blob: 8609ba410394fcf9e23bd6fbcaeb4bc33f8edd06 [file] [log] [blame]
use expect_test::expect;
use crate::tests::check;
use super::{check_infer, check_no_mismatches, check_types};
#[test]
fn infer_slice_method() {
check_types(
r#"
impl<T> [T] {
#[rustc_allow_incoherent_impl]
fn foo(&self) -> T {
loop {}
}
}
fn test(x: &[u8]) {
<[_]>::foo(x);
//^^^^^^^^^^^^^ u8
}
"#,
);
}
#[test]
fn cross_crate_primitive_method() {
check_types(
r#"
//- /main.rs crate:main deps:other_crate
fn test() {
let x = 1f32;
x.foo();
} //^^^^^^^ f32
//- /lib.rs crate:other_crate
mod foo {
impl f32 {
#[rustc_allow_incoherent_impl]
pub fn foo(self) -> f32 { 0. }
}
}
"#,
);
}
#[test]
fn infer_array_inherent_impl() {
check_types(
r#"
impl<T, const N: usize> [T; N] {
#[rustc_allow_incoherent_impl]
fn foo(&self) -> T {
loop {}
}
}
fn test(x: &[u8; 0]) {
<[_; 0]>::foo(x);
//^^^^^^^^^^^^^^^^ u8
}
"#,
);
}
#[test]
fn infer_associated_method_struct() {
check_infer(
r#"
struct A { x: u32 }
impl A {
fn new() -> A {
A { x: 0 }
}
}
fn test() {
let a = A::new();
a.x;
}
"#,
expect![[r#"
48..74 '{ ... }': A
58..68 'A { x: 0 }': A
65..66 '0': u32
87..121 '{ ...a.x; }': ()
97..98 'a': A
101..107 'A::new': fn new() -> A
101..109 'A::new()': A
115..116 'a': A
115..118 'a.x': u32
"#]],
);
}
#[test]
fn infer_associated_method_struct_in_local_scope() {
check_infer(
r#"
fn mismatch() {
struct A;
impl A {
fn from(_: i32, _: i32) -> Self {
A
}
}
let _a = A::from(1, 2);
}
"#,
expect![[r#"
14..146 '{ ... 2); }': ()
125..127 '_a': A
130..137 'A::from': fn from(i32, i32) -> A
130..143 'A::from(1, 2)': A
138..139 '1': i32
141..142 '2': i32
60..61 '_': i32
68..69 '_': i32
84..109 '{ ... }': A
98..99 'A': A
"#]],
);
}
#[test]
fn infer_associated_method_enum() {
check_infer(
r#"
enum A { B, C }
impl A {
pub fn b() -> A {
A::B
}
pub fn c() -> A {
A::C
}
}
fn test() {
let a = A::b();
a;
let c = A::c();
c;
}
"#,
expect![[r#"
46..66 '{ ... }': A
56..60 'A::B': A
87..107 '{ ... }': A
97..101 'A::C': A
120..177 '{ ... c; }': ()
130..131 'a': A
134..138 'A::b': fn b() -> A
134..140 'A::b()': A
146..147 'a': A
157..158 'c': A
161..165 'A::c': fn c() -> A
161..167 'A::c()': A
173..174 'c': A
"#]],
);
}
#[test]
fn infer_associated_method_with_modules() {
check_infer(
r#"
mod a {
pub struct A;
impl A { pub fn thing() -> A { A {} }}
}
mod b {
pub struct B;
impl B { pub fn thing() -> u32 { 99 }}
pub mod c {
pub struct C;
impl C { pub fn thing() -> C { C {} }}
}
}
use b::c;
fn test() {
let x = a::A::thing();
let y = b::B::thing();
let z = c::C::thing();
}
"#,
expect![[r#"
59..67 '{ A {} }': A
61..65 'A {}': A
133..139 '{ 99 }': u32
135..137 '99': u32
217..225 '{ C {} }': C
219..223 'C {}': C
256..340 '{ ...g(); }': ()
266..267 'x': A
270..281 'a::A::thing': fn thing() -> A
270..283 'a::A::thing()': A
293..294 'y': u32
297..308 'b::B::thing': fn thing() -> u32
297..310 'b::B::thing()': u32
320..321 'z': C
324..335 'c::C::thing': fn thing() -> C
324..337 'c::C::thing()': C
"#]],
);
}
#[test]
fn infer_associated_method_generics() {
check_infer(
r#"
struct Gen<T> {
val: T
}
impl<T> Gen<T> {
pub fn make(val: T) -> Gen<T> {
Gen { val }
}
}
fn test() {
let a = Gen::make(0u32);
}
"#,
expect![[r#"
63..66 'val': T
81..108 '{ ... }': Gen<T>
91..102 'Gen { val }': Gen<T>
97..100 'val': T
122..154 '{ ...32); }': ()
132..133 'a': Gen<u32>
136..145 'Gen::make': fn make<u32>(u32) -> Gen<u32>
136..151 'Gen::make(0u32)': Gen<u32>
146..150 '0u32': u32
"#]],
);
}
#[test]
fn infer_associated_method_generics_without_args() {
check_infer(
r#"
struct Gen<T> {
val: T
}
impl<T> Gen<T> {
pub fn make() -> Gen<T> {
loop { }
}
}
fn test() {
let a = Gen::<u32>::make();
}
"#,
expect![[r#"
75..99 '{ ... }': Gen<T>
85..93 'loop { }': !
