blob: e6099b98dc82bffab40cc89cb3088c70f5fd26d2 [file] [log] [blame]
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{struct_span_err, Applicability, StashKey};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit;
use rustc_hir::intravisit::Visitor;
use rustc_hir::Node;
use rustc_middle::hir::map::Map;
use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts, Subst};
use rustc_middle::ty::util::IntTypeExt;
use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt, TypeFoldable};
use rustc_session::parse::feature_err;
use rustc_span::symbol::{sym, Ident};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::traits;
use super::ItemCtxt;
use super::{bad_placeholder_type, is_suggestable_infer_ty};
pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
use rustc_hir::*;
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
let icx = ItemCtxt::new(tcx, def_id);
match tcx.hir().get(hir_id) {
Node::TraitItem(item) => match item.kind {
TraitItemKind::Fn(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_fn_def(def_id, substs)
}
TraitItemKind::Const(ref ty, body_id) => body_id
.and_then(|body_id| {
if is_suggestable_infer_ty(ty) {
Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
} else {
None
}
})
.unwrap_or_else(|| icx.to_ty(ty)),
TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
TraitItemKind::Type(_, None) => {
span_bug!(item.span, "associated type missing default");
}
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Fn(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_fn_def(def_id, substs)
}
ImplItemKind::Const(ref ty, body_id) => {
if is_suggestable_infer_ty(ty) {
infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
} else {
icx.to_ty(ty)
}
}
ImplItemKind::OpaqueTy(_) => {
if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
report_assoc_ty_on_inherent_impl(tcx, item.span);
}
find_opaque_ty_constraints(tcx, def_id)
}
ImplItemKind::TyAlias(ref ty) => {
if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
report_assoc_ty_on_inherent_impl(tcx, item.span);
}
icx.to_ty(ty)
}
},
Node::Item(item) => {
match item.kind {
ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
if is_suggestable_infer_ty(ty) {
infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
} else {
icx.to_ty(ty)
}
}
ItemKind::TyAlias(ref self_ty, _) | ItemKind::Impl { ref self_ty, .. } => {
icx.to_ty(self_ty)
}
ItemKind::Fn(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_fn_def(def_id, substs)
}
ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
let def = tcx.adt_def(def_id);
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_adt(def, substs)
}
ItemKind::OpaqueTy(OpaqueTy { impl_trait_fn: None, .. }) => {
find_opaque_ty_constraints(tcx, def_id)
}
// Opaque types desugared from `impl Trait`.
ItemKind::OpaqueTy(OpaqueTy { impl_trait_fn: Some(owner), origin, .. }) => {
let concrete_types = match origin {
OpaqueTyOrigin::FnReturn | OpaqueTyOrigin::AsyncFn => {
&tcx.mir_borrowck(owner).concrete_opaque_types
}
OpaqueTyOrigin::Misc => {
// We shouldn't leak borrowck results through impl trait in bindings.
// For example, we shouldn't be able to tell if `x` in
// `let x: impl Sized + 'a = &()` has type `&'static ()` or `&'a ()`.
&tcx.typeck_tables_of(owner).concrete_opaque_types
}
OpaqueTyOrigin::TypeAlias => {
span_bug!(item.span, "Type alias impl trait shouldn't have an owner")
}
};
let concrete_ty = concrete_types
.get(&def_id)
.map(|opaque| opaque.concrete_type)
.unwrap_or_else(|| {
tcx.sess.delay_span_bug(
DUMMY_SP,
&format!(
"owner {:?} has no opaque type for {:?} in its tables",
owner, def_id,
),
);
if tcx.typeck_tables_of(owner).tainted_by_errors {
// Some error in the
// owner fn prevented us from populating
// the `concrete_opaque_types` table.
tcx.types.err
} else {
// We failed to resolve the opaque type or it
// resolves to itself. Return the non-revealed
// type, which should result in E0720.
tcx.mk_opaque(
def_id,
InternalSubsts::identity_for_item(tcx, def_id),
)
}
});
debug!("concrete_ty = {:?}", concrete_ty);
if concrete_ty.has_erased_regions() {
// FIXME(impl_trait_in_bindings) Handle this case.
tcx.sess.span_fatal(
item.span,
"lifetimes in impl Trait types in bindings are not currently supported",
);
}
concrete_ty
}
ItemKind::Trait(..)
| ItemKind::TraitAlias(..)
| ItemKind::Mod(..)
| ItemKind::ForeignMod(..)
| ItemKind::GlobalAsm(..)
| ItemKind::ExternCrate(..)
