blob: 8946ac43bc65a386966c8069f090ef535e9784f8 [file] [log] [blame]
//! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"`
//! and LLVM intrinsics that have symbol names starting with `llvm.`.
mod cpuid;
mod llvm;
mod simd;
pub(crate) use cpuid::codegen_cpuid_call;
pub(crate) use llvm::codegen_llvm_intrinsic_call;
use crate::prelude::*;
use rustc_middle::ty::print::with_no_trimmed_paths;
macro intrinsic_pat {
(_) => {
_
},
($name:ident) => {
stringify!($name)
},
($name:literal) => {
stringify!($name)
},
($x:ident . $($xs:tt).*) => {
concat!(stringify!($x), ".", intrinsic_pat!($($xs).*))
}
}
macro intrinsic_arg {
(o $fx:expr, $arg:ident) => {
$arg
},
(c $fx:expr, $arg:ident) => {
codegen_operand($fx, $arg)
},
(v $fx:expr, $arg:ident) => {
codegen_operand($fx, $arg).load_scalar($fx)
}
}
macro intrinsic_substs {
($substs:expr, $index:expr,) => {},
($substs:expr, $index:expr, $first:ident $(,$rest:ident)*) => {
let $first = $substs.type_at($index);
intrinsic_substs!($substs, $index+1, $($rest),*);
}
}
macro intrinsic_match {
($fx:expr, $intrinsic:expr, $substs:expr, $args:expr,
_ => $unknown:block;
$(
$($($name:tt).*)|+ $(if $cond:expr)?, $(<$($subst:ident),*>)? ($($a:ident $arg:ident),*) $content:block;
)*) => {
let _ = $substs; // Silence warning when substs is unused.
match $intrinsic {
$(
$(intrinsic_pat!($($name).*))|* $(if $cond)? => {
#[allow(unused_parens, non_snake_case)]
{
$(
intrinsic_substs!($substs, 0, $($subst),*);
)?
if let [$($arg),*] = $args {
let ($($arg,)*) = (
$(intrinsic_arg!($a $fx, $arg),)*
);
#[warn(unused_parens, non_snake_case)]
{
$content
}
} else {
bug!("wrong number of args for intrinsic {:?}", $intrinsic);
}
}
}
)*
_ => $unknown,
}
}
}
macro call_intrinsic_match {
($fx:expr, $intrinsic:expr, $substs:expr, $ret:expr, $destination:expr, $args:expr, $(
$name:ident($($arg:ident),*) -> $ty:ident => $func:ident,
)*) => {
match $intrinsic {
$(
stringify!($name) => {
assert!($substs.is_noop());
if let [$(ref $arg),*] = *$args {
let ($($arg,)*) = (
$(codegen_operand($fx, $arg),)*
);
let res = $fx.easy_call(stringify!($func), &[$($arg),*], $fx.tcx.types.$ty);
$ret.write_cvalue($fx, res);
if let Some((_, dest)) = $destination {
let ret_block = $fx.get_block(dest);
$fx.bcx.ins().jump(ret_block, &[]);
return;
} else {
unreachable!();
}
} else {
bug!("wrong number of args for intrinsic {:?}", $intrinsic);
}
}
)*
_ => {}
}
}
}
macro atomic_binop_return_old($fx:expr, $op:ident<$T:ident>($ptr:ident, $src:ident) -> $ret:ident) {
crate::atomic_shim::lock_global_lock($fx);
let clif_ty = $fx.clif_type($T).unwrap();
let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0);
let new = $fx.bcx.ins().$op(old, $src);
$fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0);
$ret.write_cvalue($fx, CValue::by_val(old, $fx.layout_of($T)));
crate::atomic_shim::unlock_global_lock($fx);
}
macro atomic_minmax($fx:expr, $cc:expr, <$T:ident> ($ptr:ident, $src:ident) -> $ret:ident) {
crate::atomic_shim::lock_global_lock($fx);
// Read old
let clif_ty = $fx.clif_type($T).unwrap();
let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0);
// Compare
let is_eq = $fx.bcx.ins().icmp(IntCC::SignedGreaterThan, old, $src);
let new = $fx.bcx.ins().select(is_eq, old, $src);
// Write new
$fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0);
let ret_val = CValue::by_val(old, $ret.layout());
$ret.write_cvalue($fx, ret_val);
crate::atomic_shim::unlock_global_lock($fx);
}
macro validate_atomic_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) {
match $ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
$fx.tcx.sess.span_err(
$span,
&format!(
"`{}` intrinsic: expected basic integer or raw pointer type, found `{:?}`",
$intrinsic, $ty
),
);
// Prevent verifier error
crate::trap::trap_unreachable($fx, "compilation should not have succeeded");
return;
}
}
}
macro validate_simd_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) {
if !$ty.is_simd() {
$fx.tcx.sess.span_err($span, &format!("invalid monomorphization of `{}` intrinsic: expected SIMD input type, found non-SIMD `{}`", $intrinsic, $ty));
// Prevent verifier error
crate::trap::trap_unreachable($fx, "compilation should not have succeeded");
return;
}
}
pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Option<Type> {
let (element, count) = match &layout.abi {
Abi::Vector { element, count } => (element.clone(), *count),
_ => unreachable!(),
};
match scalar_to_clif_type(tcx, element).by(u16::try_from(count).unwrap()) {
// Cranelift currently only implements icmp for 128bit vectors.
