blob: 27b55ecc72eef6419d9707aef0ac1d5c8c7a92c9 [file] [log] [blame]
//! Emulate x86 LLVM intrinsics
use rustc_ast::ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_target::asm::*;
use crate::inline_asm::{codegen_inline_asm_inner, CInlineAsmOperand};
use crate::intrinsics::*;
use crate::prelude::*;
pub(crate) fn codegen_x86_llvm_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
intrinsic: &str,
_args: GenericArgsRef<'tcx>,
args: &[Spanned<mir::Operand<'tcx>>],
ret: CPlace<'tcx>,
target: Option<BasicBlock>,
span: Span,
) {
match intrinsic {
"llvm.x86.sse2.pause" | "llvm.aarch64.isb" => {
// Spin loop hint
}
"llvm.x86.avx.vzeroupper" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroupper&ig_expand=7218
// Do nothing. It is a perf hint anyway.
}
// Used by is_x86_feature_detected!();
"llvm.x86.xgetbv" => {
intrinsic_args!(fx, args => (xcr_no); intrinsic);
let xcr_no = xcr_no.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(
"
xgetbv
// out = rdx << 32 | rax
shl rdx, 32
or rax, rdx
"
.to_string(),
)],
&[
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::cx)),
value: xcr_no,
},
CInlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax)),
late: true,
place: Some(ret),
},
CInlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx)),
late: true,
place: None,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sse3.ldu.dq" | "llvm.x86.avx.ldu.dq.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128&ig_expand=4009
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_lddqu_si256&ig_expand=4010
intrinsic_args!(fx, args => (ptr); intrinsic);
// FIXME correctly handle unalignedness
let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), ret.layout());
ret.write_cvalue(fx, val);
}
"llvm.x86.avx2.gather.d.d"
| "llvm.x86.avx2.gather.d.q"
| "llvm.x86.avx2.gather.d.ps"
| "llvm.x86.avx2.gather.d.pd"
| "llvm.x86.avx2.gather.d.d.256"
| "llvm.x86.avx2.gather.d.q.256"
| "llvm.x86.avx2.gather.d.ps.256"
| "llvm.x86.avx2.gather.d.pd.256"
| "llvm.x86.avx2.gather.q.d"
| "llvm.x86.avx2.gather.q.q"
| "llvm.x86.avx2.gather.q.ps"
| "llvm.x86.avx2.gather.q.pd"
| "llvm.x86.avx2.gather.q.d.256"
| "llvm.x86.avx2.gather.q.q.256"
| "llvm.x86.avx2.gather.q.ps.256"
| "llvm.x86.avx2.gather.q.pd.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_pd&ig_expand=3818
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_pd&ig_expand=3819
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_pd&ig_expand=3821
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_pd&ig_expand=3822
// ...
intrinsic_args!(fx, args => (src, ptr, index, mask, scale); intrinsic);
let (src_lane_count, src_lane_ty) = src.layout().ty.simd_size_and_type(fx.tcx);
let (index_lane_count, index_lane_ty) = index.layout().ty.simd_size_and_type(fx.tcx);
let (mask_lane_count, mask_lane_ty) = mask.layout().ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(src_lane_ty, ret_lane_ty);
assert!(index_lane_ty.is_integral());
assert_eq!(src_lane_count, mask_lane_count);
assert_eq!(src_lane_count, ret_lane_count);
let lane_clif_ty = fx.clif_type(ret_lane_ty).unwrap();
let index_lane_clif_ty = fx.clif_type(index_lane_ty).unwrap();
let mask_lane_clif_ty = fx.clif_type(mask_lane_ty).unwrap();
let ret_lane_layout = fx.layout_of(ret_lane_ty);
let ptr = ptr.load_scalar(fx);
let scale = scale.load_scalar(fx);
let scale = fx.bcx.ins().uextend(types::I64, scale);
for lane_idx in 0..std::cmp::min(src_lane_count, index_lane_count) {
let src_lane = src.value_lane(fx, lane_idx).load_scalar(fx);
let index_lane = index.value_lane(fx, lane_idx).load_scalar(fx);
let mask_lane = mask.value_lane(fx, lane_idx).load_scalar(fx);
let mask_lane =
fx.bcx.ins().bitcast(mask_lane_clif_ty.as_int(), MemFlags::new(), mask_lane);
let if_enabled = fx.bcx.create_block();
let if_disabled = fx.bcx.create_block();
let next = fx.bcx.create_block();
let res_lane = fx.bcx.append_block_param(next, lane_clif_ty);
let mask_lane = match mask_lane_clif_ty {
types::I32 | types::F32 => {
fx.bcx.ins().band_imm(mask_lane, 0x8000_0000u64 as i64)
}
types::I64 | types::F64 => {
fx.bcx.ins().band_imm(mask_lane, 0x8000_0000_0000_0000u64 as i64)
}
_ => unreachable!(),
};
fx.bcx.ins().brif(mask_lane, if_enabled, &[], if_disabled, &[]);
fx.bcx.seal_block(if_enabled);
fx.bcx.seal_block(if_disabled);
fx.bcx.switch_to_block(if_enabled);
let index_lane = if index_lane_clif_ty != types::I64 {
fx.bcx.ins().sextend(types::I64, index_lane)
} else {
index_lane
};
let offset = fx.bcx.ins().imul(index_lane, scale);
let lane_ptr = fx.bcx.ins().iadd(ptr, offset);
let res = fx.bcx.ins().load(lane_clif_ty, MemFlags::trusted(), lane_ptr, 0);
fx.bcx.ins().jump(next, &[res]);
fx.bcx.switch_to_block(if_disabled);
fx.bcx.ins().jump(next, &[src_lane]);
fx.bcx.seal_block(next);
fx.bcx.switch_to_block(next);
fx.bcx.ins().nop();
ret.place_lane(fx, lane_idx)
.write_cvalue(fx, CValue::by_val(res_lane, ret_lane_layout));
}
for lane_idx in std::cmp::min(src_lane_count, index_lane_count)..ret_lane_count {