90..93 '{ }': ()
113..148 '{ ...e(); }': ()
123..124 'a': Gen<u32>
127..143 'Gen::<...::make': fn make<u32>() -> Gen<u32>
127..145 'Gen::<...make()': Gen<u32>
"#]],
);
}
#[test]
fn infer_associated_method_generics_2_type_params_without_args() {
check_infer(
r#"
struct Gen<T, U> {
val: T,
val2: U,
}
impl<T> Gen<u32, T> {
pub fn make() -> Gen<u32,T> {
loop { }
}
}
fn test() {
let a = Gen::<u32, u64>::make();
}
"#,
expect![[r#"
101..125 '{ ... }': Gen<u32, T>
111..119 'loop { }': !
116..119 '{ }': ()
139..179 '{ ...e(); }': ()
149..150 'a': Gen<u32, u64>
153..174 'Gen::<...::make': fn make<u64>() -> Gen<u32, u64>
153..176 'Gen::<...make()': Gen<u32, u64>
"#]],
);
}
#[test]
fn cross_crate_associated_method_call() {
check_types(
r#"
//- /main.rs crate:main deps:other_crate
fn test() {
let x = other_crate::foo::S::thing();
x;
} //^ i128
//- /lib.rs crate:other_crate
pub mod foo {
pub struct S;
impl S {
pub fn thing() -> i128 { 0 }
}
}
"#,
);
}
#[test]
fn infer_trait_method_simple() {
// the trait implementation is intentionally incomplete -- it shouldn't matter
check_types(
r#"
trait Trait1 {
fn method(&self) -> u32;
}
struct S1;
impl Trait1 for S1 {}
trait Trait2 {
fn method(&self) -> i128;
}
struct S2;
impl Trait2 for S2 {}
fn test() {
S1.method();
//^^^^^^^^^^^ u32
S2.method(); // -> i128
//^^^^^^^^^^^ i128
}
"#,
);
}
#[test]
fn infer_trait_method_scoped() {
// the trait implementation is intentionally incomplete -- it shouldn't matter
check_types(
r#"
struct S;
mod foo {
pub trait Trait1 {
fn method(&self) -> u32;
}
impl Trait1 for super::S {}
}
mod bar {
pub trait Trait2 {
fn method(&self) -> i128;
}
impl Trait2 for super::S {}
}
mod foo_test {
use super::S;
use super::foo::Trait1;
fn test() {
S.method();
//^^^^^^^^^^ u32
}
}
mod bar_test {
use super::S;
use super::bar::Trait2;
fn test() {
S.method();
//^^^^^^^^^^ i128
}
}
"#,
);
}
#[test]
fn infer_trait_method_multiple_mutable_reference() {
check_types(
r#"
trait Trait {
fn method(&mut self) -> i32 { 5 }
}
struct S;
impl Trait for &mut &mut S {}
fn test() {
let s = &mut &mut &mut S;
s.method();
//^^^^^^^^^^ i32
}
"#,
);
}
#[test]
fn infer_trait_method_generic_1() {
// the trait implementation is intentionally incomplete -- it shouldn't matter
check_types(
r#"
trait Trait<T> {
fn method(&self) -> T;
}
struct S;
impl Trait<u32> for S {}
fn test() {
S.method();
//^^^^^^^^^^ u32
}
"#,
);
}
#[test]
fn infer_trait_method_generic_more_params() {
// the trait implementation is intentionally incomplete -- it shouldn't matter
check_types(
r#"
trait Trait<T1, T2, T3> {
fn method1(&self) -> (T1, T2, T3);
fn method2(&self) -> (T3, T2, T1);
}
struct S1;
impl Trait<u8, u16, u32> for S1 {}
struct S2;
impl<T> Trait<i8, i16, T> for S2 {}
fn test() {
S1.method1();
//^^^^^^^^^^^^ (u8, u16, u32)
S1.method2();
//^^^^^^^^^^^^ (u32, u16, u8)
S2.method1();
//^^^^^^^^^^^^ (i8, i16, {unknown})
S2.method2();
//^^^^^^^^^^^^ ({unknown}, i16, i8)
}
"#,
);
}
#[test]
fn infer_trait_method_generic_2() {
// the trait implementation is intentionally incomplete -- it shouldn't matter
check_types(
r#"
trait Trait<T> {
fn method(&self) -> T;
}
struct S<T>(T);
impl<U> Trait<U> for S<U> {}
fn test() {
S(1u32).method();
//^^^^^^^^^^^^^^^^ u32
}
"#,
);
}
#[test]
fn infer_trait_assoc_method() {
check_infer(
r#"
trait Default {
fn default() -> Self;
}
struct S;
impl Default for S {}
fn test() {
let s1: S = Default::default();
let s2 = S::default();
let s3 = <S as Default>::default();
}
"#,
expect![[r#"
86..192 '{ ...t(); }': ()
96..98 's1': S
104..120 'Defaul...efault': fn default<S>() -> S
104..122 'Defaul...ault()': S
132..134 's2': S
137..147 'S::default': fn default<S>() -> S
137..149 'S::default()': S
159..161 's3': S
164..187 '<S as ...efault': fn default<S>() -> S
164..189 '<S as ...ault()': S
"#]],
);
}
#[test]
fn infer_trait_assoc_method_generics_1() {
check_infer(
r#"
trait Trait<T> {
fn make() -> T;
}
struct S;
impl Trait<u32> for S {}
struct G<T>;
