blob: 8f6a069a7db54e365c4f9d6f82ba9d16f6a92877 [file] [log] [blame]
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use rustc_apfloat::ieee::{Double, Single};
use rustc_apfloat::Float;
use rustc_ast::attr;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedIndexMultiMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::{GeneratorKind, Node};
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::hir::place::PlaceBase as HirPlaceBase;
use rustc_middle::middle::region;
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::*;
use rustc_middle::thir::{
self, BindingMode, Expr, ExprId, LintLevel, LocalVarId, Param, ParamId, PatKind, Thir,
};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_span::Symbol;
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi;
use super::lints;
pub(crate) fn mir_built(
tcx: TyCtxt<'_>,
def: LocalDefId,
) -> &rustc_data_structures::steal::Steal<Body<'_>> {
tcx.alloc_steal_mir(mir_build(tcx, def))
}
/// Construct the MIR for a given `DefId`.
fn mir_build(tcx: TyCtxt<'_>, def: LocalDefId) -> Body<'_> {
// Ensure unsafeck and abstract const building is ran before we steal the THIR.
tcx.ensure_with_value().thir_check_unsafety(def);
tcx.ensure_with_value().thir_abstract_const(def);
if let Err(e) = tcx.check_match(def) {
return construct_error(tcx, def, e);
}
let body = match tcx.thir_body(def) {
Err(error_reported) => construct_error(tcx, def, error_reported),
Ok((thir, expr)) => {
// We ran all queries that depended on THIR at the beginning
// of `mir_build`, so now we can steal it
let thir = thir.steal();
tcx.ensure().check_match(def);
// this must run before MIR dump, because
// "not all control paths return a value" is reported here.
//
// maybe move the check to a MIR pass?
tcx.ensure().check_liveness(def);
match thir.body_type {
thir::BodyTy::Fn(fn_sig) => construct_fn(tcx, def, &thir, expr, fn_sig),
thir::BodyTy::Const(ty) => construct_const(tcx, def, &thir, expr, ty),
}
}
};
lints::check(tcx, &body);
// The borrow checker will replace all the regions here with its own
// inference variables. There's no point having non-erased regions here.
// The exception is `body.user_type_annotations`, which is used unmodified
// by borrow checking.
debug_assert!(
!(body.local_decls.has_free_regions()
|| body.basic_blocks.has_free_regions()
|| body.var_debug_info.has_free_regions()
|| body.yield_ty().has_free_regions()),
"Unexpected free regions in MIR: {:?}",
body,
);
body
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
#[derive(Debug, PartialEq, Eq)]
enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool,
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool,
/// `Span` of the tail expression.
span: Span,
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } | BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } | BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
infcx: InferCtxt<'tcx>,
region_scope_tree: &'tcx region::ScopeTree,
param_env: ty::ParamEnv<'tcx>,
thir: &'a Thir<'tcx>,
cfg: CFG<'tcx>,
def_id: LocalDefId,
hir_id: hir::HirId,
parent_module: DefId,
check_overflow: bool,
fn_span: Span,
arg_count: usize,
generator_kind: Option<GeneratorKind>,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an thir::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The current unsafe block in scope
in_scope_unsafe: Safety,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: FxHashMap<LocalVarId, LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
upvars: CaptureMap<'tcx>,
unit_temp: Option<Place<'tcx>>,
var_debug_info: Vec<VarDebugInfo<'tcx>>,
}
type CaptureMap<'tcx> = SortedIndexMultiMap<usize, hir::HirId, Capture<'tcx>>;
#[derive(Debug)]
struct Capture<'tcx> {
captured_place: &'tcx ty::CapturedPlace<'tcx>,
use_place: Place<'tcx>,
mutability: Mutability,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn is_bound_var_in_guard(&self, id: LocalVarId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: LocalVarId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self {
BlockContext(vec![])
}
fn push(&mut self, bf: BlockFrame) {
self.0.push(bf);
}
fn pop(&mut self) -> Option<BlockFrame> {
self.0.pop()
}
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored, span } => {
return Some(BlockTailInfo { tail_result_is_ignored, span });
}
}
}
None
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(
BlockFrame::TailExpr { tail_result_is_ignored: ignored, .. }
| BlockFrame::Statement { ignores_expr_result: ignored },
) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: LocalVarId,
}
impl GuardFrameLocal {
fn new(id: LocalVarId, _binding_mode: BindingMode) -> Self {
GuardFrameLocal { id }
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard)
| (
&LocalsForNode::ForGuard { ref_for_guard: local_id, .. },
ForGuard::RefWithinGuard,
)
| (&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) => {
local_id
}
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) => {
bug!("anything with one local should never be within a guard.")