let zero_lane = fx.bcx.ins().iconst(mask_lane_clif_ty.as_int(), 0);
let zero_lane = fx.bcx.ins().bitcast(mask_lane_clif_ty, MemFlags::new(), zero_lane);
ret.place_lane(fx, lane_idx)
.write_cvalue(fx, CValue::by_val(zero_lane, ret_lane_layout));
}
}
"llvm.x86.sse.add.ss" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss&ig_expand=171
intrinsic_args!(fx, args => (a, b); intrinsic);
assert_eq!(a.layout(), b.layout());
assert_eq!(a.layout(), ret.layout());
let layout = a.layout();
let (_, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
assert!(lane_ty.is_floating_point());
let ret_lane_layout = fx.layout_of(lane_ty);
ret.write_cvalue(fx, a);
let a_lane = a.value_lane(fx, 0).load_scalar(fx);
let b_lane = b.value_lane(fx, 0).load_scalar(fx);
let res = fx.bcx.ins().fadd(a_lane, b_lane);
let res_lane = CValue::by_val(res, ret_lane_layout);
ret.place_lane(fx, 0).write_cvalue(fx, res_lane);
}
"llvm.x86.sse.sqrt.ps" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps&ig_expand=6245
intrinsic_args!(fx, args => (a); intrinsic);
// FIXME use vector instructions when possible
simd_for_each_lane(fx, a, ret, &|fx, _lane_ty, _res_lane_ty, lane| {
fx.bcx.ins().sqrt(lane)
});
}
"llvm.x86.sse.max.ps" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps&ig_expand=4357
intrinsic_args!(fx, args => (a, b); intrinsic);
simd_pair_for_each_lane(
fx,
a,
b,
ret,
&|fx, _lane_ty, _res_lane_ty, a_lane, b_lane| fx.bcx.ins().fmax(a_lane, b_lane),
);
}
"llvm.x86.sse.min.ps" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps&ig_expand=4489
intrinsic_args!(fx, args => (a, b); intrinsic);
simd_pair_for_each_lane(
fx,
a,
b,
ret,
&|fx, _lane_ty, _res_lane_ty, a_lane, b_lane| fx.bcx.ins().fmin(a_lane, b_lane),
);
}
"llvm.x86.sse.cmp.ps" | "llvm.x86.sse2.cmp.pd" => {
let (x, y, kind) = match args {
[x, y, kind] => (x, y, kind),
_ => bug!("wrong number of args for intrinsic {intrinsic}"),
};
let x = codegen_operand(fx, &x.node);
let y = codegen_operand(fx, &y.node);
let kind = match &kind.node {
Operand::Constant(const_) => crate::constant::eval_mir_constant(fx, const_).0,
Operand::Copy(_) | Operand::Move(_) => unreachable!("{kind:?}"),
};
let flt_cc = match kind
.try_to_bits(Size::from_bytes(1))
.unwrap_or_else(|| panic!("kind not scalar: {:?}", kind))
.try_into()
.unwrap()
{
_CMP_EQ_OQ | _CMP_EQ_OS => FloatCC::Equal,
_CMP_LT_OS | _CMP_LT_OQ => FloatCC::LessThan,
_CMP_LE_OS | _CMP_LE_OQ => FloatCC::LessThanOrEqual,
_CMP_UNORD_Q | _CMP_UNORD_S => FloatCC::Unordered,
_CMP_NEQ_UQ | _CMP_NEQ_US => FloatCC::NotEqual,
_CMP_NLT_US | _CMP_NLT_UQ => FloatCC::UnorderedOrGreaterThanOrEqual,
_CMP_NLE_US | _CMP_NLE_UQ => FloatCC::UnorderedOrGreaterThan,
_CMP_ORD_Q | _CMP_ORD_S => FloatCC::Ordered,
_CMP_EQ_UQ | _CMP_EQ_US => FloatCC::UnorderedOrEqual,
_CMP_NGE_US | _CMP_NGE_UQ => FloatCC::UnorderedOrLessThan,
_CMP_NGT_US | _CMP_NGT_UQ => FloatCC::UnorderedOrLessThanOrEqual,
_CMP_FALSE_OQ | _CMP_FALSE_OS => todo!(),
_CMP_NEQ_OQ | _CMP_NEQ_OS => FloatCC::OrderedNotEqual,
_CMP_GE_OS | _CMP_GE_OQ => FloatCC::GreaterThanOrEqual,
_CMP_GT_OS | _CMP_GT_OQ => FloatCC::GreaterThan,
_CMP_TRUE_UQ | _CMP_TRUE_US => todo!(),
kind => unreachable!("kind {:?}", kind),
};
// Copied from stdarch
/// Equal (ordered, non-signaling)
const _CMP_EQ_OQ: i32 = 0x00;
/// Less-than (ordered, signaling)
const _CMP_LT_OS: i32 = 0x01;
/// Less-than-or-equal (ordered, signaling)
const _CMP_LE_OS: i32 = 0x02;
/// Unordered (non-signaling)
const _CMP_UNORD_Q: i32 = 0x03;
/// Not-equal (unordered, non-signaling)
const _CMP_NEQ_UQ: i32 = 0x04;
/// Not-less-than (unordered, signaling)
const _CMP_NLT_US: i32 = 0x05;
/// Not-less-than-or-equal (unordered, signaling)
const _CMP_NLE_US: i32 = 0x06;
/// Ordered (non-signaling)
const _CMP_ORD_Q: i32 = 0x07;
/// Equal (unordered, non-signaling)
const _CMP_EQ_UQ: i32 = 0x08;
/// Not-greater-than-or-equal (unordered, signaling)
const _CMP_NGE_US: i32 = 0x09;
/// Not-greater-than (unordered, signaling)
const _CMP_NGT_US: i32 = 0x0a;
/// False (ordered, non-signaling)
const _CMP_FALSE_OQ: i32 = 0x0b;
/// Not-equal (ordered, non-signaling)
const _CMP_NEQ_OQ: i32 = 0x0c;
/// Greater-than-or-equal (ordered, signaling)
const _CMP_GE_OS: i32 = 0x0d;
/// Greater-than (ordered, signaling)
const _CMP_GT_OS: i32 = 0x0e;
/// True (unordered, non-signaling)
const _CMP_TRUE_UQ: i32 = 0x0f;
/// Equal (ordered, signaling)
const _CMP_EQ_OS: i32 = 0x10;
/// Less-than (ordered, non-signaling)
const _CMP_LT_OQ: i32 = 0x11;
/// Less-than-or-equal (ordered, non-signaling)
const _CMP_LE_OQ: i32 = 0x12;
/// Unordered (signaling)
const _CMP_UNORD_S: i32 = 0x13;
/// Not-equal (unordered, signaling)
const _CMP_NEQ_US: i32 = 0x14;
/// Not-less-than (unordered, non-signaling)
const _CMP_NLT_UQ: i32 = 0x15;
/// Not-less-than-or-equal (unordered, non-signaling)
const _CMP_NLE_UQ: i32 = 0x16;
/// Ordered (signaling)
const _CMP_ORD_S: i32 = 0x17;
/// Equal (unordered, signaling)
const _CMP_EQ_US: i32 = 0x18;
/// Not-greater-than-or-equal (unordered, non-signaling)
