blob: d5b631df058aef9c12428677dbfa52f7aec344d3 [file] [log] [blame]
use crate::errors::LifetimesOrBoundsMismatchOnTrait;
use rustc_data_structures::stable_set::FxHashSet;
use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorReported};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::intravisit;
use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
use rustc_infer::traits::util;
use rustc_middle::ty;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::util::ExplicitSelf;
use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode, Reveal};
use std::iter;
use super::{potentially_plural_count, FnCtxt, Inherited};
/// Checks that a method from an impl conforms to the signature of
/// the same method as declared in the trait.
///
/// # Parameters
///
/// - `impl_m`: type of the method we are checking
/// - `impl_m_span`: span to use for reporting errors
/// - `trait_m`: the method in the trait
/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
crate fn compare_impl_method<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
impl_m_span: Span,
trait_m: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
trait_item_span: Option<Span>,
) {
debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
let impl_m_span = tcx.sess.source_map().guess_head_span(impl_m_span);
if let Err(ErrorReported) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
{
return;
}
if let Err(ErrorReported) =
compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
{
return;
}
if let Err(ErrorReported) =
compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
{
return;
}
if let Err(ErrorReported) = compare_synthetic_generics(tcx, impl_m, trait_m) {
return;
}
if let Err(ErrorReported) =
compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
{
return;
}
if let Err(ErrorReported) = compare_const_param_types(tcx, impl_m, trait_m, trait_item_span) {
return;
}
}
fn compare_predicate_entailment<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
impl_m_span: Span,
trait_m: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
let trait_to_impl_substs = impl_trait_ref.substs;
// This node-id should be used for the `body_id` field on each
// `ObligationCause` (and the `FnCtxt`). This is what
// `regionck_item` expects.
let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
// We sometimes modify the span further down.
let mut cause = ObligationCause::new(
impl_m_span,
impl_m_hir_id,
ObligationCauseCode::CompareImplMethodObligation {
item_name: impl_m.ident.name,
impl_item_def_id: impl_m.def_id,
trait_item_def_id: trait_m.def_id,
},
);
// This code is best explained by example. Consider a trait:
//
// trait Trait<'t, T> {
// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
// }
//
// And an impl:
//
// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
// }
//
// We wish to decide if those two method types are compatible.
//
// We start out with trait_to_impl_substs, that maps the trait
// type parameters to impl type parameters. This is taken from the
// impl trait reference:
//
// trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
//
// We create a mapping `dummy_substs` that maps from the impl type
// parameters to fresh types and regions. For type parameters,
// this is the identity transform, but we could as well use any
// placeholder types. For regions, we convert from bound to free
// regions (Note: but only early-bound regions, i.e., those
// declared on the impl or used in type parameter bounds).
//
// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
//
// Now we can apply placeholder_substs to the type of the impl method
// to yield a new function type in terms of our fresh, placeholder
// types:
//
// <'b> fn(t: &'i0 U0, m: &'b) -> Foo
//
// We now want to extract and substitute the type of the *trait*
// method and compare it. To do so, we must create a compound
// substitution by combining trait_to_impl_substs and
// impl_to_placeholder_substs, and also adding a mapping for the method
// type parameters. We extend the mapping to also include
// the method parameters.
//
// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
//
// Applying this to the trait method type yields:
//
// <'a> fn(t: &'i0 U0, m: &'a) -> Foo
//
// This type is also the same but the name of the bound region ('a
// vs 'b). However, the normal subtyping rules on fn types handle
// this kind of equivalency just fine.
//
// We now use these substitutions to ensure that all declared bounds are
// satisfied by the implementation's method.
//
// We do this by creating a parameter environment which contains a
// substitution corresponding to impl_to_placeholder_substs. We then build
// trait_to_placeholder_substs and use it to convert the predicates contained
// in the trait_m.generics to the placeholder form.
//
// Finally we register each of these predicates as an obligation in
// a fresh FulfillmentCtxt, and invoke select_all_or_error.
// Create mapping from impl to placeholder.
let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
// Create mapping from trait to placeholder.
let trait_to_placeholder_substs =
impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
let impl_m_generics = tcx.generics_of(impl_m.def_id);
let trait_m_generics = tcx.generics_of(trait_m.def_id);
let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
// Check region bounds.
check_region_bounds_on_impl_item(
tcx,
impl_m_span,
impl_m,
trait_m,
&trait_m_generics,
&impl_m_generics,
)?;
// Create obligations for each predicate declared by the impl
// definition in the context of the trait's parameter
// environment. We can't just use `impl_env.caller_bounds`,
// however, because we want to replace all late-bound regions with
// region variables.
let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
// This is the only tricky bit of the new way we check implementation methods
// We need to build a set of predicates where only the method-level bounds
// are from the trait and we assume all other bounds from the implementation
// to be previously satisfied.