impl<T> Trait<T> for G<T> {}
fn test() {
let a = S::make();
let b = G::<u64>::make();
let c: f64 = G::make();
}
"#,
expect![[r#"
126..210 '{ ...e(); }': ()
136..137 'a': u32
140..147 'S::make': fn make<S, u32>() -> u32
140..149 'S::make()': u32
159..160 'b': u64
163..177 'G::<u64>::make': fn make<G<u64>, u64>() -> u64
163..179 'G::<u6...make()': u64
189..190 'c': f64
198..205 'G::make': fn make<G<f64>, f64>() -> f64
198..207 'G::make()': f64
"#]],
);
}
#[test]
fn infer_trait_assoc_method_generics_2() {
check_infer(
r#"
trait Trait<T> {
fn make<U>() -> (T, U);
}
struct S;
impl Trait<u32> for S {}
struct G<T>;
impl<T> Trait<T> for G<T> {}
fn test() {
let a = S::make::<i64>();
let b: (_, i64) = S::make();
let c = G::<u32>::make::<i64>();
let d: (u32, _) = G::make::<i64>();
let e: (u32, i64) = G::make();
}
"#,
expect![[r#"
134..312 '{ ...e(); }': ()
144..145 'a': (u32, i64)
148..162 'S::make::<i64>': fn make<S, u32, i64>() -> (u32, i64)
148..164 'S::mak...i64>()': (u32, i64)
174..175 'b': (u32, i64)
188..195 'S::make': fn make<S, u32, i64>() -> (u32, i64)
188..197 'S::make()': (u32, i64)
207..208 'c': (u32, i64)
211..232 'G::<u3...:<i64>': fn make<G<u32>, u32, i64>() -> (u32, i64)
211..234 'G::<u3...i64>()': (u32, i64)
244..245 'd': (u32, i64)
258..272 'G::make::<i64>': fn make<G<u32>, u32, i64>() -> (u32, i64)
258..274 'G::mak...i64>()': (u32, i64)
284..285 'e': (u32, i64)
300..307 'G::make': fn make<G<u32>, u32, i64>() -> (u32, i64)
300..309 'G::make()': (u32, i64)
"#]],
);
}
#[test]
fn infer_trait_assoc_method_generics_3() {
check_infer(
r#"
trait Trait<T> {
fn make() -> (Self, T);
}
struct S<T>;
impl Trait<i64> for S<i32> {}
fn test() {
let a = S::make();
}
"#,
expect![[r#"
100..126 '{ ...e(); }': ()
110..111 'a': (S<i32>, i64)
114..121 'S::make': fn make<S<i32>, i64>() -> (S<i32>, i64)
114..123 'S::make()': (S<i32>, i64)
"#]],
);
}
#[test]
fn infer_trait_assoc_method_generics_4() {
check_infer(
r#"
trait Trait<T> {
fn make() -> (Self, T);
}
struct S<T>;
impl Trait<i64> for S<u64> {}
impl Trait<i32> for S<u32> {}
fn test() {
let a: (S<u64>, _) = S::make();
let b: (_, i32) = S::make();
}
"#,
expect![[r#"
130..202 '{ ...e(); }': ()
140..141 'a': (S<u64>, i64)
157..164 'S::make': fn make<S<u64>, i64>() -> (S<u64>, i64)
157..166 'S::make()': (S<u64>, i64)
176..177 'b': (S<u32>, i32)
190..197 'S::make': fn make<S<u32>, i32>() -> (S<u32>, i32)
190..199 'S::make()': (S<u32>, i32)
"#]],
);
}
#[test]
fn infer_trait_assoc_method_generics_5() {
check_infer(
r#"
trait Trait<T> {
fn make<U>() -> (Self, T, U);
}
struct S<T>;
impl Trait<i64> for S<u64> {}
fn test() {
let a = <S as Trait<i64>>::make::<u8>();
let b: (S<u64>, _, _) = Trait::<i64>::make::<u8>();
}
"#,
expect![[r#"
106..210 '{ ...>(); }': ()
116..117 'a': (S<u64>, i64, u8)
120..149 '<S as ...::<u8>': fn make<S<u64>, i64, u8>() -> (S<u64>, i64, u8)
120..151 '<S as ...<u8>()': (S<u64>, i64, u8)
161..162 'b': (S<u64>, i64, u8)
181..205 'Trait:...::<u8>': fn make<S<u64>, i64, u8>() -> (S<u64>, i64, u8)
181..207 'Trait:...<u8>()': (S<u64>, i64, u8)
"#]],
);
}
#[test]
fn infer_call_trait_method_on_generic_param_1() {
check_infer(
r#"
trait Trait {
fn method(&self) -> u32;
}
fn test<T: Trait>(t: T) {
t.method();
}
"#,
expect![[r#"
29..33 'self': &Self
63..64 't': T
69..88 '{ ...d(); }': ()
75..76 't': T
75..85 't.method()': u32
"#]],
);
}
#[test]
fn infer_call_trait_method_on_generic_param_2() {
check_infer(
r#"
trait Trait<T> {
fn method(&self) -> T;
}
fn test<U, T: Trait<U>>(t: T) {
t.method();
}
"#,
expect![[r#"
32..36 'self': &Self
70..71 't': T
76..95 '{ ...d(); }': ()
82..83 't': T
82..92 't.method()': U
"#]],
);
}
#[test]
fn infer_with_multiple_trait_impls() {
check_infer(
r#"
trait Into<T> {
fn into(self) -> T;
}
struct S;
impl Into<u32> for S {}
impl Into<u64> for S {}
fn test() {
let x: u32 = S.into();
let y: u64 = S.into();
let z = Into::<u64>::into(S);
}
"#,
expect![[r#"
28..32 'self': Self
110..201 '{ ...(S); }': ()
120..121 'x': u32