const _CMP_NGE_UQ: i32 = 0x19;
/// Not-greater-than (unordered, non-signaling)
const _CMP_NGT_UQ: i32 = 0x1a;
/// False (ordered, signaling)
const _CMP_FALSE_OS: i32 = 0x1b;
/// Not-equal (ordered, signaling)
const _CMP_NEQ_OS: i32 = 0x1c;
/// Greater-than-or-equal (ordered, non-signaling)
const _CMP_GE_OQ: i32 = 0x1d;
/// Greater-than (ordered, non-signaling)
const _CMP_GT_OQ: i32 = 0x1e;
/// True (unordered, signaling)
const _CMP_TRUE_US: i32 = 0x1f;
simd_pair_for_each_lane(fx, x, y, ret, &|fx, lane_ty, res_lane_ty, x_lane, y_lane| {
let res_lane = match lane_ty.kind() {
ty::Float(_) => fx.bcx.ins().fcmp(flt_cc, x_lane, y_lane),
_ => unreachable!("{:?}", lane_ty),
};
bool_to_zero_or_max_uint(fx, res_lane_ty, res_lane)
});
}
"llvm.x86.ssse3.pshuf.b.128" | "llvm.x86.avx2.pshuf.b" => {
let (a, b) = match args {
[a, b] => (a, b),
_ => bug!("wrong number of args for intrinsic {intrinsic}"),
};
let a = codegen_operand(fx, &a.node);
let b = codegen_operand(fx, &b.node);
// Based on the pseudocode at https://github.com/rust-lang/stdarch/blob/1cfbca8b38fd9b4282b2f054f61c6ca69fc7ce29/crates/core_arch/src/x86/avx2.rs#L2319-L2332
let zero = fx.bcx.ins().iconst(types::I8, 0);
for i in 0..16 {
let b_lane = b.value_lane(fx, i).load_scalar(fx);
let is_zero = fx.bcx.ins().band_imm(b_lane, 0x80);
let a_idx = fx.bcx.ins().band_imm(b_lane, 0xf);
let a_idx = fx.bcx.ins().uextend(fx.pointer_type, a_idx);
let a_lane = a.value_lane_dyn(fx, a_idx).load_scalar(fx);
let res = fx.bcx.ins().select(is_zero, zero, a_lane);
ret.place_lane(fx, i).to_ptr().store(fx, res, MemFlags::trusted());
}
if intrinsic == "llvm.x86.avx2.pshuf.b" {
for i in 16..32 {
let b_lane = b.value_lane(fx, i).load_scalar(fx);
let is_zero = fx.bcx.ins().band_imm(b_lane, 0x80);
let b_lane_masked = fx.bcx.ins().band_imm(b_lane, 0xf);
let a_idx = fx.bcx.ins().iadd_imm(b_lane_masked, 16);
let a_idx = fx.bcx.ins().uextend(fx.pointer_type, a_idx);
let a_lane = a.value_lane_dyn(fx, a_idx).load_scalar(fx);
let res = fx.bcx.ins().select(is_zero, zero, a_lane);
ret.place_lane(fx, i).to_ptr().store(fx, res, MemFlags::trusted());
}
}
}
"llvm.x86.avx2.permd" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
intrinsic_args!(fx, args => (a, idx); intrinsic);
for j in 0..=7 {
let index = idx.value_typed_lane(fx, fx.tcx.types.u32, j).load_scalar(fx);
let index = fx.bcx.ins().uextend(fx.pointer_type, index);
let value = a.value_lane_dyn(fx, index).load_scalar(fx);
ret.place_typed_lane(fx, fx.tcx.types.u32, j).to_ptr().store(
fx,
value,
MemFlags::trusted(),
);
}
}
"llvm.x86.avx2.vperm2i128"
| "llvm.x86.avx.vperm2f128.ps.256"
| "llvm.x86.avx.vperm2f128.pd.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2x128_si256
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_ps
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_pd
let (a, b, imm8) = match args {
[a, b, imm8] => (a, b, imm8),
_ => bug!("wrong number of args for intrinsic {intrinsic}"),
};
let a = codegen_operand(fx, &a.node);
let b = codegen_operand(fx, &b.node);
let imm8 = codegen_operand(fx, &imm8.node).load_scalar(fx);
let a_low = a.value_typed_lane(fx, fx.tcx.types.u128, 0).load_scalar(fx);
let a_high = a.value_typed_lane(fx, fx.tcx.types.u128, 1).load_scalar(fx);
let b_low = b.value_typed_lane(fx, fx.tcx.types.u128, 0).load_scalar(fx);
let b_high = b.value_typed_lane(fx, fx.tcx.types.u128, 1).load_scalar(fx);
fn select4(
fx: &mut FunctionCx<'_, '_, '_>,
a_high: Value,
a_low: Value,
b_high: Value,
b_low: Value,
control: Value,
) -> Value {
let a_or_b = fx.bcx.ins().band_imm(control, 0b0010);
let high_or_low = fx.bcx.ins().band_imm(control, 0b0001);
let is_zero = fx.bcx.ins().band_imm(control, 0b1000);
let zero = fx.bcx.ins().iconst(types::I64, 0);
let zero = fx.bcx.ins().iconcat(zero, zero);
let res_a = fx.bcx.ins().select(high_or_low, a_high, a_low);
let res_b = fx.bcx.ins().select(high_or_low, b_high, b_low);
let res = fx.bcx.ins().select(a_or_b, res_b, res_a);
fx.bcx.ins().select(is_zero, zero, res)
}
let control0 = imm8;
let res_low = select4(fx, a_high, a_low, b_high, b_low, control0);
let control1 = fx.bcx.ins().ushr_imm(imm8, 4);
let res_high = select4(fx, a_high, a_low, b_high, b_low, control1);
ret.place_typed_lane(fx, fx.tcx.types.u128, 0).to_ptr().store(
fx,
res_low,
MemFlags::trusted(),
);
ret.place_typed_lane(fx, fx.tcx.types.u128, 1).to_ptr().store(
fx,
res_high,
MemFlags::trusted(),
);
}
"llvm.x86.ssse3.pabs.b.128" | "llvm.x86.ssse3.pabs.w.128" | "llvm.x86.ssse3.pabs.d.128" => {
intrinsic_args!(fx, args => (a); intrinsic);
simd_for_each_lane(fx, a, ret, &|fx, _lane_ty, _res_lane_ty, lane| {
fx.bcx.ins().iabs(lane)
});
}
"llvm.x86.sse2.cvttps2dq" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32&ig_expand=2429
intrinsic_args!(fx, args => (a); intrinsic);
let a = a.load_scalar(fx);
// Using inline asm instead of fcvt_to_sint_sat as unrepresentable values are turned
// into 0x80000000 for which Cranelift doesn't have a native instruction.