| ItemKind::Use(..) => {
span_bug!(
item.span,
"compute_type_of_item: unexpected item type: {:?}",
item.kind
);
}
}
}
Node::ForeignItem(foreign_item) => match foreign_item.kind {
ForeignItemKind::Fn(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_fn_def(def_id, substs)
}
ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
ForeignItemKind::Type => tcx.mk_foreign(def_id),
},
Node::Ctor(&ref def) | Node::Variant(Variant { data: ref def, .. }) => match *def {
VariantData::Unit(..) | VariantData::Struct(..) => {
tcx.type_of(tcx.hir().get_parent_did(hir_id))
}
VariantData::Tuple(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
tcx.mk_fn_def(def_id, substs)
}
},
Node::Field(field) => icx.to_ty(&field.ty),
Node::Expr(&Expr { kind: ExprKind::Closure(.., gen), .. }) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id);
if let Some(movability) = gen {
tcx.mk_generator(def_id, substs, movability)
} else {
tcx.mk_closure(def_id, substs)
}
}
Node::AnonConst(_) => {
let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
match parent_node {
Node::Ty(&Ty { kind: TyKind::Array(_, ref constant), .. })
| Node::Ty(&Ty { kind: TyKind::Typeof(ref constant), .. })
| Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
if constant.hir_id == hir_id =>
{
tcx.types.usize
}
Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
}
Node::Ty(&Ty { kind: TyKind::Path(_), .. })
| Node::Expr(&Expr { kind: ExprKind::Struct(..), .. })
| Node::Expr(&Expr { kind: ExprKind::Path(_), .. })
| Node::TraitRef(..) => {
let path = match parent_node {
Node::Ty(&Ty { kind: TyKind::Path(QPath::Resolved(_, path)), .. })
| Node::Expr(&Expr {
kind:
ExprKind::Path(QPath::Resolved(_, path))
| ExprKind::Struct(&QPath::Resolved(_, path), ..),
..
})
| Node::TraitRef(&TraitRef { path, .. }) => &*path,
_ => {
tcx.sess.delay_span_bug(
DUMMY_SP,
&format!("unexpected const parent path {:?}", parent_node),
);
return tcx.types.err;
}
};
// We've encountered an `AnonConst` in some path, so we need to
// figure out which generic parameter it corresponds to and return
// the relevant type.
let (arg_index, segment) = path
.segments
.iter()
.filter_map(|seg| seg.args.as_ref().map(|args| (args.args, seg)))
.find_map(|(args, seg)| {
args.iter()
.filter(|arg| arg.is_const())
.enumerate()
.filter(|(_, arg)| arg.id() == hir_id)
.map(|(index, _)| (index, seg))
.next()
})
.unwrap_or_else(|| {
bug!("no arg matching AnonConst in path");
});
// Try to use the segment resolution if it is valid, otherwise we
// default to the path resolution.
let res = segment.res.filter(|&r| r != Res::Err).unwrap_or(path.res);
let generics = match res {
Res::Def(DefKind::Ctor(..), def_id) => {
tcx.generics_of(tcx.parent(def_id).unwrap())
}
Res::Def(_, def_id) => tcx.generics_of(def_id),
res => {
tcx.sess.delay_span_bug(
DUMMY_SP,
&format!(
"unexpected anon const res {:?} in path: {:?}",
res, path,
),
);
return tcx.types.err;
}
};
let ty = generics
.params
.iter()
.filter(|param| {
if let ty::GenericParamDefKind::Const = param.kind {
true
} else {
false
}
})
.nth(arg_index)
.map(|param| tcx.type_of(param.def_id));
if let Some(ty) = ty {
ty
} else {
// This is no generic parameter associated with the arg. This is
// probably from an extra arg where one is not needed.