129..130 'S': S
129..137 'S.into()': u32
147..148 'y': u64
156..157 'S': S
156..164 'S.into()': u64
174..175 'z': u64
178..195 'Into::...::into': fn into<S, u64>(S) -> u64
178..198 'Into::...nto(S)': u64
196..197 'S': S
"#]],
);
}
#[test]
fn method_resolution_unify_impl_self_type() {
check_types(
r#"
struct S<T>;
impl S<u32> { fn foo(&self) -> u8 { 0 } }
impl S<i32> { fn foo(&self) -> i8 { 0 } }
fn test() { (S::<u32>.foo(), S::<i32>.foo()); }
//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (u8, i8)
"#,
);
}
#[test]
fn method_resolution_trait_before_autoref() {
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl S { fn foo(&self) -> i8 { 0 } }
impl Trait for S { fn foo(self) -> u128 { 0 } }
fn test() { S.foo(); }
//^^^^^^^ u128
"#,
);
}
#[test]
fn method_resolution_by_value_before_autoref() {
check_types(
r#"
trait Clone { fn clone(&self) -> Self; }
struct S;
impl Clone for S {}
impl Clone for &S {}
fn test() { (S.clone(), (&S).clone(), (&&S).clone()); }
//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (S, S, &S)
"#,
);
}
#[test]
fn method_resolution_trait_before_autoderef() {
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl S { fn foo(self) -> i8 { 0 } }
impl Trait for &S { fn foo(self) -> u128 { 0 } }
fn test() { (&S).foo(); }
//^^^^^^^^^^ u128
"#,
);
}
#[test]
fn method_resolution_impl_before_trait() {
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl S { fn foo(self) -> i8 { 0 } }
impl Trait for S { fn foo(self) -> u128 { 0 } }
fn test() { S.foo(); }
//^^^^^^^ i8
"#,
);
}
#[test]
fn method_resolution_impl_ref_before_trait() {
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl S { fn foo(&self) -> i8 { 0 } }
impl Trait for &S { fn foo(self) -> u128 { 0 } }
fn test() { S.foo(); }
//^^^^^^^ i8
"#,
);
}
#[test]
fn method_resolution_trait_autoderef() {
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl Trait for S { fn foo(self) -> u128 { 0 } }
fn test() { (&S).foo(); }
//^^^^^^^^^^ u128
"#,
);
}
#[test]
fn method_resolution_unsize_array() {
check_types(
r#"
//- minicore: slice
fn test() {
let a = [1, 2, 3];
a.len();
} //^^^^^^^ usize
"#,
);
}
#[test]
fn method_resolution_trait_from_prelude() {
check_types(
r#"
//- /main.rs edition:2018 crate:main deps:core
struct S;
impl Clone for S {}
fn test() {
S.clone();
//^^^^^^^^^ S
}
//- /lib.rs crate:core
pub mod prelude {
pub mod rust_2018 {
pub trait Clone {
fn clone(&self) -> Self;
}
}
}
"#,
);
}
#[test]
fn method_resolution_where_clause_for_unknown_trait() {
// The blanket impl currently applies because we ignore the unresolved where clause
check_types(
r#"
trait Trait { fn foo(self) -> u128; }
struct S;
impl<T> Trait for T where T: UnknownTrait {}
fn test() { (&S).foo(); }
//^^^^^^^^^^ u128
"#,
);
}
#[test]
fn method_resolution_where_clause_not_met() {
// The blanket impl shouldn't apply because we can't prove S: Clone
// This is also to make sure that we don't resolve to the foo method just
// because that's the only method named foo we can find, which would make
// the below tests not work
check_types(
r#"
trait Clone {}
trait Trait { fn foo(self) -> u128; }
struct S;
impl<T> Trait for T where T: Clone {}
fn test() { (&S).foo(); }
//^^^^^^^^^^ {unknown}
"#,
);
}
#[test]
fn method_resolution_where_clause_inline_not_met() {
// The blanket impl shouldn't apply because we can't prove S: Clone
check_types(
r#"
trait Clone {}
trait Trait { fn foo(self) -> u128; }
struct S;
impl<T: Clone> Trait for T {}
fn test() { (&S).foo(); }
//^^^^^^^^^^ {unknown}
"#,
);
}
#[test]
fn method_resolution_where_clause_1() {
check_types(
r#"
trait Clone {}
trait Trait { fn foo(self) -> u128; }
struct S;
impl Clone for S {}
impl<T> Trait for T where T: Clone {}
fn test() { S.foo(); }
//^^^^^^^ u128
"#,
);
}
#[test]
fn method_resolution_where_clause_2() {
check_types(
r#"
trait Into<T> { fn into(self) -> T; }
trait From<T> { fn from(other: T) -> Self; }
struct S1;
struct S2;
impl From<S2> for S1 {}