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("cvttps2dq xmm0, xmm0"))],
&[CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
}],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.addcarry.32" | "llvm.x86.addcarry.64" => {
intrinsic_args!(fx, args => (c_in, a, b); intrinsic);
let c_in = c_in.load_scalar(fx);
let (cb_out, c) = llvm_add_sub(fx, BinOp::Add, c_in, a, b);
let layout = fx.layout_of(Ty::new_tup(fx.tcx, &[fx.tcx.types.u8, a.layout().ty]));
let val = CValue::by_val_pair(cb_out, c, layout);
ret.write_cvalue(fx, val);
}
"llvm.x86.addcarryx.u32" | "llvm.x86.addcarryx.u64" => {
intrinsic_args!(fx, args => (c_in, a, b, out); intrinsic);
let c_in = c_in.load_scalar(fx);
let (cb_out, c) = llvm_add_sub(fx, BinOp::Add, c_in, a, b);
Pointer::new(out.load_scalar(fx)).store(fx, c, MemFlags::trusted());
ret.write_cvalue(fx, CValue::by_val(cb_out, fx.layout_of(fx.tcx.types.u8)));
}
"llvm.x86.subborrow.32" | "llvm.x86.subborrow.64" => {
intrinsic_args!(fx, args => (b_in, a, b); intrinsic);
let b_in = b_in.load_scalar(fx);
let (cb_out, c) = llvm_add_sub(fx, BinOp::Sub, b_in, a, b);
let layout = fx.layout_of(Ty::new_tup(fx.tcx, &[fx.tcx.types.u8, a.layout().ty]));
let val = CValue::by_val_pair(cb_out, c, layout);
ret.write_cvalue(fx, val);
}
"llvm.x86.sse2.pavg.b" | "llvm.x86.sse2.pavg.w" => {
intrinsic_args!(fx, args => (a, b); intrinsic);
// FIXME use vector instructions when possible
simd_pair_for_each_lane(
fx,
a,
b,
ret,
&|fx, _lane_ty, _res_lane_ty, a_lane, b_lane| {
// (a + b + 1) >> 1
let lane_ty = fx.bcx.func.dfg.value_type(a_lane);
let a_lane = fx.bcx.ins().uextend(lane_ty.double_width().unwrap(), a_lane);
let b_lane = fx.bcx.ins().uextend(lane_ty.double_width().unwrap(), b_lane);
let sum = fx.bcx.ins().iadd(a_lane, b_lane);
let num_plus_one = fx.bcx.ins().iadd_imm(sum, 1);
let res = fx.bcx.ins().ushr_imm(num_plus_one, 1);
fx.bcx.ins().ireduce(lane_ty, res)
},
);
}
"llvm.x86.sse2.psra.w" => {
intrinsic_args!(fx, args => (a, count); intrinsic);
let count_lane = count.force_stack(fx).0.load(fx, types::I64, MemFlags::trusted());
let lane_ty = fx.clif_type(a.layout().ty.simd_size_and_type(fx.tcx).1).unwrap();
let max_count = fx.bcx.ins().iconst(types::I64, i64::from(lane_ty.bits() - 1));
let saturated_count = fx.bcx.ins().umin(count_lane, max_count);
// FIXME use vector instructions when possible
simd_for_each_lane(fx, a, ret, &|fx, _lane_ty, _res_lane_ty, a_lane| {
fx.bcx.ins().sshr(a_lane, saturated_count)
});
}
"llvm.x86.sse2.psad.bw" | "llvm.x86.avx2.psad.bw" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8&ig_expand=5770
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sad_epu8&ig_expand=5771
intrinsic_args!(fx, args => (a, b); intrinsic);
assert_eq!(a.layout(), b.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_ty, fx.tcx.types.u8);
assert_eq!(ret_lane_ty, fx.tcx.types.u64);
assert_eq!(lane_count, ret_lane_count * 8);
let ret_lane_layout = fx.layout_of(fx.tcx.types.u64);
for out_lane_idx in 0..lane_count / 8 {
let mut lane_diff_acc = fx.bcx.ins().iconst(types::I64, 0);
for lane_idx in out_lane_idx * 8..out_lane_idx * 8 + 8 {
let a_lane = a.value_lane(fx, lane_idx).load_scalar(fx);
let a_lane = fx.bcx.ins().uextend(types::I16, a_lane);
let b_lane = b.value_lane(fx, lane_idx).load_scalar(fx);
let b_lane = fx.bcx.ins().uextend(types::I16, b_lane);
let lane_diff = fx.bcx.ins().isub(a_lane, b_lane);
let abs_lane_diff = fx.bcx.ins().iabs(lane_diff);
let abs_lane_diff = fx.bcx.ins().uextend(types::I64, abs_lane_diff);
lane_diff_acc = fx.bcx.ins().iadd(lane_diff_acc, abs_lane_diff);
}
let res_lane = CValue::by_val(lane_diff_acc, ret_lane_layout);
ret.place_lane(fx, out_lane_idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.ssse3.pmadd.ub.sw.128" | "llvm.x86.avx2.pmadd.ub.sw" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16&ig_expand=4267
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maddubs_epi16&ig_expand=4270
intrinsic_args!(fx, args => (a, b); intrinsic);
let (lane_count, lane_ty) = a.layout().ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_ty, fx.tcx.types.u8);
assert_eq!(ret_lane_ty, fx.tcx.types.i16);
assert_eq!(lane_count, ret_lane_count * 2);
let ret_lane_layout = fx.layout_of(fx.tcx.types.i16);
for out_lane_idx in 0..lane_count / 2 {
let a_lane0 = a.value_lane(fx, out_lane_idx * 2).load_scalar(fx);
let a_lane0 = fx.bcx.ins().uextend(types::I16, a_lane0);
let b_lane0 = b.value_lane(fx, out_lane_idx * 2).load_scalar(fx);
let b_lane0 = fx.bcx.ins().sextend(types::I16, b_lane0);
let a_lane1 = a.value_lane(fx, out_lane_idx * 2 + 1).load_scalar(fx);
let a_lane1 = fx.bcx.ins().uextend(types::I16, a_lane1);
let b_lane1 = b.value_lane(fx, out_lane_idx * 2 + 1).load_scalar(fx);
let b_lane1 = fx.bcx.ins().sextend(types::I16, b_lane1);
let mul0: Value = fx.bcx.ins().imul(a_lane0, b_lane0);
let mul1 = fx.bcx.ins().imul(a_lane1, b_lane1);
let (val, has_overflow) = fx.bcx.ins().sadd_overflow(mul0, mul1);
let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, mul1, 0);
let min = fx.bcx.ins().iconst(types::I16, i64::from(i16::MIN as u16));
let max = fx.bcx.ins().iconst(types::I16, i64::from(i16::MAX as u16));
let sat_val = fx.bcx.ins().select(rhs_ge_zero, max, min);
let res_lane = fx.bcx.ins().select(has_overflow, sat_val, val);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, out_lane_idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.sse2.pmadd.wd" | "llvm.x86.avx2.pmadd.wd" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16&ig_expand=4231