//
// We then register the obligations from the impl_m and check to see
// if all constraints hold.
hybrid_preds
.predicates
.extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
// Construct trait parameter environment and then shift it into the placeholder viewpoint.
// The key step here is to update the caller_bounds's predicates to be
// the new hybrid bounds we computed.
let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
let param_env =
ty::ParamEnv::new(tcx.intern_predicates(&hybrid_preds.predicates), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(
tcx,
impl_m.def_id,
param_env,
normalize_cause.clone(),
);
tcx.infer_ctxt().enter(|infcx| {
let inh = Inherited::new(infcx, impl_m.def_id.expect_local());
let infcx = &inh.infcx;
debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
let mut selcx = traits::SelectionContext::new(&infcx);
let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
for predicate in impl_m_own_bounds.predicates {
let traits::Normalized { value: predicate, obligations } =
traits::normalize(&mut selcx, param_env, normalize_cause.clone(), predicate);
inh.register_predicates(obligations);
inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
}
// We now need to check that the signature of the impl method is
// compatible with that of the trait method. We do this by
// checking that `impl_fty <: trait_fty`.
//
// FIXME. Unfortunately, this doesn't quite work right now because
// associated type normalization is not integrated into subtype
// checks. For the comparison to be valid, we need to
// normalize the associated types in the impl/trait methods
// first. However, because function types bind regions, just
// calling `normalize_associated_types_in` would have no effect on
// any associated types appearing in the fn arguments or return
// type.
// Compute placeholder form of impl and trait method tys.
let tcx = infcx.tcx;
let mut wf_tys = FxHashSet::default();
let (impl_sig, _) = infcx.replace_bound_vars_with_fresh_vars(
impl_m_span,
infer::HigherRankedType,
tcx.fn_sig(impl_m.def_id),
);
let impl_sig =
inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, impl_sig);
let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
debug!("compare_impl_method: impl_fty={:?}", impl_fty);
// First liberate late bound regions and subst placeholders
let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, tcx.fn_sig(trait_m.def_id));
let trait_sig = trait_sig.subst(tcx, trait_to_placeholder_substs);
// Next, add all inputs and output as well-formed tys. Importantly,
// we have to do this before normalization, since the normalized ty may
// not contain the input parameters. See issue #87748.
wf_tys.extend(trait_sig.inputs_and_output.iter());
let trait_sig =
inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, trait_sig);
// Also add the resulting inputs and output as well-formed.
// This probably isn't strictly necessary.
wf_tys.extend(trait_sig.inputs_and_output.iter());
let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
debug!("compare_impl_method: trait_fty={:?}", trait_fty);
let sub_result = infcx.at(&cause, param_env).sup(trait_fty, impl_fty).map(
|InferOk { obligations, .. }| {
inh.register_predicates(obligations);
},
);
if let Err(terr) = sub_result {
debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
let (impl_err_span, trait_err_span) =
extract_spans_for_error_reporting(&infcx, &terr, &cause, impl_m, trait_m);
cause.make_mut().span = impl_err_span;
let mut diag = struct_span_err!(
tcx.sess,
cause.span(tcx),
E0053,
"method `{}` has an incompatible type for trait",
trait_m.ident
);
match &terr {
TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
if trait_m.fn_has_self_parameter =>
{
let ty = trait_sig.inputs()[0];
let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
{
ExplicitSelf::ByValue => "self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
"&mut self".to_owned()
}
_ => format!("self: {}", ty),
};
// When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
// span points only at the type `Box<Self`>, but we want to cover the whole
// argument pattern and type.
let impl_m_hir_id =
tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
let span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
ImplItemKind::Fn(ref sig, body) => tcx
.hir()
.body_param_names(body)
.zip(sig.decl.inputs.iter())
.map(|(param, ty)| param.span.to(ty.span))
.next()
.unwrap_or(impl_err_span),
_ => bug!("{:?} is not a method", impl_m),
};
diag.span_suggestion(
span,
"change the self-receiver type to match the trait",
sugg,
Applicability::MachineApplicable,
);
}
TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
if trait_sig.inputs().len() == *i {
// Suggestion to change output type. We do not suggest in `async` functions
// to avoid complex logic or incorrect output.