impl<T, U> Into<U> for T where U: From<T> {}
fn test() { S2.into(); }
//^^^^^^^^^ {unknown}
"#,
);
}
#[test]
fn method_resolution_where_clause_inline() {
check_types(
r#"
trait Into<T> { fn into(self) -> T; }
trait From<T> { fn from(other: T) -> Self; }
struct S1;
struct S2;
impl From<S2> for S1 {}
impl<T, U: From<T>> Into<U> for T {}
fn test() { S2.into(); }
//^^^^^^^^^ {unknown}
"#,
);
}
#[test]
fn method_resolution_overloaded_method() {
check_types(
r#"
struct Wrapper<T>(T);
struct Foo<T>(T);
struct Bar<T>(T);
impl<T> Wrapper<Foo<T>> {
pub fn new(foo_: T) -> Self {
Wrapper(Foo(foo_))
}
}
impl<T> Wrapper<Bar<T>> {
pub fn new(bar_: T) -> Self {
Wrapper(Bar(bar_))
}
}
fn main() {
let a = Wrapper::<Foo<f32>>::new(1.0);
let b = Wrapper::<Bar<f32>>::new(1.0);
(a, b);
//^^^^^^ (Wrapper<Foo<f32>>, Wrapper<Bar<f32>>)
}
"#,
);
}
#[test]
fn method_resolution_overloaded_const() {
cov_mark::check!(const_candidate_self_type_mismatch);
check_types(
r#"
struct Wrapper<T>(T);
struct Foo<T>(T);
struct Bar<T>(T);
impl<T> Wrapper<Foo<T>> {
pub const VALUE: Foo<T>;
}
impl<T> Wrapper<Bar<T>> {
pub const VALUE: Bar<T>;
}
fn main() {
let a = Wrapper::<Foo<f32>>::VALUE;
let b = Wrapper::<Bar<f32>>::VALUE;
(a, b);
//^^^^^^ (Foo<f32>, Bar<f32>)
}
"#,
);
}
#[test]
fn explicit_fn_once_call_fn_item() {
check_types(
r#"
//- minicore: fn
fn foo() {}
fn test() { foo.call_once(); }
//^^^^^^^^^^^^^^^ ()
"#,
);
}
#[test]
fn super_trait_impl_return_trait_method_resolution() {
check_infer(
r#"
//- minicore: sized
trait Base {
fn foo(self) -> usize;
}
trait Super : Base {}
fn base1() -> impl Base { loop {} }
fn super1() -> impl Super { loop {} }
fn test(base2: impl Base, super2: impl Super) {
base1().foo();
super1().foo();
base2.foo();
super2.foo();
}
"#,
expect![[r#"
24..28 'self': Self
90..101 '{ loop {} }': !
92..99 'loop {}': !
97..99 '{}': ()
128..139 '{ loop {} }': !
130..137 'loop {}': !
135..137 '{}': ()
149..154 'base2': impl Base
167..173 'super2': impl Super
187..264 '{ ...o(); }': ()
193..198 'base1': fn base1() -> impl Base
193..200 'base1()': impl Base
193..206 'base1().foo()': usize
212..218 'super1': fn super1() -> impl Super
212..220 'super1()': impl Super
212..226 'super1().foo()': usize
232..237 'base2': impl Base
232..243 'base2.foo()': usize
249..255 'super2': impl Super
249..261 'super2.foo()': usize
"#]],
);
}
#[test]
fn method_resolution_non_parameter_type() {
check_types(
r#"
mod a {
pub trait Foo {
fn foo(&self);
}
}
struct Wrapper<T>(T);
fn foo<T>(t: Wrapper<T>)
where
Wrapper<T>: a::Foo,
{
t.foo();
} //^^^^^^^ {unknown}
"#,
);
}
#[test]
fn method_resolution_3373() {
check_types(
r#"
struct A<T>(T);
impl A<i32> {
fn from(v: i32) -> A<i32> { A(v) }
}
fn main() {
A::from(3);
} //^^^^^^^^^^ A<i32>
"#,
);
}
#[test]
fn method_resolution_slow() {
// this can get quite slow if we set the solver size limit too high
check_types(
r#"
trait SendX {}
struct S1; impl SendX for S1 {}
struct S2; impl SendX for S2 {}
struct U1;
trait Trait { fn method(self); }
struct X1<A, B> {}
impl<A, B> SendX for X1<A, B> where A: SendX, B: SendX {}
struct S<B, C> {}
trait FnX {}
impl<B, C> Trait for S<B, C> where C: FnX, B: SendX {}
fn test() { (S {}).method(); }
//^^^^^^^^^^^^^^^ ()
"#,
);
}
#[test]
fn dyn_trait_super_trait_not_in_scope() {
check_infer(
r#"
mod m {
pub trait SuperTrait {
fn foo(&self) -> u32 { 0 }
}
}
trait Trait: m::SuperTrait {}
struct S;
impl m::SuperTrait for S {}
impl Trait for S {}
fn test(d: &dyn Trait) {
d.foo();
}
"#,
expect![[r#"
51..55 'self': &Self
64..69 '{ 0 }': u32
66..67 '0': u32
176..177 'd': &dyn Trait
191..207 '{ ...o(); }': ()
197..198 'd': &dyn Trait
197..204 'd.foo()': u32
"#]],
);
}
#[test]
fn method_resolution_foreign_opaque_type() {
check_infer(
r#"
extern "C" {
type S;
fn f() -> &'static S;
}
impl S {
fn foo(&self) -> bool {
true
}
}
fn test() {
let s = unsafe { f() };
s.foo();
}
"#,
expect![[r#"
75..79 'self': &S
89..109 '{ ... }': bool
99..103 'true': bool
123..167 '{ ...o(); }': ()