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_madd_epi16&ig_expand=4234
intrinsic_args!(fx, args => (a, b); intrinsic);
assert_eq!(a.layout(), b.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_ty, fx.tcx.types.i16);
assert_eq!(ret_lane_ty, fx.tcx.types.i32);
assert_eq!(lane_count, ret_lane_count * 2);
let ret_lane_layout = fx.layout_of(fx.tcx.types.i32);
for out_lane_idx in 0..lane_count / 2 {
let a_lane0 = a.value_lane(fx, out_lane_idx * 2).load_scalar(fx);
let a_lane0 = fx.bcx.ins().sextend(types::I32, a_lane0);
let b_lane0 = b.value_lane(fx, out_lane_idx * 2).load_scalar(fx);
let b_lane0 = fx.bcx.ins().sextend(types::I32, b_lane0);
let a_lane1 = a.value_lane(fx, out_lane_idx * 2 + 1).load_scalar(fx);
let a_lane1 = fx.bcx.ins().sextend(types::I32, a_lane1);
let b_lane1 = b.value_lane(fx, out_lane_idx * 2 + 1).load_scalar(fx);
let b_lane1 = fx.bcx.ins().sextend(types::I32, b_lane1);
let mul0: Value = fx.bcx.ins().imul(a_lane0, b_lane0);
let mul1 = fx.bcx.ins().imul(a_lane1, b_lane1);
let res_lane = fx.bcx.ins().iadd(mul0, mul1);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, out_lane_idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.ssse3.pmul.hr.sw.128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16&ig_expand=4782
intrinsic_args!(fx, args => (a, b); intrinsic);
assert_eq!(a.layout(), b.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_ty, fx.tcx.types.i16);
assert_eq!(ret_lane_ty, fx.tcx.types.i16);
assert_eq!(lane_count, ret_lane_count);
let ret_lane_layout = fx.layout_of(fx.tcx.types.i16);
for out_lane_idx in 0..lane_count {
let a_lane = a.value_lane(fx, out_lane_idx).load_scalar(fx);
let a_lane = fx.bcx.ins().sextend(types::I32, a_lane);
let b_lane = b.value_lane(fx, out_lane_idx).load_scalar(fx);
let b_lane = fx.bcx.ins().sextend(types::I32, b_lane);
let mul: Value = fx.bcx.ins().imul(a_lane, b_lane);
let shifted = fx.bcx.ins().ushr_imm(mul, 14);
let incremented = fx.bcx.ins().iadd_imm(shifted, 1);
let shifted_again = fx.bcx.ins().ushr_imm(incremented, 1);
let res_lane = fx.bcx.ins().ireduce(types::I16, shifted_again);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, out_lane_idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.sse2.packuswb.128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16&ig_expand=4903
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::U8, PackWidth::Sse);
}
"llvm.x86.sse2.packsswb.128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16&ig_expand=4848
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::S8, PackWidth::Sse);
}
"llvm.x86.avx2.packuswb" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi16&ig_expand=4906
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::U8, PackWidth::Avx);
}
"llvm.x86.avx2.packsswb" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi16&ig_expand=4851
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::S8, PackWidth::Avx);
}
"llvm.x86.sse41.packusdw" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32&ig_expand=4912
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::U16, PackWidth::Sse);
}
"llvm.x86.sse2.packssdw.128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32&ig_expand=4889
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::S16, PackWidth::Sse);
}
"llvm.x86.avx2.packusdw" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi32&ig_expand=4883
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::U16, PackWidth::Avx);
}
"llvm.x86.avx2.packssdw" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi32&ig_expand=4892
intrinsic_args!(fx, args => (a, b); intrinsic);
pack_instruction(fx, a, b, ret, PackSize::S16, PackWidth::Avx);
}
"llvm.x86.fma.vfmaddsub.ps"
| "llvm.x86.fma.vfmaddsub.pd"
| "llvm.x86.fma.vfmaddsub.ps.256"
| "llvm.x86.fma.vfmaddsub.pd.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmaddsub_ps&ig_expand=3205
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmaddsub_pd&ig_expand=3181
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmaddsub_ps&ig_expand=3209
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmaddsub_pd&ig_expand=3185
intrinsic_args!(fx, args => (a, b, c); intrinsic);
assert_eq!(a.layout(), b.layout());
assert_eq!(a.layout(), c.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert!(lane_ty.is_floating_point());
assert!(ret_lane_ty.is_floating_point());
assert_eq!(lane_count, ret_lane_count);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
for idx in 0..lane_count {
let a_lane = a.value_lane(fx, idx).load_scalar(fx);
let b_lane = b.value_lane(fx, idx).load_scalar(fx);
let c_lane = c.value_lane(fx, idx).load_scalar(fx);
let mul = fx.bcx.ins().fmul(a_lane, b_lane);
let res = if idx & 1 == 0 {
fx.bcx.ins().fsub(mul, c_lane)
} else {
fx.bcx.ins().fadd(mul, c_lane)
};
let res_lane = CValue::by_val(res, ret_lane_layout);
ret.place_lane(fx, idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.fma.vfmsubadd.ps"
| "llvm.x86.fma.vfmsubadd.pd"
| "llvm.x86.fma.vfmsubadd.ps.256"
| "llvm.x86.fma.vfmsubadd.pd.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsubadd_ps&ig_expand=3325
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsubadd_pd&ig_expand=3301
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsubadd_ps&ig_expand=3329