let impl_m_hir_id =
tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
ImplItemKind::Fn(ref sig, _)
if sig.header.asyncness == hir::IsAsync::NotAsync =>
{
let msg = "change the output type to match the trait";
let ap = Applicability::MachineApplicable;
match sig.decl.output {
hir::FnRetTy::DefaultReturn(sp) => {
let sugg = format!("-> {} ", trait_sig.output());
diag.span_suggestion_verbose(sp, msg, sugg, ap);
}
hir::FnRetTy::Return(hir_ty) => {
let sugg = trait_sig.output().to_string();
diag.span_suggestion(hir_ty.span, msg, sugg, ap);
}
};
}
_ => {}
};
} else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
diag.span_suggestion(
impl_err_span,
"change the parameter type to match the trait",
trait_ty.to_string(),
Applicability::MachineApplicable,
);
}
}
_ => {}
}
infcx.note_type_err(
&mut diag,
&cause,
trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_fty,
found: impl_fty,
})),
&terr,
);
diag.emit();
return Err(ErrorReported);
}
// Check that all obligations are satisfied by the implementation's
// version.
if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(errors, None, false);
return Err(ErrorReported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let fcx = FnCtxt::new(&inh, param_env, impl_m_hir_id);
fcx.regionck_item(impl_m_hir_id, impl_m_span, wf_tys);
Ok(())
})
}
fn check_region_bounds_on_impl_item<'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
impl_m: &ty::AssocItem,
trait_m: &ty::AssocItem,
trait_generics: &ty::Generics,
impl_generics: &ty::Generics,
) -> Result<(), ErrorReported> {
let trait_params = trait_generics.own_counts().lifetimes;
let impl_params = impl_generics.own_counts().lifetimes;
debug!(
"check_region_bounds_on_impl_item: \
trait_generics={:?} \
impl_generics={:?}",
trait_generics, impl_generics
);
// Must have same number of early-bound lifetime parameters.
// Unfortunately, if the user screws up the bounds, then this
// will change classification between early and late. E.g.,
// if in trait we have `<'a,'b:'a>`, and in impl we just have
// `<'a,'b>`, then we have 2 early-bound lifetime parameters
// in trait but 0 in the impl. But if we report "expected 2
// but found 0" it's confusing, because it looks like there
// are zero. Since I don't quite know how to phrase things at
// the moment, give a kind of vague error message.
if trait_params != impl_params {
let item_kind = assoc_item_kind_str(impl_m);
let def_span = tcx.sess.source_map().guess_head_span(span);
let span = tcx.hir().get_generics(impl_m.def_id).map_or(def_span, |g| g.span);
let generics_span = tcx.hir().span_if_local(trait_m.def_id).map(|sp| {
let def_sp = tcx.sess.source_map().guess_head_span(sp);
tcx.hir().get_generics(trait_m.def_id).map_or(def_sp, |g| g.span)
});
tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
span,
item_kind,
ident: impl_m.ident,
generics_span,
});
return Err(ErrorReported);
}
Ok(())
}
fn extract_spans_for_error_reporting<'a, 'tcx>(
infcx: &infer::InferCtxt<'a, 'tcx>,
terr: &TypeError<'_>,
cause: &ObligationCause<'tcx>,
impl_m: &ty::AssocItem,
trait_m: &ty::AssocItem,
) -> (Span, Option<Span>) {
let tcx = infcx.tcx;
let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
let mut impl_args = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
ImplItemKind::Fn(ref sig, _) => {
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
}
_ => bug!("{:?} is not a method", impl_m),
};
let trait_args = trait_m.def_id.as_local().map(|def_id| {
let trait_m_hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
TraitItemKind::Fn(ref sig, _) => {
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
}
_ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
}
});
match *terr {
TypeError::ArgumentMutability(i) => {
(impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
}
TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
(impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
}
_ => (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)),
}
}
fn compare_self_type<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
impl_m_span: Span,
trait_m: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
// Try to give more informative error messages about self typing
// mismatches. Note that any mismatch will also be detected
// below, where we construct a canonical function type that
// includes the self parameter as a normal parameter. It's just
// that the error messages you get out of this code are a bit more
// inscrutable, particularly for cases where one method has no
// self.