Some(vector_ty) if vector_ty.bits() == 128 => Some(vector_ty),
_ => None,
}
}
fn simd_for_each_lane<'tcx, M: Module>(
fx: &mut FunctionCx<'_, 'tcx, M>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: impl Fn(
&mut FunctionCx<'_, 'tcx, M>,
TyAndLayout<'tcx>,
TyAndLayout<'tcx>,
Value,
) -> CValue<'tcx>,
) {
let layout = val.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let lane_idx = mir::Field::new(lane_idx.try_into().unwrap());
let lane = val.value_field(fx, lane_idx).load_scalar(fx);
let res_lane = f(fx, lane_layout, ret_lane_layout, lane);
ret.place_field(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_pair_for_each_lane<'tcx, M: Module>(
fx: &mut FunctionCx<'_, 'tcx, M>,
x: CValue<'tcx>,
y: CValue<'tcx>,
ret: CPlace<'tcx>,
f: impl Fn(
&mut FunctionCx<'_, 'tcx, M>,
TyAndLayout<'tcx>,
TyAndLayout<'tcx>,
Value,
Value,
) -> CValue<'tcx>,
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane in 0..lane_count {
let lane = mir::Field::new(lane.try_into().unwrap());
let x_lane = x.value_field(fx, lane).load_scalar(fx);
let y_lane = y.value_field(fx, lane).load_scalar(fx);
let res_lane = f(fx, lane_layout, ret_lane_layout, x_lane, y_lane);
ret.place_field(fx, lane).write_cvalue(fx, res_lane);
}
}
fn simd_reduce<'tcx, M: Module>(
fx: &mut FunctionCx<'_, 'tcx, M>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: impl Fn(&mut FunctionCx<'_, 'tcx, M>, TyAndLayout<'tcx>, Value, Value) -> Value,
) {
let (lane_count, lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
assert_eq!(lane_layout, ret.layout());
let mut res_val = val.value_field(fx, mir::Field::new(0)).load_scalar(fx);
for lane_idx in 1..lane_count {
let lane = val
.value_field(fx, mir::Field::new(lane_idx.try_into().unwrap()))
.load_scalar(fx);
res_val = f(fx, lane_layout, res_val, lane);
}
let res = CValue::by_val(res_val, lane_layout);
ret.write_cvalue(fx, res);
}
fn simd_reduce_bool<'tcx, M: Module>(
fx: &mut FunctionCx<'_, 'tcx, M>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: impl Fn(&mut FunctionCx<'_, 'tcx, M>, Value, Value) -> Value,
) {
let (lane_count, _lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
assert!(ret.layout().ty.is_bool());
let res_val = val.value_field(fx, mir::Field::new(0)).load_scalar(fx);
let mut res_val = fx.bcx.ins().band_imm(res_val, 1); // mask to boolean
for lane_idx in 1..lane_count {
let lane = val
.value_field(fx, mir::Field::new(lane_idx.try_into().unwrap()))
.load_scalar(fx);
let lane = fx.bcx.ins().band_imm(lane, 1); // mask to boolean
res_val = f(fx, res_val, lane);
}
let res = CValue::by_val(res_val, ret.layout());
ret.write_cvalue(fx, res);
}
fn bool_to_zero_or_max_uint<'tcx>(
fx: &mut FunctionCx<'_, 'tcx, impl Module>,
layout: TyAndLayout<'tcx>,
val: Value,
) -> CValue<'tcx> {
let ty = fx.clif_type(layout.ty).unwrap();
let int_ty = match ty {
types::F32 => types::I32,
types::F64 => types::I64,
ty => ty,
};
let val = fx.bcx.ins().bint(int_ty, val);
let mut res = fx.bcx.ins().ineg(val);
if ty.is_float() {
res = fx.bcx.ins().bitcast(ty, res);
}
CValue::by_val(res, layout)
}
macro simd_cmp {
($fx:expr, $cc:ident|$cc_f:ident($x:ident, $y:ident) -> $ret:ident) => {
let vector_ty = clif_vector_type($fx.tcx, $x.layout());
if let Some(vector_ty) = vector_ty {
let x = $x.load_scalar($fx);
let y = $y.load_scalar($fx);
let val = $fx.bcx.ins().icmp(IntCC::$cc, x, y);
// HACK This depends on the fact that icmp for vectors represents bools as 0 and !0, not 0 and 1.