133..134 's': &S
137..151 'unsafe { f() }': &S
146..147 'f': fn f() -> &S
146..149 'f()': &S
157..158 's': &S
157..164 's.foo()': bool
"#]],
);
}
#[test]
fn method_with_allocator_box_self_type() {
check_types(
r#"
struct Slice<T> {}
struct Box<T, A> {}
impl<T> Slice<T> {
pub fn into_vec<A>(self: Box<Self, A>) { }
}
fn main() {
let foo: Slice<u32>;
foo.into_vec(); // we shouldn't crash on this at least
} //^^^^^^^^^^^^^^ {unknown}
"#,
);
}
#[test]
fn inherent_method_deref_raw() {
check_types(
r#"
struct Val;
impl Val {
pub fn method(self: *const Val) -> u32 {
0
}
}
fn main() {
let foo: *const Val;
foo.method();
// ^^^^^^^^^^^^ u32
}
"#,
);
}
#[test]
fn inherent_method_ref_self_deref_raw() {
check_types(
r#"
struct Val;
impl Val {
pub fn method(&self) -> u32 {
0
}
}
fn main() {
let foo: *const Val;
foo.method();
// ^^^^^^^^^^^^ {unknown}
}
"#,
);
}
#[test]
fn trait_method_deref_raw() {
check_types(
r#"
trait Trait {
fn method(self: *const Self) -> u32;
}
struct Val;
impl Trait for Val {
fn method(self: *const Self) -> u32 {
0
}
}
fn main() {
let foo: *const Val;
foo.method();
// ^^^^^^^^^^^^ u32
}
"#,
);
}
#[test]
fn method_on_dyn_impl() {
check_types(
r#"
trait Foo {}
impl Foo for u32 {}
impl dyn Foo + '_ {
pub fn dyn_foo(&self) -> u32 {
0
}
}
fn main() {
let f = &42u32 as &dyn Foo;
f.dyn_foo();
// ^^^^^^^^^^^ u32
}
"#,
);
}
#[test]
fn dyn_trait_method_priority() {
check_types(
r#"
//- minicore: from
trait Trait {
fn into(&self) -> usize { 0 }
}
fn foo(a: &dyn Trait) {
let _ = a.into();
//^usize
}
"#,
);
}
#[test]
fn trait_method_priority_for_placeholder_type() {
check_types(
r#"
//- minicore: from
trait Trait {
fn into(&self) -> usize { 0 }
}
fn foo<T: Trait>(a: &T) {
let _ = a.into();
//^usize
}
"#,
);
}
#[test]
fn autoderef_visibility_field() {
check(
r#"
//- minicore: deref
mod a {
pub struct Foo(pub char);
pub struct Bar(i32);
impl Bar {
pub fn new() -> Self {
Self(0)
}
}
impl core::ops::Deref for Bar {
type Target = Foo;
fn deref(&self) -> &Foo {
&Foo('z')
}
}
}
mod b {
fn foo() {
let x = super::a::Bar::new().0;
// ^^^^^^^^^^^^^^^^^^^^ adjustments: Deref(Some(OverloadedDeref(Some(Not))))
// ^^^^^^^^^^^^^^^^^^^^^^ type: char
}
}
"#,
)
}
#[test]
fn autoderef_visibility_method() {
cov_mark::check!(autoderef_candidate_not_visible);
check(
r#"
//- minicore: deref
mod a {
pub struct Foo(pub char);
impl Foo {
pub fn mango(&self) -> char {
self.0
}
}
pub struct Bar(i32);
impl Bar {
pub fn new() -> Self {
Self(0)
}
fn mango(&self) -> i32 {
self.0
}
}
impl core::ops::Deref for Bar {
type Target = Foo;
fn deref(&self) -> &Foo {
&Foo('z')
}
}
}
mod b {
fn foo() {
let x = super::a::Bar::new().mango();
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ type: char
}
}
"#,
)
}
#[test]
fn trait_vs_private_inherent_const() {
cov_mark::check!(const_candidate_not_visible);
check(
r#"
mod a {
pub struct Foo;
impl Foo {
const VALUE: u32 = 2;
}
pub trait Trait {
const VALUE: usize;
}
impl Trait for Foo {
const VALUE: usize = 3;
}
fn foo() {
let x = Foo::VALUE;
// ^^^^^^^^^^ type: u32
}
}
use a::Trait;
fn foo() {
let x = a::Foo::VALUE;
// ^^^^^^^^^^^^^ type: usize
}
"#,
)
}
#[test]
fn trait_impl_in_unnamed_const() {
check_types(
r#"
struct S;
trait Tr {
fn method(&self) -> u16;
}
const _: () = {
impl Tr for S {}
};
fn f() {
S.method();
//^^^^^^^^^^ u16
}
"#,
);
}
#[test]
fn inherent_impl_in_unnamed_const() {
check_types(
r#"
struct S;
const _: () = {
impl S {
fn method(&self) -> u16 { 0 }
pub(super) fn super_method(&self) -> u16 { 0 }
pub(crate) fn crate_method(&self) -> u16 { 0 }
pub fn pub_method(&self) -> u16 { 0 }
}
};
fn f() {
S.method();
//^^^^^^^^^^ u16
S.super_method();
//^^^^^^^^^^^^^^^^ u16
S.crate_method();
//^^^^^^^^^^^^^^^^ u16
S.pub_method();
//^^^^^^^^^^^^^^ u16
}
"#,
);
}
#[test]
fn resolve_const_generic_array_methods() {
check_types(
r#"
#[lang = "array"]
impl<T, const N: usize> [T; N] {
#[rustc_allow_incoherent_impl]
pub fn map<F, U>(self, f: F) -> [U; N]
where