let self_string = |method: &ty::AssocItem| {
let untransformed_self_ty = match method.container {
ty::ImplContainer(_) => impl_trait_ref.self_ty(),
ty::TraitContainer(_) => tcx.types.self_param,
};
let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
let param_env = ty::ParamEnv::reveal_all();
tcx.infer_ctxt().enter(|infcx| {
let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
ExplicitSelf::ByValue => "self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
_ => format!("self: {}", self_arg_ty),
}
})
};
match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
(false, false) | (true, true) => {}
(false, true) => {
let self_descr = self_string(impl_m);
let mut err = struct_span_err!(
tcx.sess,
impl_m_span,
E0185,
"method `{}` has a `{}` declaration in the impl, but not in the trait",
trait_m.ident,
self_descr
);
err.span_label(impl_m_span, format!("`{}` used in impl", self_descr));
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
err.span_label(span, format!("trait method declared without `{}`", self_descr));
} else {
err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
}
err.emit();
return Err(ErrorReported);
}
(true, false) => {
let self_descr = self_string(trait_m);
let mut err = struct_span_err!(
tcx.sess,
impl_m_span,
E0186,
"method `{}` has a `{}` declaration in the trait, but not in the impl",
trait_m.ident,
self_descr
);
err.span_label(impl_m_span, format!("expected `{}` in impl", self_descr));
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
err.span_label(span, format!("`{}` used in trait", self_descr));
} else {
err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
}
err.emit();
return Err(ErrorReported);
}
}
Ok(())
}
fn compare_number_of_generics<'tcx>(
tcx: TyCtxt<'tcx>,
impl_: &ty::AssocItem,
_impl_span: Span,
trait_: &ty::AssocItem,
trait_span: Option<Span>,
) -> Result<(), ErrorReported> {
let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
let matchings = [
("type", trait_own_counts.types, impl_own_counts.types),
("const", trait_own_counts.consts, impl_own_counts.consts),
];
let item_kind = assoc_item_kind_str(impl_);
let mut err_occurred = false;
for (kind, trait_count, impl_count) in matchings {
if impl_count != trait_count {
err_occurred = true;
let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
let trait_hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let trait_item = tcx.hir().expect_trait_item(trait_hir_id);
if trait_item.generics.params.is_empty() {
(Some(vec![trait_item.generics.span]), vec![])
} else {
let arg_spans: Vec<Span> =
trait_item.generics.params.iter().map(|p| p.span).collect();
let impl_trait_spans: Vec<Span> = trait_item
.generics
.params
.iter()
.filter_map(|p| match p.kind {
GenericParamKind::Type {
synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
..
} => Some(p.span),
_ => None,
})
.collect();
(Some(arg_spans), impl_trait_spans)
}
} else {
(trait_span.map(|s| vec![s]), vec![])
};
let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_.def_id.expect_local());
let impl_item = tcx.hir().expect_impl_item(impl_hir_id);
let impl_item_impl_trait_spans: Vec<Span> = impl_item
.generics
.params
.iter()
.filter_map(|p| match p.kind {
GenericParamKind::Type {
synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
..
} => Some(p.span),
_ => None,
})
.collect();
let spans = impl_item.generics.spans();
let span = spans.primary_span();
let mut err = tcx.sess.struct_span_err_with_code(
spans,
&format!(
"{} `{}` has {} {kind} parameter{} but its trait \
declaration has {} {kind} parameter{}",
item_kind,
trait_.ident,
impl_count,
pluralize!(impl_count),
trait_count,
pluralize!(trait_count),
kind = kind,
),
DiagnosticId::Error("E0049".into()),
);
let mut suffix = None;
if let Some(spans) = trait_spans {
let mut spans = spans.iter();
if let Some(span) = spans.next() {
err.span_label(
*span,
format!(
"expected {} {} parameter{}",
trait_count,
kind,
pluralize!(trait_count),
),
);
}
for span in spans {
err.span_label(*span, "");
}
} else {
suffix = Some(format!(", expected {}", trait_count));
}
if let Some(span) = span {
err.span_label(
span,
format!(
"found {} {} parameter{}{}",
impl_count,
kind,
pluralize!(impl_count),
suffix.unwrap_or_else(String::new),
),
);
}
for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
}
err.emit();
}
}
if err_occurred { Err(ErrorReported) } else { Ok(()) }
}
fn compare_number_of_method_arguments<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
impl_m_span: Span,
trait_m: &ty::AssocItem,
trait_item_span: Option<Span>,
) -> Result<(), ErrorReported> {