let val = $fx.bcx.ins().raw_bitcast(vector_ty, val);
$ret.write_cvalue($fx, CValue::by_val(val, $ret.layout()));
} else {
simd_pair_for_each_lane(
$fx,
$x,
$y,
$ret,
|fx, lane_layout, res_lane_layout, x_lane, y_lane| {
let res_lane = match lane_layout.ty.kind() {
ty::Uint(_) | ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc, x_lane, y_lane),
ty::Float(_) => fx.bcx.ins().fcmp(FloatCC::$cc_f, x_lane, y_lane),
_ => unreachable!("{:?}", lane_layout.ty),
};
bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane)
},
);
}
},
($fx:expr, $cc_u:ident|$cc_s:ident|$cc_f:ident($x:ident, $y:ident) -> $ret:ident) => {
// FIXME use vector icmp when possible
simd_pair_for_each_lane(
$fx,
$x,
$y,
$ret,
|fx, lane_layout, res_lane_layout, x_lane, y_lane| {
let res_lane = match lane_layout.ty.kind() {
ty::Uint(_) => fx.bcx.ins().icmp(IntCC::$cc_u, x_lane, y_lane),
ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc_s, x_lane, y_lane),
ty::Float(_) => fx.bcx.ins().fcmp(FloatCC::$cc_f, x_lane, y_lane),
_ => unreachable!("{:?}", lane_layout.ty),
};
bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane)
},
);
},
}
macro simd_int_binop {
($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) => {
simd_int_binop!($fx, $op|$op($x, $y) -> $ret);
},
($fx:expr, $op_u:ident|$op_s:ident($x:ident, $y:ident) -> $ret:ident) => {
simd_pair_for_each_lane(
$fx,
$x,
$y,
$ret,
|fx, lane_layout, ret_lane_layout, x_lane, y_lane| {
let res_lane = match lane_layout.ty.kind() {
ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane),
ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane),
_ => unreachable!("{:?}", lane_layout.ty),
};
CValue::by_val(res_lane, ret_lane_layout)
},
);
},
}
macro simd_int_flt_binop {
($fx:expr, $op:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => {
simd_int_flt_binop!($fx, $op|$op|$op_f($x, $y) -> $ret);
},
($fx:expr, $op_u:ident|$op_s:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => {
simd_pair_for_each_lane(
$fx,
$x,
$y,
$ret,
|fx, lane_layout, ret_lane_layout, x_lane, y_lane| {
let res_lane = match lane_layout.ty.kind() {
ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane),
ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane),
ty::Float(_) => fx.bcx.ins().$op_f(x_lane, y_lane),
_ => unreachable!("{:?}", lane_layout.ty),
};
CValue::by_val(res_lane, ret_lane_layout)
},
);
},
}
macro simd_flt_binop($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) {
simd_pair_for_each_lane(
$fx,
$x,
$y,
$ret,
|fx, lane_layout, ret_lane_layout, x_lane, y_lane| {
let res_lane = match lane_layout.ty.kind() {
ty::Float(_) => fx.bcx.ins().$op(x_lane, y_lane),
_ => unreachable!("{:?}", lane_layout.ty),
};
CValue::by_val(res_lane, ret_lane_layout)
},
);
}
pub(crate) fn codegen_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, 'tcx, impl Module>,
instance: Instance<'tcx>,
args: &[mir::Operand<'tcx>],
destination: Option<(CPlace<'tcx>, BasicBlock)>,
span: Span,
) {
let def_id = instance.def_id();
let substs = instance.substs;
let intrinsic = fx.tcx.item_name(def_id).as_str();
let intrinsic = &intrinsic[..];
let ret = match destination {
Some((place, _)) => place,
None => {
// Insert non returning intrinsics here
match intrinsic {
"abort" => {
trap_abort(fx, "Called intrinsic::abort.");
}
"transmute" => {
crate::base::codegen_panic(fx, "Transmuting to uninhabited type.", span);
}
_ => unimplemented!("unsupported instrinsic {}", intrinsic),
}
return;
}
};
if intrinsic.starts_with("simd_") {
self::simd::codegen_simd_intrinsic_call(fx, instance, args, ret, span);