tcx.sess.delay_span_bug(
DUMMY_SP,
&format!(
"missing generic parameter for `AnonConst`, parent: {:?}, res: {:?}",
parent_node, res
),
);
tcx.types.err
}
}
x => {
tcx.sess.delay_span_bug(
DUMMY_SP,
&format!("unexpected const parent in type_of_def_id(): {:?}", x),
);
tcx.types.err
}
}
}
Node::GenericParam(param) => match &param.kind {
GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
GenericParamKind::Const { ty: ref hir_ty, .. } => {
let ty = icx.to_ty(hir_ty);
if !tcx.features().const_compare_raw_pointers {
let err = match ty.peel_refs().kind {
ty::FnPtr(_) => Some("function pointers"),
ty::RawPtr(_) => Some("raw pointers"),
_ => None,
};
if let Some(unsupported_type) = err {
feature_err(
&tcx.sess.parse_sess,
sym::const_compare_raw_pointers,
hir_ty.span,
&format!(
"using {} as const generic parameters is unstable",
unsupported_type
),
)
.emit();
};
}
if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
.is_some()
{
struct_span_err!(
tcx.sess,
hir_ty.span,
E0741,
"the types of const generic parameters must derive `PartialEq` and `Eq`",
)
.span_label(
hir_ty.span,
format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
)
.emit();
}
ty
}
x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
},
x => {
bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
}
}
}
fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
use rustc_hir::{Expr, ImplItem, Item, TraitItem};
debug!("find_opaque_ty_constraints({:?})", def_id);
struct ConstraintLocator<'tcx> {
tcx: TyCtxt<'tcx>,
def_id: DefId,
// (first found type span, actual type, mapping from the opaque type's generic
// parameters to the concrete type's generic parameters)
//
// The mapping is an index for each use site of a generic parameter in the concrete type
//
// The indices index into the generic parameters on the opaque type.
found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
}
impl ConstraintLocator<'_> {
fn check(&mut self, def_id: DefId) {
// Don't try to check items that cannot possibly constrain the type.
if !self.tcx.has_typeck_tables(def_id) {
debug!(
"find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
self.def_id, def_id,
);
return;
}
// Calling `mir_borrowck` can lead to cycle errors through
// const-checking, avoid calling it if we don't have to.
if !self.tcx.typeck_tables_of(def_id).concrete_opaque_types.contains_key(&self.def_id) {
debug!(
"find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
self.def_id, def_id,
);
return;
}
// Use borrowck to get the type with unerased regions.
let ty = self.tcx.mir_borrowck(def_id).concrete_opaque_types.get(&self.def_id);
if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
debug!(
"find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
self.def_id, def_id, ty,
);
// FIXME(oli-obk): trace the actual span from inference to improve errors.
let span = self.tcx.def_span(def_id);
// used to quickly look up the position of a generic parameter
let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
// Skipping binder is ok, since we only use this to find generic parameters and
// their positions.
for (idx, subst) in substs.iter().enumerate() {
if let GenericArgKind::Type(ty) = subst.unpack() {
if let ty::Param(p) = ty.kind {
if index_map.insert(p, idx).is_some() {
// There was already an entry for `p`, meaning a generic parameter
// was used twice.
self.tcx.sess.span_err(
span,
&format!(
"defining opaque type use restricts opaque \
type by using the generic parameter `{}` twice",
p,
),
);
return;
}
} else {
self.tcx.sess.delay_span_bug(
span,
&format!(
"non-defining opaque ty use in defining scope: {:?}, {:?}",
concrete_type, substs,
),
);
}
}
}
// Compute the index within the opaque type for each generic parameter used in
// the concrete type.
let indices = concrete_type
.subst(self.tcx, substs)
.walk()
.filter_map(|t| match &t.kind {
ty::Param(p) => Some(*index_map.get(p).unwrap()),
_ => None,
})
.collect();
let is_param = |ty: Ty<'_>| match ty.kind {
ty::Param(_) => true,
_ => false,
};
let bad_substs: Vec<_> = substs
.iter()
.enumerate()
.filter_map(|(i, k)| {
if let GenericArgKind::Type(ty) = k.unpack() { Some((i, ty)) } else { None }
})
.filter(|(_, ty)| !is_param(ty))
.collect();
if !bad_substs.is_empty() {
let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
for (i, bad_subst) in bad_substs {
self.tcx.sess.span_err(
span,
&format!(
"defining opaque type use does not fully define opaque type: \
generic parameter `{}` is specified as concrete type `{}`",
identity_substs.type_at(i),
bad_subst
),
);
}
} else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
let mut ty = concrete_type.walk().fuse();
let mut p_ty = prev_ty.walk().fuse();
let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
// Type parameters are equal to any other type parameter for the purpose of
// concrete type equality, as it is possible to obtain the same type just
// by passing matching parameters to a function.