let impl_m_fty = tcx.fn_sig(impl_m.def_id);
let trait_m_fty = tcx.fn_sig(trait_m.def_id);
let trait_number_args = trait_m_fty.inputs().skip_binder().len();
let impl_number_args = impl_m_fty.inputs().skip_binder().len();
if trait_number_args != impl_number_args {
let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
let trait_id = tcx.hir().local_def_id_to_hir_id(def_id);
match tcx.hir().expect_trait_item(trait_id).kind {
TraitItemKind::Fn(ref trait_m_sig, _) => {
let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
Some(if pos == 0 {
arg.span
} else {
arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
})
} else {
trait_item_span
}
}
_ => bug!("{:?} is not a method", impl_m),
}
} else {
trait_item_span
};
let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
let impl_span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
ImplItemKind::Fn(ref impl_m_sig, _) => {
let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
if pos == 0 {
arg.span
} else {
arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
}
} else {
impl_m_span
}
}
_ => bug!("{:?} is not a method", impl_m),
};
let mut err = struct_span_err!(
tcx.sess,
impl_span,
E0050,
"method `{}` has {} but the declaration in \
trait `{}` has {}",
trait_m.ident,
potentially_plural_count(impl_number_args, "parameter"),
tcx.def_path_str(trait_m.def_id),
trait_number_args
);
if let Some(trait_span) = trait_span {
err.span_label(
trait_span,
format!(
"trait requires {}",
potentially_plural_count(trait_number_args, "parameter")
),
);
} else {
err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
}
err.span_label(
impl_span,
format!(
"expected {}, found {}",
potentially_plural_count(trait_number_args, "parameter"),
impl_number_args
),
);
err.emit();
return Err(ErrorReported);
}
Ok(())
}
fn compare_synthetic_generics<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
trait_m: &ty::AssocItem,
) -> Result<(), ErrorReported> {
// FIXME(chrisvittal) Clean up this function, list of FIXME items:
// 1. Better messages for the span labels
// 2. Explanation as to what is going on
// If we get here, we already have the same number of generics, so the zip will
// be okay.
let mut error_found = false;
let impl_m_generics = tcx.generics_of(impl_m.def_id);
let trait_m_generics = tcx.generics_of(trait_m.def_id);
let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
});
let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
});
for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
iter::zip(impl_m_type_params, trait_m_type_params)
{
if impl_synthetic != trait_synthetic {
let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id.expect_local());
let impl_span = tcx.hir().span(impl_hir_id);
let trait_span = tcx.def_span(trait_def_id);
let mut err = struct_span_err!(
tcx.sess,
impl_span,
E0643,
"method `{}` has incompatible signature for trait",
trait_m.ident
);
err.span_label(trait_span, "declaration in trait here");
match (impl_synthetic, trait_synthetic) {
// The case where the impl method uses `impl Trait` but the trait method uses
// explicit generics
(Some(hir::SyntheticTyParamKind::ImplTrait), None) => {
err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
(|| {
// try taking the name from the trait impl
// FIXME: this is obviously suboptimal since the name can already be used
// as another generic argument
let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
let trait_m = trait_m.def_id.as_local()?;
let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });
let impl_m = impl_m.def_id.as_local()?;
let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
// in case there are no generics, take the spot between the function name
// and the opening paren of the argument list
let new_generics_span =
tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
// in case there are generics, just replace them
let generics_span =
impl_m.generics.span.substitute_dummy(new_generics_span);
// replace with the generics from the trait
let new_generics =
tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
err.multipart_suggestion(
"try changing the `impl Trait` argument to a generic parameter",
vec![
// replace `impl Trait` with `T`
(impl_span, new_name),
// replace impl method generics with trait method generics
// This isn't quite right, as users might have changed the names
// of the generics, but it works for the common case
(generics_span, new_generics),
],
Applicability::MaybeIncorrect,
);
Some(())
})();
}
// The case where the trait method uses `impl Trait`, but the impl method uses
// explicit generics.
