling
// `tcx.def_path_hash_to_def_id`, since we'll end up recomputing any
// queries involved.
debug_assert_ne!(krate, LOCAL_CRATE);
// Try to find a definition in the current session, using the previous `DefIndex`
// as an initial guess.
let opt_def_id = tcx.cstore.def_path_hash_to_def_id(krate, raw_def_id.index, hash);
debug!("def_path_to_def_id({:?}): opt_def_id = {:?}", hash, opt_def_id);
e.insert(opt_def_id);
opt_def_id
}
}
}
}
//- DECODING -------------------------------------------------------------------
/// A decoder that can read from the incremental compilation cache. It is similar to the one
/// we use for crate metadata decoding in that it can rebase spans and eventually
/// will also handle things that contain `Ty` instances.
crate struct CacheDecoder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
opaque: opaque::Decoder<'a>,
source_map: &'a SourceMap,
cnum_map: &'a IndexVec<CrateNum, Option<CrateNum>>,
file_index_to_file: &'a Lock<FxHashMap<SourceFileIndex, Lrc<SourceFile>>>,
file_index_to_stable_id: &'a FxHashMap<SourceFileIndex, StableSourceFileId>,
alloc_decoding_session: AllocDecodingSession<'a>,
syntax_contexts: &'a FxHashMap<u32, AbsoluteBytePos>,
expn_data: &'a FxHashMap<u32, AbsoluteBytePos>,
hygiene_context: &'a HygieneDecodeContext,
}
impl<'a, 'tcx> CacheDecoder<'a, 'tcx> {
fn file_index_to_file(&self, index: SourceFileIndex) -> Lrc<SourceFile> {
let CacheDecoder {
ref file_index_to_file,
ref file_index_to_stable_id,
ref source_map,
..
} = *self;
file_index_to_file
.borrow_mut()
.entry(index)
.or_insert_with(|| {
let stable_id = file_index_to_stable_id[&index];
source_map
.source_file_by_stable_id(stable_id)
.expect("failed to lookup `SourceFile` in new context")
})
.clone()
}
}
trait DecoderWithPosition: Decoder {
fn position(&self) -> usize;
}
impl<'a> DecoderWithPosition for opaque::Decoder<'a> {
fn position(&self) -> usize {
self.position()
}
}
impl<'a, 'tcx> DecoderWithPosition for CacheDecoder<'a, 'tcx> {
fn position(&self) -> usize {
self.opaque.position()
}
}
// Decodes something that was encoded with `encode_tagged()` and verify that the
// tag matches and the correct amount of bytes was read.
fn decode_tagged<D, T, V>(decoder: &mut D, expected_tag: T) -> Result<V, D::Error>
where
T: Decodable<D> + Eq + std::fmt::Debug,
V: Decodable<D>,
D: DecoderWithPosition,
{
let start_pos = decoder.position();
let actual_tag = T::decode(decoder)?;
assert_eq!(actual_tag, expected_tag);
let value = V::decode(decoder)?;
let end_pos = decoder.position();
let expected_len: u64 = Decodable::decode(decoder)?;
assert_eq!((end_pos - start_pos) as u64, expected_len);
Ok(value)
}
impl<'a, 'tcx> TyDecoder<'tcx> for CacheDecoder<'a, 'tcx> {
const CLEAR_CROSS_CRATE: bool = false;
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
#[inline]
fn position(&self) -> usize {
self.opaque.position()
}
#[inline]
fn peek_byte(&self) -> u8 {
self.opaque.data[self.opaque.position()]
}
fn cached_ty_for_shorthand<F>(
&mut self,
shorthand: usize,
or_insert_with: F,
) -> Result<Ty<'tcx>, Self::Error>
where
F: FnOnce(&mut Self) -> Result<Ty<'tcx>, Self::Error>,
{
let tcx = self.tcx();
let cache_key =
ty::CReaderCacheKey { cnum: CrateNum::ReservedForIncrCompCache, pos: shorthand };
if let Some(&ty) = tcx.ty_rcache.borrow().get(&cache_key) {
return Ok(ty);
}
let ty = or_insert_with(self)?;
// This may overwrite the entry, but it should overwrite with the same value.
tcx.ty_rcache.borrow_mut().insert_same(cache_key, ty);
Ok(ty)
}
fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
debug_assert!(pos < self.opaque.data.len());
let new_opaque = opaque::Decoder::new(self.opaque.data, pos);
let old_opaque = mem::replace(&mut self.opaque, new_opaque);
let r = f(self);
self.opaque = old_opaque;
r
}
fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum {
self.cnum_map[cnum].unwrap_or_else(|| bug!("could not find new `CrateNum` for {:?}", cnum))
}
fn decode_alloc_id(&mut self) -> Result<interpret::AllocId, Self::Error> {
let alloc_decoding_session = self.alloc_decoding_session;
alloc_decoding_session.decode_alloc_id(self)
}
}
crate::implement_ty_decoder!(CacheDecoder<'a, 'tcx>);
// This ensures that the `Decodable<opaque::Decoder>::decode` specialization for `Vec<u8>` is used
// when a `CacheDecoder` is passed to `Decodable::decode`. Unfortunately, we have to manually opt
// into specializations this way, given how `CacheDecoder` and the decoding traits currently work.