let ret_block = fx.get_block(destination.expect("SIMD intrinsics don't diverge").1);
fx.bcx.ins().jump(ret_block, &[]);
return;
}
let usize_layout = fx.layout_of(fx.tcx.types.usize);
call_intrinsic_match! {
fx, intrinsic, substs, ret, destination, args,
expf32(flt) -> f32 => expf,
expf64(flt) -> f64 => exp,
exp2f32(flt) -> f32 => exp2f,
exp2f64(flt) -> f64 => exp2,
sqrtf32(flt) -> f32 => sqrtf,
sqrtf64(flt) -> f64 => sqrt,
powif32(a, x) -> f32 => __powisf2, // compiler-builtins
powif64(a, x) -> f64 => __powidf2, // compiler-builtins
powf32(a, x) -> f32 => powf,
powf64(a, x) -> f64 => pow,
logf32(flt) -> f32 => logf,
logf64(flt) -> f64 => log,
log2f32(flt) -> f32 => log2f,
log2f64(flt) -> f64 => log2,
log10f32(flt) -> f32 => log10f,
log10f64(flt) -> f64 => log10,
fabsf32(flt) -> f32 => fabsf,
fabsf64(flt) -> f64 => fabs,
fmaf32(x, y, z) -> f32 => fmaf,
fmaf64(x, y, z) -> f64 => fma,
copysignf32(x, y) -> f32 => copysignf,
copysignf64(x, y) -> f64 => copysign,
// rounding variants
// FIXME use clif insts
floorf32(flt) -> f32 => floorf,
floorf64(flt) -> f64 => floor,
ceilf32(flt) -> f32 => ceilf,
ceilf64(flt) -> f64 => ceil,
truncf32(flt) -> f32 => truncf,
truncf64(flt) -> f64 => trunc,
roundf32(flt) -> f32 => roundf,
roundf64(flt) -> f64 => round,
// trigonometry
sinf32(flt) -> f32 => sinf,
sinf64(flt) -> f64 => sin,
cosf32(flt) -> f32 => cosf,
cosf64(flt) -> f64 => cos,
tanf32(flt) -> f32 => tanf,
tanf64(flt) -> f64 => tan,
}
intrinsic_match! {
fx, intrinsic, substs, args,
_ => {
fx.tcx.sess.span_fatal(span, &format!("unsupported intrinsic {}", intrinsic));
};
assume, (c _a) {};
likely | unlikely, (c a) {
ret.write_cvalue(fx, a);
};
breakpoint, () {
fx.bcx.ins().debugtrap();
};
copy | copy_nonoverlapping, <elem_ty> (v src, v dst, v count) {
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount = if elem_size != 1 {
fx.bcx.ins().imul_imm(count, elem_size as i64)
} else {
count
};
if intrinsic.contains("nonoverlapping") {
// FIXME emit_small_memcpy
fx.bcx.call_memcpy(fx.cx.module.target_config(), dst, src, byte_amount);
} else {
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.cx.module.target_config(), dst, src, byte_amount);
}
};
// NOTE: the volatile variants have src and dst swapped
volatile_copy_memory | volatile_copy_nonoverlapping_memory, <elem_ty> (v dst, v src, v count) {
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount = if elem_size != 1 {
fx.bcx.ins().imul_imm(count, elem_size as i64)
} else {
count
};
// FIXME make the copy actually volatile when using emit_small_mem{cpy,move}
if intrinsic.contains("nonoverlapping") {
// FIXME emit_small_memcpy
fx.bcx.call_memcpy(fx.cx.module.target_config(), dst, src, byte_amount);
} else {
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.cx.module.target_config(), dst, src, byte_amount);
}
};
size_of_val, <T> (c ptr) {
let layout = fx.layout_of(T);
let size = if layout.is_unsized() {
let (_ptr, info) = ptr.load_scalar_pair(fx);
let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout, info);
size
} else {
fx
.bcx
.ins()
.iconst(fx.pointer_type, layout.size.bytes() as i64)
};
ret.write_cvalue(fx, CValue::by_val(size, usize_layout));
};
min_align_of_val, <T> (c ptr) {
let layout = fx.layout_of(T);
let align = if layout.is_unsized() {
let (_ptr, info) = ptr.load_scalar_pair(fx);
let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout, info);
align
} else {
fx
.bcx
.ins()
.iconst(fx.pointer_type, layout.align.abi.bytes() as i64)
};
ret.write_cvalue(fx, CValue::by_val(align, usize_layout));
};
_ if intrinsic.starts_with("unchecked_") || intrinsic == "exact_div", (c x, c y) {