(None, Some(hir::SyntheticTyParamKind::ImplTrait)) => {
err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
(|| {
let impl_m = impl_m.def_id.as_local()?;
let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
let input_tys = match impl_m.kind {
hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
_ => unreachable!(),
};
struct Visitor(Option<Span>, hir::def_id::DefId);
impl<'v> intravisit::Visitor<'v> for Visitor {
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
intravisit::walk_ty(self, ty);
if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
ty.kind
{
if let Res::Def(DefKind::TyParam, def_id) = path.res {
if def_id == self.1 {
self.0 = Some(ty.span);
}
}
}
}
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(
&mut self,
) -> intravisit::NestedVisitorMap<Self::Map>
{
intravisit::NestedVisitorMap::None
}
}
let mut visitor = Visitor(None, impl_def_id);
for ty in input_tys {
intravisit::Visitor::visit_ty(&mut visitor, ty);
}
let span = visitor.0?;
let bounds =
impl_m.generics.params.iter().find_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => None,
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
if param.hir_id == impl_hir_id {
Some(&param.bounds)
} else {
None
}
}
})?;
let bounds = bounds.first()?.span().to(bounds.last()?.span());
let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
err.multipart_suggestion(
"try removing the generic parameter and using `impl Trait` instead",
vec![
// delete generic parameters
(impl_m.generics.span, String::new()),
// replace param usage with `impl Trait`
(span, format!("impl {}", bounds)),
],
Applicability::MaybeIncorrect,
);
Some(())
})();
}
_ => unreachable!(),
}
err.emit();
error_found = true;
}
}
if error_found { Err(ErrorReported) } else { Ok(()) }
}
fn compare_const_param_types<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: &ty::AssocItem,
trait_m: &ty::AssocItem,
trait_item_span: Option<Span>,
) -> Result<(), ErrorReported> {
let const_params_of = |def_id| {
tcx.generics_of(def_id).params.iter().filter_map(|param| match param.kind {
GenericParamDefKind::Const { .. } => Some(param.def_id),
_ => None,
})
};
let const_params_impl = const_params_of(impl_m.def_id);
let const_params_trait = const_params_of(trait_m.def_id);
for (const_param_impl, const_param_trait) in iter::zip(const_params_impl, const_params_trait) {
let impl_ty = tcx.type_of(const_param_impl);
let trait_ty = tcx.type_of(const_param_trait);
if impl_ty != trait_ty {
let (impl_span, impl_ident) = match tcx.hir().get_if_local(const_param_impl) {
Some(hir::Node::GenericParam(hir::GenericParam { span, name, .. })) => (
span,
match name {
hir::ParamName::Plain(ident) => Some(ident),
_ => None,
},
),
other => bug!(
"expected GenericParam, found {:?}",
other.map_or_else(|| "nothing".to_string(), |n| format!("{:?}", n))
),
};
let trait_span = match tcx.hir().get_if_local(const_param_trait) {
Some(hir::Node::GenericParam(hir::GenericParam { span, .. })) => Some(span),
_ => None,
};
let mut err = struct_span_err!(
tcx.sess,
*impl_span,
E0053,
"method `{}` has an incompatible const parameter type for trait",
trait_m.ident
);
err.span_note(
trait_span.map_or_else(|| trait_item_span.unwrap_or(*impl_span), |span| *span),
&format!(
"the const parameter{} has type `{}`, but the declaration \
in trait `{}` has type `{}`",
&impl_ident.map_or_else(|| "".to_string(), |ident| format!(" `{}`", ident)),
impl_ty,
tcx.def_path_str(trait_m.def_id),
trait_ty
),
);
err.emit();
return Err(ErrorReported);
}
}
Ok(())
}
crate fn compare_const_impl<'tcx>(
tcx: TyCtxt<'tcx>,
impl_c: &ty::AssocItem,
impl_c_span: Span,
trait_c: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) {
debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
tcx.infer_ctxt().enter(|infcx| {
let param_env = tcx.param_env(impl_c.def_id);
let inh = Inherited::new(infcx, impl_c.def_id.expect_local());
let infcx = &inh.infcx;
// The below is for the most part highly similar to the procedure
// for methods above. It is simpler in many respects, especially
// because we shouldn't really have to deal with lifetimes or
// predicates. In fact some of this should probably be put into
// shared functions because of DRY violations...
let trait_to_impl_substs = impl_trait_ref.substs;
// Create a parameter environment that represents the implementation's
// method.
let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());
// Compute placeholder form of impl and trait const tys.
let impl_ty = tcx.type_of(impl_c.def_id);
let trait_ty = tcx.type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
let mut cause = ObligationCause::new(
impl_c_span,
impl_c_hir_id,
ObligationCauseCode::CompareImplConstObligation,
);
// There is no "body" here, so just pass dummy id.
let impl_ty =
inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, impl_ty);
debug!("compare_const_impl: impl_ty={:?}", impl_ty);
let trait_ty =
inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, trait_ty);
debug!("compare_const_impl: trait_ty={:?}", trait_ty);
let err = infcx
.at(&cause, param_env)
.sup(trait_ty, impl_ty)
.map(|ok| inh.register_infer_ok_obligations(ok));
if let Err(terr) = err {
debug!(
"checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
impl_ty, trait_ty
);
// Locate the Span containing just the type of the offending impl
match tcx.hir().expect_impl_item(impl_c_hir_id).kind {
ImplItemKind::Const(ref ty, _) => cause.make_mut().span = ty.span,
_ => bug!("{:?} is not a impl const", impl_c),
}
let mut diag = struct_span_err!(
tcx.sess,
cause.span,
E0326,
"implemented const `{}` has an incompatible type for trait",
trait_c.ident
);
let trait_c_hir_id =
trait_c.def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id));
let trait_c_span = trait_c_hir_id.map(|trait_c_hir_id| {
// Add a label to the Span containing just the type of the const
match tcx.hir().expect_trait_item(trait_c_hir_id).kind {
TraitItemKind::Const(ref ty, _) => ty.span,
_ => bug!("{:?} is not a trait const", trait_c),
}
});
infcx.note_type_err(
&mut diag,
&cause,
trait_c_span.map(|span| (span, "type in trait".to_owned())),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_ty,
found: impl_ty,
})),
&terr,
);
diag.emit();
}
// Check that all obligations are satisfied by the implementation's
// version.