(ty::Param(_), ty::Param(_)) => true,
_ => t == p,
});
if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
debug!("find_opaque_ty_constraints: span={:?}", span);
// Found different concrete types for the opaque type.
let mut err = self.tcx.sess.struct_span_err(
span,
"concrete type differs from previous defining opaque type use",
);
err.span_label(
span,
format!("expected `{}`, got `{}`", prev_ty, concrete_type),
);
err.span_note(prev_span, "previous use here");
err.emit();
} else if indices != *prev_indices {
// Found "same" concrete types, but the generic parameter order differs.
let mut err = self.tcx.sess.struct_span_err(
span,
"concrete type's generic parameters differ from previous defining use",
);
use std::fmt::Write;
let mut s = String::new();
write!(s, "expected [").unwrap();
let list = |s: &mut String, indices: &Vec<usize>| {
let mut indices = indices.iter().cloned();
if let Some(first) = indices.next() {
write!(s, "`{}`", substs[first]).unwrap();
for i in indices {
write!(s, ", `{}`", substs[i]).unwrap();
}
}
};
list(&mut s, prev_indices);
write!(s, "], got [").unwrap();
list(&mut s, &indices);
write!(s, "]").unwrap();
err.span_label(span, s);
err.span_note(prev_span, "previous use here");
err.emit();
}
} else {
self.found = Some((span, concrete_type, indices));
}
} else {
debug!(
"find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
self.def_id, def_id,
);
}
}
}
impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
intravisit::NestedVisitorMap::All(self.tcx.hir())
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
if let hir::ExprKind::Closure(..) = ex.kind {
let def_id = self.tcx.hir().local_def_id(ex.hir_id);
self.check(def_id);
}
intravisit::walk_expr(self, ex);
}
fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
debug!("find_existential_constraints: visiting {:?}", it);
let def_id = self.tcx.hir().local_def_id(it.hir_id);
// The opaque type itself or its children are not within its reveal scope.
if def_id != self.def_id {
self.check(def_id);
intravisit::walk_item(self, it);
}
}
fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
debug!("find_existential_constraints: visiting {:?}", it);
let def_id = self.tcx.hir().local_def_id(it.hir_id);
// The opaque type itself or its children are not within its reveal scope.
if def_id != self.def_id {
self.check(def_id);
intravisit::walk_impl_item(self, it);
}
}
fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
debug!("find_existential_constraints: visiting {:?}", it);
let def_id = self.tcx.hir().local_def_id(it.hir_id);
self.check(def_id);
intravisit::walk_trait_item(self, it);
}
}
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
let scope = tcx.hir().get_defining_scope(hir_id);
let mut locator = ConstraintLocator { def_id, tcx, found: None };
debug!("find_opaque_ty_constraints: scope={:?}", scope);
if scope == hir::CRATE_HIR_ID {
intravisit::walk_crate(&mut locator, tcx.hir().krate());
} else {
debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
match tcx.hir().get(scope) {
// We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
// This allows our visitor to process the defining item itself, causing
// it to pick up any 'sibling' defining uses.
//
// For example, this code:
// ```
// fn foo() {
// type Blah = impl Debug;
// let my_closure = || -> Blah { true };
// }
// ```
//
// requires us to explicitly process `foo()` in order
// to notice the defining usage of `Blah`.
Node::Item(ref it) => locator.visit_item(it),
Node::ImplItem(ref it) => locator.visit_impl_item(it),
Node::TraitItem(ref it) => locator.visit_trait_item(it),
other => bug!("{:?} is not a valid scope for an opaque type item", other),
}
}
match locator.found {
Some((_, ty, _)) => ty,
None => {
let span = tcx.def_span(def_id);
tcx.sess.span_err(span, "could not find defining uses");
tcx.types.err
}
}
}
fn infer_placeholder_type(
tcx: TyCtxt<'_>,
def_id: DefId,
body_id: hir::BodyId,
span: Span,
item_ident: Ident,
) -> Ty<'_> {
let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
// If this came from a free `const` or `static mut?` item,
// then the user may have written e.g. `const A = 42;`.
// In this case, the parser has stashed a diagnostic for
// us to improve in typeck so we do that now.
match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
Some(mut err) => {
// The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
// We are typeck and have the real type, so remove that and suggest the actual type.
err.suggestions.clear();
err.span_suggestion(
span,
"provide a type for the item",
format!("{}: {}", item_ident, ty),
Applicability::MachineApplicable,
)
.emit();
}
None => {
let mut diag = bad_placeholder_type(tcx, vec![span]);
if ty != tcx.types.err {
diag.span_suggestion(
span,
"replace `_` with the correct type",
ty.to_string(),
Applicability::MaybeIncorrect,
);
}
diag.emit();
}
}
// Typeck doesn't expect erased regions to be returned from `type_of`.
tcx.fold_regions(&ty, &mut false, |r, _| match r {
ty::ReErased => tcx.lifetimes.re_static,
_ => r,
})
}
fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
struct_span_err!(
tcx.sess,
span,
E0202,
"associated types are not yet supported in inherent impls (see #8995)"
)
.emit();
}