F: FnMut(T) -> U,
{ loop {} }
}
#[lang = "slice"]
impl<T> [T] {
#[rustc_allow_incoherent_impl]
pub fn map<F, U>(self, f: F) -> &[U]
where
F: FnMut(T) -> U,
{ loop {} }
}
fn f() {
let v = [1, 2].map::<_, usize>(|x| -> x * 2);
v;
//^ [usize; 2]
}
"#,
);
}
#[test]
fn resolve_const_generic_method() {
check_types(
r#"
struct Const<const N: usize>;
#[lang = "array"]
impl<T, const N: usize> [T; N] {
#[rustc_allow_incoherent_impl]
pub fn my_map<F, U, const X: usize>(self, f: F, c: Const<X>) -> [U; X]
where
F: FnMut(T) -> U,
{ loop {} }
}
#[lang = "slice"]
impl<T> [T] {
#[rustc_allow_incoherent_impl]
pub fn my_map<F, const X: usize, U>(self, f: F, c: Const<X>) -> &[U]
where
F: FnMut(T) -> U,
{ loop {} }
}
fn f<const C: usize, P>() {
let v = [1, 2].my_map::<_, (), 12>(|x| -> x * 2, Const::<12>);
v;
//^ [(); 12]
let v = [1, 2].my_map::<_, P, C>(|x| -> x * 2, Const::<C>);
v;
//^ [P; C]
}
"#,
);
}
#[test]
fn const_generic_type_alias() {
check_types(
r#"
struct Const<const N: usize>;
type U2 = Const<2>;
type U5 = Const<5>;
impl U2 {
fn f(self) -> Const<12> {
loop {}
}
}
impl U5 {
fn f(self) -> Const<15> {
loop {}
}
}
fn f(x: U2) {
let y = x.f();
//^ Const<12>
}
"#,
);
}
#[test]
fn skip_array_during_method_dispatch() {
check_types(
r#"
//- /main2018.rs crate:main2018 deps:core edition:2018
use core::IntoIterator;
fn f() {
let v = [4].into_iter();
v;
//^ &i32
let a = [0, 1].into_iter();
a;
//^ &i32
}
//- /main2021.rs crate:main2021 deps:core edition:2021
use core::IntoIterator;
fn f() {
let v = [4].into_iter();
v;
//^ i32
let a = [0, 1].into_iter();
a;
//^ &i32
}
//- /core.rs crate:core
#[rustc_skip_array_during_method_dispatch]
pub trait IntoIterator {
type Out;
fn into_iter(self) -> Self::Out;
}
impl<T> IntoIterator for [T; 1] {
type Out = T;
fn into_iter(self) -> Self::Out { loop {} }
}
impl<'a, T> IntoIterator for &'a [T] {
type Out = &'a T;
fn into_iter(self) -> Self::Out { loop {} }
}
"#,
);
}
#[test]
fn sized_blanket_impl() {
check_infer(
r#"
//- minicore: sized
trait Foo { fn foo() -> u8; }
impl<T: Sized> Foo for T {}
fn f<S: Sized, T, U: ?Sized>() {
u32::foo;
S::foo;
T::foo;
U::foo;
<[u32]>::foo;
}
"#,
expect![[r#"
89..160 '{ ...foo; }': ()
95..103 'u32::foo': fn foo<u32>() -> u8
109..115 'S::foo': fn foo<S>() -> u8
121..127 'T::foo': fn foo<T>() -> u8
133..139 'U::foo': {unknown}
145..157 '<[u32]>::foo': {unknown}
"#]],
);
}
#[test]
fn local_impl() {
check_types(
r#"
fn main() {
struct SomeStruct(i32);
impl SomeStruct {
fn is_even(&self) -> bool {
self.0 % 2 == 0
}
}
let o = SomeStruct(3);
let is_even = o.is_even();
// ^^^^^^^ bool
}
"#,
);
}
#[test]
fn deref_fun_1() {
check_types(
r#"
//- minicore: deref
struct A<T, U>(T, U);
struct B<T>(T);
struct C<T>(T);
impl<T> core::ops::Deref for A<B<T>, u32> {
type Target = B<T>;
fn deref(&self) -> &B<T> { &self.0 }
}
impl core::ops::Deref for B<isize> {
type Target = C<isize>;
fn deref(&self) -> &C<isize> { loop {} }
}
impl<T: Copy> C<T> {
fn thing(&self) -> T { self.0 }
}
fn make<T>() -> T { loop {} }
fn test() {
let a1 = A(make(), make());
let _: usize = (*a1).0;
a1;
//^^ A<B<usize>, u32>
let a2 = A(make(), make());
a2.thing();
//^^^^^^^^^^ isize
a2;
//^^ A<B<isize>, u32>
}
"#,
);
}
#[test]
fn deref_fun_2() {
check_types(
r#"
//- minicore: deref
struct A<T, U>(T, U);
struct B<T>(T);
struct C<T>(T);
impl<T> core::ops::Deref for A<B<T>, u32> {
type Target = B<T>;
fn deref(&self) -> &B<T> { &self.0 }
}
impl core::ops::Deref for B<isize> {
type Target = C<isize>;
fn deref(&self) -> &C<isize> { loop {} }
}
impl<T> core::ops::Deref for A<C<T>, i32> {
type Target = C<T>;
fn deref(&self) -> &C<T> { &self.0 }
}
impl<T: Copy> C<T> {
fn thing(&self) -> T { self.0 }
}
fn make<T>() -> T { loop {} }
fn test() {
let a1 = A(make(), 1u32);
a1.thing();
a1;
//^^ A<B<isize>, u32>
let a2 = A(make(), 1i32);
let _: &str = a2.thing();
a2;
//^^ A<C<&str>, i32>
}
"#,
);
}
#[test]
fn deref_into_inference_var() {
check_types(
r#"
//- minicore:deref
struct A<T>(T);