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsubadd_pd&ig_expand=3305
intrinsic_args!(fx, args => (a, b, c); intrinsic);
assert_eq!(a.layout(), b.layout());
assert_eq!(a.layout(), c.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert!(lane_ty.is_floating_point());
assert!(ret_lane_ty.is_floating_point());
assert_eq!(lane_count, ret_lane_count);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
for idx in 0..lane_count {
let a_lane = a.value_lane(fx, idx).load_scalar(fx);
let b_lane = b.value_lane(fx, idx).load_scalar(fx);
let c_lane = c.value_lane(fx, idx).load_scalar(fx);
let mul = fx.bcx.ins().fmul(a_lane, b_lane);
let res = if idx & 1 == 0 {
fx.bcx.ins().fadd(mul, c_lane)
} else {
fx.bcx.ins().fsub(mul, c_lane)
};
let res_lane = CValue::by_val(res, ret_lane_layout);
ret.place_lane(fx, idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.fma.vfnmadd.ps"
| "llvm.x86.fma.vfnmadd.pd"
| "llvm.x86.fma.vfnmadd.ps.256"
| "llvm.x86.fma.vfnmadd.pd.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_ps&ig_expand=3391
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_pd&ig_expand=3367
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmadd_ps&ig_expand=3395
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmadd_pd&ig_expand=3371
intrinsic_args!(fx, args => (a, b, c); intrinsic);
assert_eq!(a.layout(), b.layout());
assert_eq!(a.layout(), c.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert!(lane_ty.is_floating_point());
assert!(ret_lane_ty.is_floating_point());
assert_eq!(lane_count, ret_lane_count);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
for idx in 0..lane_count {
let a_lane = a.value_lane(fx, idx).load_scalar(fx);
let b_lane = b.value_lane(fx, idx).load_scalar(fx);
let c_lane = c.value_lane(fx, idx).load_scalar(fx);
let mul = fx.bcx.ins().fmul(a_lane, b_lane);
let neg_mul = fx.bcx.ins().fneg(mul);
let res = fx.bcx.ins().fadd(neg_mul, c_lane);
let res_lane = CValue::by_val(res, ret_lane_layout);
ret.place_lane(fx, idx).write_cvalue(fx, res_lane);
}
}
"llvm.x86.sse42.crc32.32.8"
| "llvm.x86.sse42.crc32.32.16"
| "llvm.x86.sse42.crc32.32.32"
| "llvm.x86.sse42.crc32.64.64" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=1419&text=_mm_crc32_u32
intrinsic_args!(fx, args => (crc, v); intrinsic);
let crc = crc.load_scalar(fx);
let v = v.load_scalar(fx);
let asm = match intrinsic {
"llvm.x86.sse42.crc32.32.8" => "crc32 eax, dl",
"llvm.x86.sse42.crc32.32.16" => "crc32 eax, dx",
"llvm.x86.sse42.crc32.32.32" => "crc32 eax, edx",
"llvm.x86.sse42.crc32.64.64" => "crc32 rax, rdx",
_ => unreachable!(),
};
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(asm.to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax)),
_late: true,
in_value: crc,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx)),
value: v,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sse42.pcmpestri128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri&ig_expand=939
intrinsic_args!(fx, args => (a, la, b, lb, _imm8); intrinsic);
let a = a.load_scalar(fx);
let la = la.load_scalar(fx);
let b = b.load_scalar(fx);
let lb = lb.load_scalar(fx);
let imm8 =
if let Some(imm8) = crate::constant::mir_operand_get_const_val(fx, &args[4].node) {
imm8
} else {
fx.tcx
.dcx()
.span_fatal(span, "Index argument for `_mm_cmpestri` is not a constant");
};
let imm8 = imm8.try_to_u8().unwrap_or_else(|_| panic!("kind not scalar: {:?}", imm8));
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("pcmpestri xmm0, xmm1, {imm8}"))],
&[
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
value: a,
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: b,
},
// Implicit argument to the pcmpestri intrinsic
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax)),
value: la,
},
// Implicit argument to the pcmpestri intrinsic
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx)),
value: lb,
},
// Implicit result of the pcmpestri intrinsic
CInlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::cx)),
late: true,
place: Some(ret),
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sse42.pcmpestrm128" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm&ig_expand=940
intrinsic_args!(fx, args => (a, la, b, lb, _imm8); intrinsic);
let a = a.load_scalar(fx);
let la = la.load_scalar(fx);
let b = b.load_scalar(fx);
let lb = lb.load_scalar(fx);
let imm8 =
if let Some(imm8) = crate::constant::mir_operand_get_const_val(fx, &args[4].node) {
imm8
} else {
fx.tcx
.dcx()
.span_fatal(span, "Index argument for `_mm_cmpestrm` is not a constant");
};
let imm8 = imm8.try_to_u8().unwrap_or_else(|_| panic!("kind not scalar: {:?}", imm8));
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("pcmpestrm xmm0, xmm1, {imm8}"))],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: b,
},
// Implicit argument to the pcmpestri intrinsic
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax)),
value: la,
},
// Implicit argument to the pcmpestri intrinsic
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx)),
value: lb,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.pclmulqdq" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128&ig_expand=772
intrinsic_args!(fx, args => (a, b, _imm8); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let imm8 =
if let Some(imm8) = crate::constant::mir_operand_get_const_val(fx, &args[2].node) {
imm8
} else {
fx.tcx.dcx().span_fatal(