// FIXME trap on overflow
let bin_op = match intrinsic {
"unchecked_add" => BinOp::Add,
"unchecked_sub" => BinOp::Sub,
"unchecked_div" | "exact_div" => BinOp::Div,
"unchecked_rem" => BinOp::Rem,
"unchecked_shl" => BinOp::Shl,
"unchecked_shr" => BinOp::Shr,
_ => unreachable!("intrinsic {}", intrinsic),
};
let res = crate::num::codegen_int_binop(fx, bin_op, x, y);
ret.write_cvalue(fx, res);
};
_ if intrinsic.ends_with("_with_overflow"), (c x, c y) {
assert_eq!(x.layout().ty, y.layout().ty);
let bin_op = match intrinsic {
"add_with_overflow" => BinOp::Add,
"sub_with_overflow" => BinOp::Sub,
"mul_with_overflow" => BinOp::Mul,
_ => unreachable!("intrinsic {}", intrinsic),
};
let res = crate::num::codegen_checked_int_binop(
fx,
bin_op,
x,
y,
);
ret.write_cvalue(fx, res);
};
_ if intrinsic.starts_with("saturating_"), <T> (c lhs, c rhs) {
assert_eq!(lhs.layout().ty, rhs.layout().ty);
let bin_op = match intrinsic {
"saturating_add" => BinOp::Add,
"saturating_sub" => BinOp::Sub,
_ => unreachable!("intrinsic {}", intrinsic),
};
let signed = type_sign(T);
let checked_res = crate::num::codegen_checked_int_binop(
fx,
bin_op,
lhs,
rhs,
);
let (val, has_overflow) = checked_res.load_scalar_pair(fx);
let clif_ty = fx.clif_type(T).unwrap();
// `select.i8` is not implemented by Cranelift.
let has_overflow = fx.bcx.ins().uextend(types::I32, has_overflow);
let (min, max) = type_min_max_value(&mut fx.bcx, clif_ty, signed);
let val = match (intrinsic, signed) {
("saturating_add", false) => fx.bcx.ins().select(has_overflow, max, val),
("saturating_sub", false) => fx.bcx.ins().select(has_overflow, min, val),
("saturating_add", true) => {
let rhs = rhs.load_scalar(fx);
let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0);
let sat_val = fx.bcx.ins().select(rhs_ge_zero, max, min);
fx.bcx.ins().select(has_overflow, sat_val, val)
}
("saturating_sub", true) => {
let rhs = rhs.load_scalar(fx);
let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0);
let sat_val = fx.bcx.ins().select(rhs_ge_zero, min, max);
fx.bcx.ins().select(has_overflow, sat_val, val)
}
_ => unreachable!(),
};
let res = CValue::by_val(val, fx.layout_of(T));
ret.write_cvalue(fx, res);
};
rotate_left, <T>(v x, v y) {
let layout = fx.layout_of(T);
let res = fx.bcx.ins().rotl(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
};
rotate_right, <T>(v x, v y) {
let layout = fx.layout_of(T);
let res = fx.bcx.ins().rotr(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
};
// The only difference between offset and arith_offset is regarding UB. Because Cranelift
// doesn't have UB both are codegen'ed the same way
offset | arith_offset, (c base, v offset) {
let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let ptr_diff = if pointee_size != 1 {
fx.bcx.ins().imul_imm(offset, pointee_size as i64)
} else {
offset
};
let base_val = base.load_scalar(fx);
let res = fx.bcx.ins().iadd(base_val, ptr_diff);
ret.write_cvalue(fx, CValue::by_val(res, base.layout()));
};
transmute, (c from) {
ret.write_cvalue_transmute(fx, from);
};
write_bytes | volatile_set_memory, (c dst, v val, v count) {
let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let count = if pointee_size != 1 {
fx.bcx.ins().imul_imm(count, pointee_size as i64)
} else {
count
};
let dst_ptr = dst.load_scalar(fx);
// FIXME make the memset actually volatile when switching to emit_small_memset
// FIXME use emit_small_memset
fx.bcx.call_memset(fx.cx.module.target_config(), dst_ptr, val, count);
};
ctlz | ctlz_nonzero, <T> (v arg) {
// FIXME trap on `ctlz_nonzero` with zero arg.