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for Vec<u8> {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
Decodable::decode(&mut d.opaque)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for SyntaxContext {
fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
let syntax_contexts = decoder.syntax_contexts;
rustc_span::hygiene::decode_syntax_context(decoder, decoder.hygiene_context, |this, id| {
// This closure is invoked if we haven't already decoded the data for the `SyntaxContext` we are deserializing.
// We look up the position of the associated `SyntaxData` and decode it.
let pos = syntax_contexts.get(&id).unwrap();
this.with_position(pos.to_usize(), |decoder| {
let data: SyntaxContextData = decode_tagged(decoder, TAG_SYNTAX_CONTEXT)?;
Ok(data)
})
})
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for ExpnId {
fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
let expn_data = decoder.expn_data;
rustc_span::hygiene::decode_expn_id(
decoder,
ExpnDataDecodeMode::incr_comp(decoder.hygiene_context),
|this, index| {
// This closure is invoked if we haven't already decoded the data for the `ExpnId` we are deserializing.
// We look up the position of the associated `ExpnData` and decode it.
let pos = expn_data
.get(&index)
.unwrap_or_else(|| panic!("Bad index {:?} (map {:?})", index, expn_data));
this.with_position(pos.to_usize(), |decoder| {
let data: ExpnData = decode_tagged(decoder, TAG_EXPN_DATA)?;
Ok(data)
})
},
)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for Span {
fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
let tag: u8 = Decodable::decode(decoder)?;
if tag == TAG_PARTIAL_SPAN {
let ctxt = SyntaxContext::decode(decoder)?;
return Ok(DUMMY_SP.with_ctxt(ctxt));
} else {
debug_assert_eq!(tag, TAG_FULL_SPAN);
}
let file_lo_index = SourceFileIndex::decode(decoder)?;
let line_lo = usize::decode(decoder)?;
let col_lo = BytePos::decode(decoder)?;
let len = BytePos::decode(decoder)?;
let ctxt = SyntaxContext::decode(decoder)?;
let file_lo = decoder.file_index_to_file(file_lo_index);
let lo = file_lo.lines[line_lo - 1] + col_lo;
let hi = lo + len;
Ok(Span::new(lo, hi, ctxt))
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for CrateNum {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
let cnum = CrateNum::from_u32(u32::decode(d)?);
Ok(d.map_encoded_cnum_to_current(cnum))
}
}
// This impl makes sure that we get a runtime error when we try decode a
// `DefIndex` that is not contained in a `DefId`. Such a case would be problematic
// because we would not know how to transform the `DefIndex` to the current
// context.
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for DefIndex {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<DefIndex, String> {
Err(d.error("trying to decode `DefIndex` outside the context of a `DefId`"))
}
}
// Both the `CrateNum` and the `DefIndex` of a `DefId` can change in between two
// compilation sessions. We use the `DefPathHash`, which is stable across
// sessions, to map the old `DefId` to the new one.
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for DefId {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
// Load the `DefPathHash` which is was we encoded the `DefId` as.
let def_path_hash = DefPathHash::decode(d)?;
// Using the `DefPathHash`, we can lookup the new `DefId`.
// Subtle: We only encode a `DefId` as part of a query result.
// If we get to this point, then all of the query inputs were green,
// which means that the definition with this hash is guaranteed to
// still exist in the current compilation session.
Ok(d.tcx()
.queries
.on_disk_cache
.as_ref()
.unwrap()
.def_path_hash_to_def_id(d.tcx(), def_path_hash)
.unwrap())
}
}
impl<'a, 'tcx> FingerprintDecoder for CacheDecoder<'a, 'tcx> {
fn decode_fingerprint(&mut self) -> Result<Fingerprint, Self::Error> {
Fingerprint::decode_opaque(&mut self.opaque)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx FxHashSet<LocalDefId> {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>>
for &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>>
{
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [mir::abstract_const::Node<'tcx>] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [(ty::Predicate<'tcx>, Span)] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [rustc_ast::InlineAsmTemplatePiece] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<CacheDecoder<'a, 'tcx>> for &'tcx [Span] {
fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result<Self, String> {
RefDecodable::decode(d)
}
}
//- ENCODING -------------------------------------------------------------------
trait OpaqueEncoder: Encoder {
fn position(&self) -> usize;
}
impl OpaqueEncoder for FileEncoder {
#[inline]
fn position(&self) -> usize {
FileEncoder::position(self)
}
}
/// An encoder that can write to the incremental compilation cache.