if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(errors, None, false);
return;
}
let fcx = FnCtxt::new(&inh, param_env, impl_c_hir_id);
fcx.regionck_item(impl_c_hir_id, impl_c_span, FxHashSet::default());
});
}
crate fn compare_ty_impl<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ty: &ty::AssocItem,
impl_ty_span: Span,
trait_ty: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
trait_item_span: Option<Span>,
) {
debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
let _: Result<(), ErrorReported> = (|| {
compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
compare_type_predicate_entailment(tcx, impl_ty, impl_ty_span, trait_ty, impl_trait_ref)?;
check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
})();
}
/// The equivalent of [compare_predicate_entailment], but for associated types
/// instead of associated functions.
fn compare_type_predicate_entailment<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ty: &ty::AssocItem,
impl_ty_span: Span,
trait_ty: &ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
let trait_to_impl_substs =
impl_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
check_region_bounds_on_impl_item(
tcx,
impl_ty_span,
impl_ty,
trait_ty,
&trait_ty_generics,
&impl_ty_generics,
)?;
let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
if impl_ty_own_bounds.is_empty() {
// Nothing to check.
return Ok(());
}
// This `HirId` should be used for the `body_id` field on each
// `ObligationCause` (and the `FnCtxt`). This is what
// `regionck_item` expects.
let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
let cause = ObligationCause::new(
impl_ty_span,
impl_ty_hir_id,
ObligationCauseCode::CompareImplTypeObligation {
item_name: impl_ty.ident.name,
impl_item_def_id: impl_ty.def_id,
trait_item_def_id: trait_ty.def_id,
},
);
debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
// The predicates declared by the impl definition, the trait and the
// associated type in the trait are assumed.
let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
hybrid_preds
.predicates
.extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
let param_env =
ty::ParamEnv::new(tcx.intern_predicates(&hybrid_preds.predicates), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(
tcx,
impl_ty.def_id,
param_env,
normalize_cause.clone(),
);
tcx.infer_ctxt().enter(|infcx| {
let inh = Inherited::new(infcx, impl_ty.def_id.expect_local());
let infcx = &inh.infcx;
debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
let mut selcx = traits::SelectionContext::new(&infcx);
for predicate in impl_ty_own_bounds.predicates {
let traits::Normalized { value: predicate, obligations } =
traits::normalize(&mut selcx, param_env, normalize_cause.clone(), predicate);
inh.register_predicates(obligations);
inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
}
// Check that all obligations are satisfied by the implementation's
// version.
if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(errors, None, false);
return Err(ErrorReported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
fcx.regionck_item(impl_ty_hir_id, impl_ty_span, FxHashSet::default());
Ok(())
})
}
/// Validate that `ProjectionCandidate`s created for this associated type will
/// be valid.
///
/// Usually given
///
/// trait X { type Y: Copy } impl X for T { type Y = S; }
///
/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
/// impl is well-formed we have to prove `S: Copy`.
///
/// For default associated types the normalization is not possible (the value
/// from the impl could be overridden). We also can't normalize generic
/// associated types (yet) because they contain bound parameters.
#[tracing::instrument(level = "debug", skip(tcx))]
pub fn check_type_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ty: &ty::AssocItem,
impl_ty: &ty::AssocItem,
impl_ty_span: Span,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
// Given
//
// impl<A, B> Foo<u32> for (A, B) {
// type Bar<C> =...
// }
//
// - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
// - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
// - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
// the *trait* with the generic associated type parameters (as bound vars).