let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 {
// FIXME verify this algorithm is correct
let (lsb, msb) = fx.bcx.ins().isplit(arg);
let lsb_lz = fx.bcx.ins().clz(lsb);
let msb_lz = fx.bcx.ins().clz(msb);
let msb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, msb, 0);
let lsb_lz_plus_64 = fx.bcx.ins().iadd_imm(lsb_lz, 64);
let res = fx.bcx.ins().select(msb_is_zero, lsb_lz_plus_64, msb_lz);
fx.bcx.ins().uextend(types::I128, res)
} else {
fx.bcx.ins().clz(arg)
};
let res = CValue::by_val(res, fx.layout_of(T));
ret.write_cvalue(fx, res);
};
cttz | cttz_nonzero, <T> (v arg) {
// FIXME trap on `cttz_nonzero` with zero arg.
let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 {
// FIXME verify this algorithm is correct
let (lsb, msb) = fx.bcx.ins().isplit(arg);
let lsb_tz = fx.bcx.ins().ctz(lsb);
let msb_tz = fx.bcx.ins().ctz(msb);
let lsb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, lsb, 0);
let msb_tz_plus_64 = fx.bcx.ins().iadd_imm(msb_tz, 64);
let res = fx.bcx.ins().select(lsb_is_zero, msb_tz_plus_64, lsb_tz);
fx.bcx.ins().uextend(types::I128, res)
} else {
fx.bcx.ins().ctz(arg)
};
let res = CValue::by_val(res, fx.layout_of(T));
ret.write_cvalue(fx, res);
};
ctpop, <T> (v arg) {
let res = fx.bcx.ins().popcnt(arg);
let res = CValue::by_val(res, fx.layout_of(T));
ret.write_cvalue(fx, res);
};
bitreverse, <T> (v arg) {
let res = fx.bcx.ins().bitrev(arg);
let res = CValue::by_val(res, fx.layout_of(T));
ret.write_cvalue(fx, res);
};
bswap, <T> (v arg) {
// FIXME(CraneStation/cranelift#794) add bswap instruction to cranelift
fn swap(bcx: &mut FunctionBuilder<'_>, v: Value) -> Value {
match bcx.func.dfg.value_type(v) {
types::I8 => v,
// https://code.woboq.org/gcc/include/bits/byteswap.h.html
types::I16 => {
let tmp1 = bcx.ins().ishl_imm(v, 8);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00);
let tmp2 = bcx.ins().ushr_imm(v, 8);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF);
bcx.ins().bor(n1, n2)
}
types::I32 => {
let tmp1 = bcx.ins().ishl_imm(v, 24);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000);
let tmp2 = bcx.ins().ishl_imm(v, 8);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000);
let tmp3 = bcx.ins().ushr_imm(v, 8);
let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00);
let tmp4 = bcx.ins().ushr_imm(v, 24);
let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF);
let or_tmp1 = bcx.ins().bor(n1, n2);
let or_tmp2 = bcx.ins().bor(n3, n4);
bcx.ins().bor(or_tmp1, or_tmp2)
}
types::I64 => {
let tmp1 = bcx.ins().ishl_imm(v, 56);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000_0000_0000u64 as i64);
let tmp2 = bcx.ins().ishl_imm(v, 40);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000_0000_0000u64 as i64);
let tmp3 = bcx.ins().ishl_imm(v, 24);
let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00_0000_0000u64 as i64);
let tmp4 = bcx.ins().ishl_imm(v, 8);
let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF_0000_0000u64 as i64);
let tmp5 = bcx.ins().ushr_imm(v, 8);
let n5 = bcx.ins().band_imm(tmp5, 0x0000_0000_FF00_0000u64 as i64);
let tmp6 = bcx.ins().ushr_imm(v, 24);
let n6 = bcx.ins().band_imm(tmp6, 0x0000_0000_00FF_0000u64 as i64);
let tmp7 = bcx.ins().ushr_imm(v, 40);
let n7 = bcx.ins().band_imm(tmp7, 0x0000_0000_0000_FF00u64 as i64);
let tmp8 = bcx.ins().ushr_imm(v, 56);
let n8 = bcx.ins().band_imm(tmp8, 0x0000_0000_0000_00FFu64 as i64);
let or_tmp1 = bcx.ins().bor(n1, n2);
let or_tmp2 = bcx.ins().bor(n3, n4);
let or_tmp3 = bcx.ins().bor(n5, n6);
let or_tmp4 = bcx.ins().bor(n7, n8);
let or_tmp5 = bcx.ins().bor(or_tmp1, or_tmp2);
let or_tmp6 = bcx.ins().bor(or_tmp3, or_tmp4);
bcx.ins().bor(or_tmp5, or_tmp6)
}
types::I128 => {
let (lo, hi) = bcx.ins().isplit(v);
let lo = swap(bcx, lo);
let hi = swap(bcx, hi);
bcx.ins().iconcat(hi, lo)
}
ty => unreachable!("bswap {}", ty),
}
}
let res = CValue::by_val(swap(&mut fx.bcx, arg), fx.layout_of(T));
ret.write_cvalue(fx, res);
};
assert_inhabited | assert_zero_valid | assert_uninit_valid, <T> () {
let layout = fx.layout_of(T);
if layout.abi.is_uninhabited() {