struct CacheEncoder<'a, 'tcx, E: OpaqueEncoder> {
tcx: TyCtxt<'tcx>,
encoder: &'a mut E,
type_shorthands: FxHashMap<Ty<'tcx>, usize>,
predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
interpret_allocs: FxIndexSet<interpret::AllocId>,
source_map: CachingSourceMapView<'tcx>,
file_to_file_index: FxHashMap<*const SourceFile, SourceFileIndex>,
hygiene_context: &'a HygieneEncodeContext,
latest_foreign_def_path_hashes: UnhashMap<DefPathHash, RawDefId>,
}
impl<'a, 'tcx, E> CacheEncoder<'a, 'tcx, E>
where
E: 'a + OpaqueEncoder,
{
fn source_file_index(&mut self, source_file: Lrc<SourceFile>) -> SourceFileIndex {
self.file_to_file_index[&(&*source_file as *const SourceFile)]
}
/// Encode something with additional information that allows to do some
/// sanity checks when decoding the data again. This method will first
/// encode the specified tag, then the given value, then the number of
/// bytes taken up by tag and value. On decoding, we can then verify that
/// we get the expected tag and read the expected number of bytes.
fn encode_tagged<T: Encodable<Self>, V: Encodable<Self>>(
&mut self,
tag: T,
value: &V,
) -> Result<(), E::Error> {
let start_pos = self.position();
tag.encode(self)?;
value.encode(self)?;
let end_pos = self.position();
((end_pos - start_pos) as u64).encode(self)
}
}
impl<'a, 'tcx, E: OpaqueEncoder> FingerprintEncoder for CacheEncoder<'a, 'tcx, E> {
fn encode_fingerprint(&mut self, f: &Fingerprint) -> Result<(), E::Error> {
self.encoder.encode_fingerprint(f)
}
}
impl<'a, 'tcx, E> Encodable<CacheEncoder<'a, 'tcx, E>> for SyntaxContext
where
E: 'a + OpaqueEncoder,
{
fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> {
rustc_span::hygiene::raw_encode_syntax_context(*self, s.hygiene_context, s)
}
}
impl<'a, 'tcx, E> Encodable<CacheEncoder<'a, 'tcx, E>> for ExpnId
where
E: 'a + OpaqueEncoder,
{
fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> {
rustc_span::hygiene::raw_encode_expn_id(
*self,
s.hygiene_context,
ExpnDataEncodeMode::IncrComp,
s,
)
}
}
impl<'a, 'tcx, E> Encodable<CacheEncoder<'a, 'tcx, E>> for Span
where
E: 'a + OpaqueEncoder,
{
fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> {
if *self == DUMMY_SP {
TAG_PARTIAL_SPAN.encode(s)?;
return SyntaxContext::root().encode(s);
}
let span_data = self.data();
let pos = s.source_map.byte_pos_to_line_and_col(span_data.lo);
let partial_span = match &pos {
Some((file_lo, _, _)) => !file_lo.contains(span_data.hi),
None => true,
};
if partial_span {
TAG_PARTIAL_SPAN.encode(s)?;
return span_data.ctxt.encode(s);
}
let (file_lo, line_lo, col_lo) = pos.unwrap();
let len = span_data.hi - span_data.lo;
let source_file_index = s.source_file_index(file_lo);
TAG_FULL_SPAN.encode(s)?;
source_file_index.encode(s)?;
line_lo.encode(s)?;
col_lo.encode(s)?;
len.encode(s)?;
span_data.ctxt.encode(s)
}
}
impl<'a, 'tcx, E> TyEncoder<'tcx> for CacheEncoder<'a, 'tcx, E>
where
E: 'a + OpaqueEncoder,
{
const CLEAR_CROSS_CRATE: bool = false;
fn position(&self) -> usize {
self.encoder.position()
}
fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
&mut self.type_shorthands
}
fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
&mut self.predicate_shorthands
}
fn encode_alloc_id(&mut self, alloc_id: &interpret::AllocId) -> Result<(), Self::Error> {
let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
index.encode(self)
}
}
impl<'a, 'tcx, E> Encodable<CacheEncoder<'a, 'tcx, E>> for DefId
where
E: 'a + OpaqueEncoder,
{
fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> {
let def_path_hash = s.tcx.def_path_hash(*self);
// Store additional information when we encode a foreign `DefId`,
// so that we can map its `DefPathHash` back to a `DefId` in the next
// compilation session.