span,
"Index argument for `_mm_clmulepi64_si128` is not a constant",
);
};
let imm8 = imm8.try_to_u8().unwrap_or_else(|_| panic!("kind not scalar: {:?}", imm8));
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("pclmulqdq xmm0, xmm1, {imm8}"))],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aeskeygenassist" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128&ig_expand=261
intrinsic_args!(fx, args => (a, _imm8); intrinsic);
let a = a.load_scalar(fx);
let imm8 =
if let Some(imm8) = crate::constant::mir_operand_get_const_val(fx, &args[1].node) {
imm8
} else {
fx.tcx.dcx().span_fatal(
span,
"Index argument for `_mm_aeskeygenassist_si128` is not a constant",
);
};
let imm8 = imm8.try_to_u8().unwrap_or_else(|_| panic!("kind not scalar: {:?}", imm8));
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("aeskeygenassist xmm0, xmm0, {imm8}"))],
&[CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
}],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aesimc" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128&ig_expand=260
intrinsic_args!(fx, args => (a); intrinsic);
let a = a.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("aesimc xmm0, xmm0".to_string())],
&[CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
}],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aesenc" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenc_si128&ig_expand=252
intrinsic_args!(fx, args => (a, round_key); intrinsic);
let a = a.load_scalar(fx);
let round_key = round_key.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("aesenc xmm0, xmm1".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: round_key,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aesenclast" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128&ig_expand=257
intrinsic_args!(fx, args => (a, round_key); intrinsic);
let a = a.load_scalar(fx);
let round_key = round_key.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("aesenclast xmm0, xmm1".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: round_key,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aesdec" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128&ig_expand=242
intrinsic_args!(fx, args => (a, round_key); intrinsic);
let a = a.load_scalar(fx);
let round_key = round_key.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("aesdec xmm0, xmm1".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: round_key,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.aesni.aesdeclast" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128&ig_expand=247
intrinsic_args!(fx, args => (a, round_key); intrinsic);
let a = a.load_scalar(fx);
let round_key = round_key.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("aesdeclast xmm0, xmm1".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
value: round_key,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha1rnds4" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1rnds4_epu32&ig_expand=5877
intrinsic_args!(fx, args => (a, b, _func); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let func = if let Some(func) =
crate::constant::mir_operand_get_const_val(fx, &args[2].node)
{
func
} else {
fx.tcx
.dcx()
.span_fatal(span, "Func argument for `_mm_sha1rnds4_epu32` is not a constant");
};
let func = func.try_to_u8().unwrap_or_else(|_| panic!("kind not scalar: {:?}", func));
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String(format!("sha1rnds4 xmm1, xmm2, {func}"))],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha1msg1" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg1_epu32&ig_expand=5874
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha1msg1 xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha1msg2" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg2_epu32&ig_expand=5875
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha1msg2 xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha1nexte" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1nexte_epu32&ig_expand=5876
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha1nexte xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha256rnds2" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256rnds2_epu32&ig_expand=5977
intrinsic_args!(fx, args => (a, b, k); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let k = k.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha256rnds2 xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
// Implicit argument to the sha256rnds2 instruction
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm0)),
value: k,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha256msg1" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg1_epu32&ig_expand=5975
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha256msg1 xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.sha256msg2" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg2_epu32&ig_expand=5976
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
codegen_inline_asm_inner(
fx,
&[InlineAsmTemplatePiece::String("sha256msg2 xmm1, xmm2".to_string())],
&[
CInlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm1)),
_late: true,
in_value: a,
out_place: Some(ret),
},
CInlineAsmOperand::In {
reg: InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::xmm2)),
value: b,
},
],
InlineAsmOptions::NOSTACK | InlineAsmOptions::PURE | InlineAsmOptions::NOMEM,
);
}