impl core::ops::Deref for A<u32> {}
impl A<i32> { fn foo(&self) {} }
fn main() {
A(0).foo();
//^^^^^^^^^^ ()
}
"#,
);
}
#[test]
fn receiver_adjustment_autoref() {
check(
r#"
struct Foo;
impl Foo {
fn foo(&self) {}
}
fn test() {
Foo.foo();
//^^^ adjustments: Borrow(Ref(Not))
(&Foo).foo();
// ^^^^ adjustments: Deref(None), Borrow(Ref(Not))
}
"#,
);
}
#[test]
fn receiver_adjustment_unsize_array() {
check(
r#"
//- minicore: slice
fn test() {
let a = [1, 2, 3];
a.len();
} //^ adjustments: Borrow(Ref(Not)), Pointer(Unsize)
"#,
);
}
#[test]
fn bad_inferred_reference_1() {
check_no_mismatches(
r#"
//- minicore: sized
pub trait Into<T>: Sized {
fn into(self) -> T;
}
impl<T> Into<T> for T {
fn into(self) -> T { self }
}
trait ExactSizeIterator {
fn len(&self) -> usize;
}
pub struct Foo;
impl Foo {
fn len(&self) -> usize { 0 }
}
pub fn test(generic_args: impl Into<Foo>) {
let generic_args = generic_args.into();
generic_args.len();
let _: Foo = generic_args;
}
"#,
);
}
#[test]
fn bad_inferred_reference_2() {
check_no_mismatches(
r#"
//- minicore: deref
trait ExactSizeIterator {
fn len(&self) -> usize;
}
pub struct Foo;
impl Foo {
fn len(&self) -> usize { 0 }
}
pub fn test() {
let generic_args;
generic_args.len();
let _: Foo = generic_args;
}
"#,
);
}
#[test]
fn resolve_minicore_iterator() {
check_types(
r#"
//- minicore: iterators, sized
fn foo() {
let m = core::iter::repeat(()).filter_map(|()| Some(92)).next();
} //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Option<i32>
"#,
);
}
#[test]
fn primitive_assoc_fn_shadowed_by_use() {
check_types(
r#"
//- /lib.rs crate:lib deps:core
use core::u16;
fn f() -> u16 {
let x = u16::from_le_bytes();
x
//^ u16
}
//- /core.rs crate:core
pub mod u16 {}
impl u16 {
pub fn from_le_bytes() -> Self { 0 }
}
"#,
)
}
#[test]
fn with_impl_bounds() {
check_types(
r#"
trait Trait {}
struct Foo<T>(T);
impl Trait for isize {}
impl<T: Trait> Foo<T> {
fn foo() -> isize { 0 }
fn bar(&self) -> isize { 0 }
}
impl Foo<()> {
fn foo() {}
fn bar(&self) {}
}
fn f() {
let _ = Foo::<isize>::foo();
//^isize
let _ = Foo(0isize).bar();
//^isize
let _ = Foo::<()>::foo();
//^()
let _ = Foo(()).bar();
//^()
let _ = Foo::<usize>::foo();
//^{unknown}
let _ = Foo(0usize).bar();
//^{unknown}
}
fn g<T: Trait>(a: T) {
let _ = Foo::<T>::foo();
//^isize
let _ = Foo(a).bar();
//^isize
}
"#,
);
}
#[test]
fn incoherent_impls() {
check(
r#"
//- minicore: error, send
pub struct Box<T>(T);
use core::error::Error;
impl dyn Error {
#[rustc_allow_incoherent_impl]
pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
loop {}
}
}
impl dyn Error + Send {
#[rustc_allow_incoherent_impl]
/// Attempts to downcast the box to a concrete type.
pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
let err: Box<dyn Error> = self;
// ^^^^ expected Box<dyn Error>, got Box<dyn Error + Send>
// FIXME, type mismatch should not occur
<dyn Error>::downcast(err).map_err(|_| loop {})
//^^^^^^^^^^^^^^^^^^^^^ type: fn downcast<{unknown}>(Box<dyn Error>) -> Result<Box<{unknown}>, Box<dyn Error>>
}
}
"#,
);
}
#[test]
fn fallback_private_methods() {
check(
r#"
mod module {
pub struct Struct;
impl Struct {
fn func(&self) {}
}
}
fn foo() {
let s = module::Struct;
s.func();
//^^^^^^^^ type: ()
}
"#,
);
}
#[test]
fn box_deref_is_builtin() {
check(
r#"
//- minicore: deref
use core::ops::Deref;
#[lang = "owned_box"]
struct Box<T>(*mut T);
impl<T> Box<T> {
fn new(t: T) -> Self {
loop {}
}
}
impl<T> Deref for Box<T> {
type Target = T;
fn deref(&self) -> &Self::Target;
}
struct Foo;
impl Foo {
fn foo(&self) {}
}
fn test() {
Box::new(Foo).foo();
//^^^^^^^^^^^^^ adjustments: Deref(None), Borrow(Ref(Not))
}
"#,
);
}
#[test]
fn manually_drop_deref_is_not_builtin() {
check(
r#"
//- minicore: manually_drop, deref
struct Foo;
impl Foo {
fn foo(&self) {}
}
use core::mem::ManuallyDrop;
fn test() {
ManuallyDrop::new(Foo).foo();
//^^^^^^^^^^^^^^^^^^^^^^ adjustments: Deref(Some(OverloadedDeref(Some(Not)))), Borrow(Ref(Not))
}
"#,
);
}