with_no_trimmed_paths(|| crate::base::codegen_panic(
fx,
&format!("attempted to instantiate uninhabited type `{}`", T),
span,
));
return;
}
if intrinsic == "assert_zero_valid" && !layout.might_permit_raw_init(fx, /*zero:*/ true).unwrap() {
with_no_trimmed_paths(|| crate::base::codegen_panic(
fx,
&format!("attempted to zero-initialize type `{}`, which is invalid", T),
span,
));
return;
}
if intrinsic == "assert_uninit_valid" && !layout.might_permit_raw_init(fx, /*zero:*/ false).unwrap() {
with_no_trimmed_paths(|| crate::base::codegen_panic(
fx,
&format!("attempted to leave type `{}` uninitialized, which is invalid", T),
span,
));
return;
}
};
volatile_load | unaligned_volatile_load, (c ptr) {
// Cranelift treats loads as volatile by default
// FIXME ignore during stack2reg optimization
// FIXME correctly handle unaligned_volatile_load
let inner_layout =
fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty);
let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout);
ret.write_cvalue(fx, val);
};
volatile_store | unaligned_volatile_store, (v ptr, c val) {
// Cranelift treats stores as volatile by default
// FIXME ignore during stack2reg optimization
// FIXME correctly handle unaligned_volatile_store
let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout());
dest.write_cvalue(fx, val);
};
pref_align_of | min_align_of | needs_drop | type_id | type_name | variant_count, () {
let const_val =
fx.tcx.const_eval_instance(ParamEnv::reveal_all(), instance, None).unwrap();
let val = crate::constant::codegen_const_value(
fx,
const_val,
ret.layout().ty,
);
ret.write_cvalue(fx, val);
};
ptr_offset_from, <T> (v ptr, v base) {
let isize_layout = fx.layout_of(fx.tcx.types.isize);
let pointee_size: u64 = fx.layout_of(T).size.bytes();
let diff = fx.bcx.ins().isub(ptr, base);
// FIXME this can be an exact division.
let val = CValue::by_val(fx.bcx.ins().sdiv_imm(diff, pointee_size as i64), isize_layout);
ret.write_cvalue(fx, val);
};
ptr_guaranteed_eq, (c a, c b) {
let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b);
ret.write_cvalue(fx, val);
};
ptr_guaranteed_ne, (c a, c b) {
let val = crate::num::codegen_ptr_binop(fx, BinOp::Ne, a, b);
ret.write_cvalue(fx, val);
};
caller_location, () {
let caller_location = fx.get_caller_location(span);
ret.write_cvalue(fx, caller_location);
};
_ if intrinsic.starts_with("atomic_fence"), () {
crate::atomic_shim::lock_global_lock(fx);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_singlethreadfence"), () {
crate::atomic_shim::lock_global_lock(fx);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_load"), (c ptr) {
crate::atomic_shim::lock_global_lock(fx);
let inner_layout =
fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty);
validate_atomic_type!(fx, intrinsic, span, inner_layout.ty);
let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout);
ret.write_cvalue(fx, val);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_store"), (v ptr, c val) {
validate_atomic_type!(fx, intrinsic, span, val.layout().ty);
crate::atomic_shim::lock_global_lock(fx);
let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout());
dest.write_cvalue(fx, val);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_xchg"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, T);
crate::atomic_shim::lock_global_lock(fx);
// Read old
let clif_ty = fx.clif_type(T).unwrap();
let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0);
ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T)));
// Write new
let dest = CPlace::for_ptr(Pointer::new(ptr), src.layout());
dest.write_cvalue(fx, src);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_cxchg"), <T> (v ptr, c test_old, c new) { // both atomic_cxchg_* and atomic_cxchgweak_*
validate_atomic_type!(fx, intrinsic, span, T);
let test_old = test_old.load_scalar(fx);
let new = new.load_scalar(fx);
crate::atomic_shim::lock_global_lock(fx);
// Read old
let clif_ty = fx.clif_type(T).unwrap();
let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0);
// Compare
let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old);
let new = fx.bcx.ins().select(is_eq, new, old); // Keep old if not equal to test_old