//
// A note regarding the use of bound vars here:
// Imagine as an example
// ```
// trait Family {
// type Member<C: Eq>;
// }
//
// impl Family for VecFamily {
// type Member<C: Eq> = i32;
// }
// ```
// Here, we would generate
// ```notrust
// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
// ```
// when we really would like to generate
// ```notrust
// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
// ```
// But, this is probably fine, because although the first clause can be used with types C that
// do not implement Eq, for it to cause some kind of problem, there would have to be a
// VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
// Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
// elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
// the trait (notably, that X: Eq and T: Family).
let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
let mut substs = smallvec::SmallVec::with_capacity(defs.count());
if let Some(def_id) = defs.parent {
let parent_defs = tcx.generics_of(def_id);
InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
tcx.mk_param_from_def(param)
});
}
let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
smallvec::SmallVec::with_capacity(defs.count());
InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
GenericParamDefKind::Type { .. } => {
let kind = ty::BoundTyKind::Param(param.name);
let bound_var = ty::BoundVariableKind::Ty(kind);
bound_vars.push(bound_var);
tcx.mk_ty(ty::Bound(
ty::INNERMOST,
ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
))
.into()
}
GenericParamDefKind::Lifetime => {
let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
let bound_var = ty::BoundVariableKind::Region(kind);
bound_vars.push(bound_var);
tcx.mk_region(ty::ReLateBound(
ty::INNERMOST,
ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
))
.into()
}
GenericParamDefKind::Const { .. } => {
let bound_var = ty::BoundVariableKind::Const;
bound_vars.push(bound_var);
tcx.mk_const(ty::Const {
ty: tcx.type_of(param.def_id),
val: ty::ConstKind::Bound(
ty::INNERMOST,
ty::BoundVar::from_usize(bound_vars.len() - 1),
),
})
.into()
}
});
let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
let impl_ty_substs = tcx.intern_substs(&substs);
let rebased_substs =
impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
let impl_ty_value = tcx.type_of(impl_ty.def_id);
let param_env = tcx.param_env(impl_ty.def_id);
// When checking something like
//
// trait X { type Y: PartialEq<<Self as X>::Y> }
// impl X for T { default type Y = S; }
//
// We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
// we want <T as X>::Y to normalize to S. This is valid because we are
// checking the default value specifically here. Add this equality to the
// ParamEnv for normalization specifically.
let normalize_param_env = {
let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
match impl_ty_value.kind() {
ty::Projection(proj)
if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
{
// Don't include this predicate if the projected type is
// exactly the same as the projection. This can occur in
// (somewhat dubious) code like this:
//
// impl<T> X for T where T: X { type Y = <T as X>::Y; }
}
_ => predicates.push(
ty::Binder::bind_with_vars(
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
item_def_id: trait_ty.def_id,
substs: rebased_substs,
},
ty: impl_ty_value,
},
bound_vars,
)
.to_predicate(tcx),
),
};
ty::ParamEnv::new(tcx.intern_predicates(&predicates), Reveal::UserFacing)
};
debug!(?normalize_param_env);
let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
let rebased_substs =
impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
tcx.infer_ctxt().enter(move |infcx| {
let constness = impl_ty
.container
.impl_def_id()
.map(|did| tcx.impl_constness(did))
.unwrap_or(hir::Constness::NotConst);
let inh = Inherited::with_constness(infcx, impl_ty.def_id.expect_local(), constness);
let infcx = &inh.infcx;
let mut selcx = traits::SelectionContext::new(&infcx);
let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
let mk_cause = |span| {
ObligationCause::new(
impl_ty_span,
impl_ty_hir_id,
ObligationCauseCode::BindingObligation(trait_ty.def_id, span),
)
};
let obligations = tcx
.explicit_item_bounds(trait_ty.def_id)
.iter()
.map(|&(bound, span)| {
debug!(?bound);
let concrete_ty_bound = bound.subst(tcx, rebased_substs);
debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
traits::Obligation::new(mk_cause(span), param_env, concrete_ty_bound)
})
.collect();
debug!("check_type_bounds: item_bounds={:?}", obligations);
for mut obligation in util::elaborate_obligations(tcx, obligations) {
let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
&mut selcx,
normalize_param_env,
normalize_cause.clone(),
obligation.predicate,
);
debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
obligation.predicate = normalized_predicate;
inh.register_predicates(obligations);
inh.register_predicate(obligation);
}
// Check that all obligations are satisfied by the implementation's
// version.
if let Err(ref errors) =
inh.fulfillment_cx.borrow_mut().select_all_with_constness_or_error(&infcx, constness)
{
infcx.report_fulfillment_errors(errors, None, false);
return Err(ErrorReported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
let implied_bounds = match impl_ty.container {
ty::TraitContainer(_) => FxHashSet::default(),
ty::ImplContainer(def_id) => fcx.impl_implied_bounds(def_id, impl_ty_span),
};
fcx.regionck_item(impl_ty_hir_id, impl_ty_span, implied_bounds);
Ok(())
})
}
fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
match impl_item.kind {
ty::AssocKind::Const => "const",
ty::AssocKind::Fn => "method",
ty::AssocKind::Type => "type",
}
}