if !self.is_local() {
s.latest_foreign_def_path_hashes.insert(
def_path_hash,
RawDefId { krate: self.krate.as_u32(), index: self.index.as_u32() },
);
}
def_path_hash.encode(s)
}
}
impl<'a, 'tcx, E> Encodable<CacheEncoder<'a, 'tcx, E>> for DefIndex
where
E: 'a + OpaqueEncoder,
{
fn encode(&self, _: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> {
bug!("encoding `DefIndex` without context");
}
}
macro_rules! encoder_methods {
($($name:ident($ty:ty);)*) => {
#[inline]
$(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> {
self.encoder.$name(value)
})*
}
}
impl<'a, 'tcx, E> Encoder for CacheEncoder<'a, 'tcx, E>
where
E: 'a + OpaqueEncoder,
{
type Error = E::Error;
#[inline]
fn emit_unit(&mut self) -> Result<(), Self::Error> {
Ok(())
}
encoder_methods! {
emit_usize(usize);
emit_u128(u128);
emit_u64(u64);
emit_u32(u32);
emit_u16(u16);
emit_u8(u8);
emit_isize(isize);
emit_i128(i128);
emit_i64(i64);
emit_i32(i32);
emit_i16(i16);
emit_i8(i8);
emit_bool(bool);
emit_f64(f64);
emit_f32(f32);
emit_char(char);
emit_str(&str);
}
}
// This ensures that the `Encodable<opaque::FileEncoder>::encode` specialization for byte slices
// is used when a `CacheEncoder` having an `opaque::FileEncoder` is passed to `Encodable::encode`.
// Unfortunately, we have to manually opt into specializations this way, given how `CacheEncoder`
// and the encoding traits currently work.
impl<'a, 'tcx> Encodable<CacheEncoder<'a, 'tcx, FileEncoder>> for [u8] {
fn encode(&self, e: &mut CacheEncoder<'a, 'tcx, FileEncoder>) -> FileEncodeResult {
self.encode(e.encoder)
}
}
// An integer that will always encode to 8 bytes.
struct IntEncodedWithFixedSize(u64);
impl IntEncodedWithFixedSize {
pub const ENCODED_SIZE: usize = 8;
}
impl<E: OpaqueEncoder> Encodable<E> for IntEncodedWithFixedSize {
fn encode(&self, e: &mut E) -> Result<(), E::Error> {
let start_pos = e.position();
for i in 0..IntEncodedWithFixedSize::ENCODED_SIZE {
((self.0 >> (i * 8)) as u8).encode(e)?;
}
let end_pos = e.position();
assert_eq!((end_pos - start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
Ok(())
}
}
impl<'a> Decodable<opaque::Decoder<'a>> for IntEncodedWithFixedSize {
fn decode(decoder: &mut opaque::Decoder<'a>) -> Result<IntEncodedWithFixedSize, String> {
let mut value: u64 = 0;
let start_pos = decoder.position();
for i in 0..IntEncodedWithFixedSize::ENCODED_SIZE {
let byte: u8 = Decodable::decode(decoder)?;
value |= (byte as u64) << (i * 8);
}
let end_pos = decoder.position();
assert_eq!((end_pos - start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
Ok(IntEncodedWithFixedSize(value))
}
}
fn encode_query_results<'a, 'tcx, Q>(
tcx: TyCtxt<'tcx>,
encoder: &mut CacheEncoder<'a, 'tcx, FileEncoder>,
query_result_index: &mut EncodedQueryResultIndex,
) -> FileEncodeResult
where
Q: super::QueryDescription<TyCtxt<'tcx>> + super::QueryAccessors<TyCtxt<'tcx>>,
Q::Value: Encodable<CacheEncoder<'a, 'tcx, FileEncoder>>,
{
let _timer = tcx
.sess
.prof
.extra_verbose_generic_activity("encode_query_results_for", std::any::type_name::<Q>());
let state = Q::query_state(tcx);
assert!(state.all_inactive());
state.iter_results(|results| {
for (key, value, dep_node) in results {
if Q::cache_on_disk(tcx, &key, Some(value)) {
let dep_node = SerializedDepNodeIndex::new(dep_node.index());
// Record position of the cache entry.
query_result_index
.push((dep_node, AbsoluteBytePos::new(encoder.encoder.position())));
// Encode the type check tables with the `SerializedDepNodeIndex`
// as tag.
encoder.encode_tagged(dep_node, value)?;
}
}
Ok(())
})
}