// Write new
fx.bcx.ins().store(MemFlags::new(), new, ptr, 0);
let ret_val = CValue::by_val_pair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout());
ret.write_cvalue(fx, ret_val);
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_xadd"), <T> (v ptr, c amount) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let amount = amount.load_scalar(fx);
atomic_binop_return_old! (fx, iadd<T>(ptr, amount) -> ret);
};
_ if intrinsic.starts_with("atomic_xsub"), <T> (v ptr, c amount) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let amount = amount.load_scalar(fx);
atomic_binop_return_old! (fx, isub<T>(ptr, amount) -> ret);
};
_ if intrinsic.starts_with("atomic_and"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_binop_return_old! (fx, band<T>(ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_nand"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, T);
let src = src.load_scalar(fx);
crate::atomic_shim::lock_global_lock(fx);
let clif_ty = fx.clif_type(T).unwrap();
let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0);
let and = fx.bcx.ins().band(old, src);
let new = fx.bcx.ins().bnot(and);
fx.bcx.ins().store(MemFlags::new(), new, ptr, 0);
ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T)));
crate::atomic_shim::unlock_global_lock(fx);
};
_ if intrinsic.starts_with("atomic_or"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_binop_return_old! (fx, bor<T>(ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_xor"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_binop_return_old! (fx, bxor<T>(ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_max"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_minmax!(fx, IntCC::SignedGreaterThan, <T> (ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_umax"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_minmax!(fx, IntCC::UnsignedGreaterThan, <T> (ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_min"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_minmax!(fx, IntCC::SignedLessThan, <T> (ptr, src) -> ret);
};
_ if intrinsic.starts_with("atomic_umin"), <T> (v ptr, c src) {
validate_atomic_type!(fx, intrinsic, span, ret.layout().ty);
let src = src.load_scalar(fx);
atomic_minmax!(fx, IntCC::UnsignedLessThan, <T> (ptr, src) -> ret);
};
minnumf32, (v a, v b) {
let val = fx.bcx.ins().fmin(a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
ret.write_cvalue(fx, val);
};
minnumf64, (v a, v b) {
let val = fx.bcx.ins().fmin(a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
ret.write_cvalue(fx, val);
};
maxnumf32, (v a, v b) {
let val = fx.bcx.ins().fmax(a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
ret.write_cvalue(fx, val);
};
maxnumf64, (v a, v b) {
let val = fx.bcx.ins().fmax(a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
ret.write_cvalue(fx, val);
};
try, (v f, v data, v _catch_fn) {
// FIXME once unwinding is supported, change this to actually catch panics
let f_sig = fx.bcx.func.import_signature(Signature {
call_conv: CallConv::triple_default(fx.triple()),
params: vec![AbiParam::new(fx.bcx.func.dfg.value_type(data))],
returns: vec![],
});
fx.bcx.ins().call_indirect(f_sig, f, &[data]);
let layout = ret.layout();
let ret_val = CValue::const_val(fx, layout, ty::ScalarInt::null(layout.size));
ret.write_cvalue(fx, ret_val);
};
fadd_fast | fsub_fast | fmul_fast | fdiv_fast | frem_fast, (c x, c y) {
let res = crate::num::codegen_float_binop(fx, match intrinsic {
"fadd_fast" => BinOp::Add,
"fsub_fast" => BinOp::Sub,
"fmul_fast" => BinOp::Mul,
"fdiv_fast" => BinOp::Div,
"frem_fast" => BinOp::Rem,
_ => unreachable!(),
}, x, y);
ret.write_cvalue(fx, res);
};
float_to_int_unchecked, (v f) {
let res = crate::cast::clif_int_or_float_cast(
fx,
f,
false,
fx.clif_type(ret.layout().ty).unwrap(),
type_sign(ret.layout().ty),
);
ret.write_cvalue(fx, CValue::by_val(res, ret.layout()));
};
}
if let Some((_, dest)) = destination {
let ret_block = fx.get_block(dest);
fx.bcx.ins().jump(ret_block, &[]);
} else {
trap_unreachable(fx, "[corruption] Diverging intrinsic returned.");
}
}