blob: 09ce134a2bf6c3a508bda730fbf957fe396debc5 [file] [log] [blame]
//! See docs in build/expr/mod.rs
use crate::build::expr::category::Category;
use crate::build::{BlockAnd, BlockAndExtension, Builder, NeedsTemporary};
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::*;
use tracing::{debug, instrument};
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// Returns an operand suitable for use until the end of the current
/// scope expression.
///
/// The operand returned from this function will *not be valid*
/// after the current enclosing `ExprKind::Scope` has ended, so
/// please do *not* return it from functions to avoid bad
/// miscompiles.
pub(crate) fn as_local_operand(
&mut self,
block: BasicBlock,
expr_id: ExprId,
) -> BlockAnd<Operand<'tcx>> {
let local_scope = self.local_scope();
self.as_operand(block, Some(local_scope), expr_id, LocalInfo::Boring, NeedsTemporary::Maybe)
}
/// Returns an operand suitable for use until the end of the current scope expression and
/// suitable also to be passed as function arguments.
///
/// The operand returned from this function will *not be valid* after an ExprKind::Scope is
/// passed, so please do *not* return it from functions to avoid bad miscompiles. Returns an
/// operand suitable for use as a call argument. This is almost always equivalent to
/// `as_operand`, except for the particular case of passing values of (potentially) unsized
/// types "by value" (see details below).
///
/// The operand returned from this function will *not be valid*
/// after the current enclosing `ExprKind::Scope` has ended, so
/// please do *not* return it from functions to avoid bad
/// miscompiles.
///
/// # Parameters of unsized types
///
/// We tweak the handling of parameters of unsized type slightly to avoid the need to create a
/// local variable of unsized type. For example, consider this program:
///
/// ```
/// #![feature(unsized_locals, unsized_fn_params)]
/// # use core::fmt::Debug;
/// fn foo(p: dyn Debug) { dbg!(p); }
///
/// fn bar(box_p: Box<dyn Debug>) { foo(*box_p); }
/// ```
///
/// Ordinarily, for sized types, we would compile the call `foo(*p)` like so:
///
/// ```ignore (illustrative)
/// let tmp0 = *box_p; // tmp0 would be the operand returned by this function call
/// foo(tmp0)
/// ```
///
/// But because the parameter to `foo` is of the unsized type `dyn Debug`, and because it is
/// being moved the deref of a box, we compile it slightly differently. The temporary `tmp0`
/// that we create *stores the entire box*, and the parameter to the call itself will be
/// `*tmp0`:
///
/// ```ignore (illustrative)
/// let tmp0 = box_p; call foo(*tmp0)
/// ```
///
/// This way, the temporary `tmp0` that we create has type `Box<dyn Debug>`, which is sized.
/// The value passed to the call (`*tmp0`) still has the `dyn Debug` type -- but the way that
/// calls are compiled means that this parameter will be passed "by reference", meaning that we
/// will actually provide a pointer to the interior of the box, and not move the `dyn Debug`
/// value to the stack.
///
/// See #68304 for more details.
pub(crate) fn as_local_call_operand(
&mut self,
block: BasicBlock,
expr: ExprId,
) -> BlockAnd<Operand<'tcx>> {
let local_scope = self.local_scope();
self.as_call_operand(block, Some(local_scope), expr)
}
/// Compile `expr` into a value that can be used as an operand.
/// If `expr` is a place like `x`, this will introduce a
/// temporary `tmp = x`, so that we capture the value of `x` at
/// this time.
///
/// If we end up needing to create a temporary, then we will use
/// `local_info` as its `LocalInfo`, unless `as_temporary`
/// has already assigned it a non-`None` `LocalInfo`.
/// Normally, you should use `None` for `local_info`
///
/// The operand is known to be live until the end of `scope`.
///
/// Like `as_local_call_operand`, except that the argument will
/// not be valid once `scope` ends.
#[instrument(level = "debug", skip(self, scope))]
pub(crate) fn as_operand(
&mut self,
mut block: BasicBlock,
scope: Option<region::Scope>,
expr_id: ExprId,
local_info: LocalInfo<'tcx>,
needs_temporary: NeedsTemporary,
) -> BlockAnd<Operand<'tcx>> {
let this = self;
let expr = &this.thir[expr_id];
if let ExprKind::Scope { region_scope, lint_level, value } = expr.kind {
let source_info = this.source_info(expr.span);
let region_scope = (region_scope, source_info);
return this.in_scope(region_scope, lint_level, |this| {
this.as_operand(block, scope, value, local_info, needs_temporary)
});
}
let category = Category::of(&expr.kind).unwrap();
debug!(?category, ?expr.kind);
match category {
Category::Constant
if matches!(needs_temporary, NeedsTemporary::No)
|| !expr.ty.needs_drop(this.tcx, this.param_env) =>
{
let constant = this.as_constant(expr);
block.and(Operand::Constant(Box::new(constant)))
}
Category::Constant | Category::Place | Category::Rvalue(..) => {
let operand = unpack!(block = this.as_temp(block, scope, expr_id, Mutability::Mut));
// Overwrite temp local info if we have something more interesting to record.
if !matches!(local_info, LocalInfo::Boring) {
let decl_info =
this.local_decls[operand].local_info.as_mut().assert_crate_local();
if let LocalInfo::Boring | LocalInfo::BlockTailTemp(_) = **decl_info {
**decl_info = local_info;
}
}
block.and(Operand::Move(Place::from(operand)))
}
}
}
pub(crate) fn as_call_operand(
&mut self,
mut block: BasicBlock,
scope: Option<region::Scope>,
expr_id: ExprId,
) -> BlockAnd<Operand<'tcx>> {
let this = self;
let expr = &this.thir[expr_id];
debug!("as_call_operand(block={:?}, expr={:?})", block, expr);
if let ExprKind::Scope { region_scope, lint_level, value } = expr.kind {
let source_info = this.source_info(expr.span);
let region_scope = (region_scope, source_info);
return this.in_scope(region_scope, lint_level, |this| {
this.as_call_operand(block, scope, value)
});
}
let tcx = this.tcx;
if tcx.features().unsized_fn_params {
let ty = expr.ty;
let param_env = this.param_env;
if !ty.is_sized(tcx, param_env) {
// !sized means !copy, so this is an unsized move
assert!(!ty.is_copy_modulo_regions(tcx, param_env));
// As described above, detect the case where we are passing a value of unsized
// type, and that value is coming from the deref of a box.
if let ExprKind::Deref { arg } = expr.kind {
// Generate let tmp0 = arg0
let operand = unpack!(block = this.as_temp(block, scope, arg, Mutability::Mut));
// Return the operand *tmp0 to be used as the call argument
let place = Place {
local: operand,
projection: tcx.mk_place_elems(&[PlaceElem::Deref]),
};
return block.and(Operand::Move(place));
}
}
}
this.as_operand(block, scope, expr_id, LocalInfo::Boring, NeedsTemporary::Maybe)
}
}