"llvm.x86.avx.ptestz.256" => {
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_si256&ig_expand=6945
intrinsic_args!(fx, args => (a, b); intrinsic);
assert_eq!(a.layout(), b.layout());
let layout = a.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_ty, fx.tcx.types.i64);
assert_eq!(ret.layout().ty, fx.tcx.types.i32);
assert_eq!(lane_count, 4);
let a_lane0 = a.value_lane(fx, 0).load_scalar(fx);
let a_lane1 = a.value_lane(fx, 1).load_scalar(fx);
let a_lane2 = a.value_lane(fx, 2).load_scalar(fx);
let a_lane3 = a.value_lane(fx, 3).load_scalar(fx);
let b_lane0 = b.value_lane(fx, 0).load_scalar(fx);
let b_lane1 = b.value_lane(fx, 1).load_scalar(fx);
let b_lane2 = b.value_lane(fx, 2).load_scalar(fx);
let b_lane3 = b.value_lane(fx, 3).load_scalar(fx);
let zero0 = fx.bcx.ins().band(a_lane0, b_lane0);
let zero1 = fx.bcx.ins().band(a_lane1, b_lane1);
let zero2 = fx.bcx.ins().band(a_lane2, b_lane2);
let zero3 = fx.bcx.ins().band(a_lane3, b_lane3);
let all_zero0 = fx.bcx.ins().bor(zero0, zero1);
let all_zero1 = fx.bcx.ins().bor(zero2, zero3);
let all_zero = fx.bcx.ins().bor(all_zero0, all_zero1);
let res = fx.bcx.ins().icmp_imm(IntCC::Equal, all_zero, 0);
let res = CValue::by_val(
fx.bcx.ins().uextend(types::I32, res),
fx.layout_of(fx.tcx.types.i32),
);
ret.write_cvalue(fx, res);
}
_ => {
fx.tcx
.dcx()
.warn(format!("unsupported x86 llvm intrinsic {}; replacing with trap", intrinsic));
crate::trap::trap_unimplemented(fx, intrinsic);
return;
}
}
let dest = target.expect("all llvm intrinsics used by stdlib should return");
let ret_block = fx.get_block(dest);
fx.bcx.ins().jump(ret_block, &[]);
}
// llvm.x86.avx2.vperm2i128
// llvm.x86.ssse3.pshuf.b.128
// llvm.x86.avx2.pshuf.b
fn llvm_add_sub<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
bin_op: BinOp,
cb_in: Value,
a: CValue<'tcx>,
b: CValue<'tcx>,
) -> (Value, Value) {
assert_eq!(a.layout().ty, b.layout().ty);
// c + carry -> c + first intermediate carry or borrow respectively
let int0 = crate::num::codegen_checked_int_binop(fx, bin_op, a, b);
let c = int0.value_field(fx, FieldIdx::ZERO);
let cb0 = int0.value_field(fx, FieldIdx::new(1)).load_scalar(fx);
// c + carry -> c + second intermediate carry or borrow respectively
let clif_ty = fx.clif_type(a.layout().ty).unwrap();
let cb_in_as_int = fx.bcx.ins().uextend(clif_ty, cb_in);
let cb_in_as_int = CValue::by_val(cb_in_as_int, fx.layout_of(a.layout().ty));
let int1 = crate::num::codegen_checked_int_binop(fx, bin_op, c, cb_in_as_int);
let (c, cb1) = int1.load_scalar_pair(fx);
// carry0 | carry1 -> carry or borrow respectively
let cb_out = fx.bcx.ins().bor(cb0, cb1);
(cb_out, c)
}
enum PackSize {
U8,
U16,
S8,
S16,
}
impl PackSize {
fn ret_clif_type(&self) -> Type {
match self {
Self::U8 | Self::S8 => types::I8,
Self::U16 | Self::S16 => types::I16,
}
}
fn src_clif_type(&self) -> Type {
match self {
Self::U8 | Self::S8 => types::I16,
Self::U16 | Self::S16 => types::I32,
}
}
fn src_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self {
Self::U8 | Self::S8 => tcx.types.i16,
Self::U16 | Self::S16 => tcx.types.i32,
}
}
fn ret_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self {
Self::U8 => tcx.types.u8,
Self::S8 => tcx.types.i8,
Self::U16 => tcx.types.u16,
Self::S16 => tcx.types.i16,
}
}
fn max(&self) -> i64 {
match self {
Self::U8 => u8::MAX as u64 as i64,
Self::S8 => i8::MAX as u8 as u64 as i64,
Self::U16 => u16::MAX as u64 as i64,
Self::S16 => i16::MAX as u64 as u64 as i64,
}
}
fn min(&self) -> i64 {
match self {
Self::U8 | Self::U16 => 0,
Self::S8 => i16::from(i8::MIN) as u16 as i64,
Self::S16 => i32::from(i16::MIN) as u32 as i64,
}
}
}
enum PackWidth {
Sse = 1,
Avx = 2,
}
impl PackWidth {
fn divisor(&self) -> u64 {
match self {
Self::Sse => 1,
Self::Avx => 2,
}
}
}
/// Implement an x86 pack instruction with the intrinsic `_mm{,256}pack{us,s}_epi{16,32}`.
/// Validated for correctness against LLVM, see commit `c8f5d35508e062bd2d95e6c03429bfec831db6d3`.
fn pack_instruction<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
a: CValue<'tcx>,
b: CValue<'tcx>,
ret: CPlace<'tcx>,
ret_size: PackSize,
width: PackWidth,
) {
assert_eq!(a.layout(), b.layout());
let layout = a.layout();
let (src_lane_count, src_lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(src_lane_ty, ret_size.src_ty(fx.tcx));
assert_eq!(ret_lane_ty, ret_size.ret_ty(fx.tcx));
assert_eq!(src_lane_count * 2, ret_lane_count);
let min = fx.bcx.ins().iconst(ret_size.src_clif_type(), ret_size.min());
let max = fx.bcx.ins().iconst(ret_size.src_clif_type(), ret_size.max());
let ret_lane_layout = fx.layout_of(ret_size.ret_ty(fx.tcx));
let mut round = |source: CValue<'tcx>, source_offset: u64, dest_offset: u64| {
let step_amount = src_lane_count / width.divisor();
let dest_offset = step_amount * dest_offset;
for idx in 0..step_amount {
let lane = source.value_lane(fx, step_amount * source_offset + idx).load_scalar(fx);
let sat = fx.bcx.ins().smax(lane, min);
let sat = match ret_size {
PackSize::U8 | PackSize::U16 => fx.bcx.ins().umin(sat, max),
PackSize::S8 | PackSize::S16 => fx.bcx.ins().smin(sat, max),
};
let res = fx.bcx.ins().ireduce(ret_size.ret_clif_type(), sat);
let res_lane = CValue::by_val(res, ret_lane_layout);
ret.place_lane(fx, dest_offset + idx).write_cvalue(fx, res_lane);
}
};
round(a, 0, 0);
round(b, 0, 1);
if let PackWidth::Avx = width {
round(a, 1, 2);
round(b, 1, 3);
}
}