}
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
rustc_index::newtype_index! {
struct ScopeId {}
}
#[derive(Debug)]
enum NeedsTemporary {
/// Use this variant when whatever you are converting with `as_operand`
/// is the last thing you are converting. This means that if we introduced
/// an intermediate temporary, we'd only read it immediately after, so we can
/// also avoid it.
No,
/// For all cases where you aren't sure or that are too expensive to compute
/// for now. It is always safe to fall back to this.
Maybe,
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {{
let BlockAnd(b, v) = $c;
$x = b;
v
}};
($c:expr) => {{
let BlockAnd(b, ()) = $c;
b
}};
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
fn construct_fn<'tcx>(
tcx: TyCtxt<'tcx>,
fn_def: LocalDefId,
thir: &Thir<'tcx>,
expr: ExprId,
fn_sig: ty::FnSig<'tcx>,
) -> Body<'tcx> {
let span = tcx.def_span(fn_def);
let fn_id = tcx.hir().local_def_id_to_hir_id(fn_def);
let generator_kind = tcx.generator_kind(fn_def);
// The representation of thir for `-Zunpretty=thir-tree` relies on
// the entry expression being the last element of `thir.exprs`.
assert_eq!(expr.as_usize(), thir.exprs.len() - 1);
// Figure out what primary body this item has.
let body_id = tcx.hir().body_owned_by(fn_def);
let span_with_body = tcx.hir().span_with_body(fn_id);
let return_ty_span = tcx
.hir()
.fn_decl_by_hir_id(fn_id)
.unwrap_or_else(|| span_bug!(span, "can't build MIR for {:?}", fn_def))
.output
.span();
let safety = match fn_sig.unsafety {
hir::Unsafety::Normal => Safety::Safe,
hir::Unsafety::Unsafe => Safety::FnUnsafe,
};
let mut abi = fn_sig.abi;
if let DefKind::Closure = tcx.def_kind(fn_def) {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = Abi::Rust;
}
let arguments = &thir.params;
let (yield_ty, return_ty) = if generator_kind.is_some() {
let gen_ty = arguments[thir::UPVAR_ENV_PARAM].ty;
let gen_sig = match gen_ty.kind() {
ty::Generator(_, gen_substs, ..) => gen_substs.as_generator().sig(),
_ => {
span_bug!(span, "generator w/o generator type: {:?}", gen_ty)
}
};
(Some(gen_sig.yield_ty), gen_sig.return_ty)
} else {
(None, fn_sig.output())
};
if let Some(custom_mir_attr) =
tcx.hir().attrs(fn_id).iter().find(|attr| attr.name_or_empty() == sym::custom_mir)
{
return custom::build_custom_mir(
tcx,
fn_def.to_def_id(),
fn_id,
thir,
expr,
arguments,
return_ty,
return_ty_span,
span_with_body,
custom_mir_attr,
);
}
let infcx = tcx.infer_ctxt().build();
let mut builder = Builder::new(
thir,
infcx,
fn_def,
fn_id,
span_with_body,
arguments.len(),
safety,
return_ty,
return_ty_span,
generator_kind,
);
let call_site_scope =
region::Scope { id: body_id.hir_id.local_id, data: region::ScopeData::CallSite };
let arg_scope =
region::Scope { id: body_id.hir_id.local_id, data: region::ScopeData::Arguments };
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
unpack!(builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
let arg_scope_s = (arg_scope, source_info);
// Attribute epilogue to function's closing brace
let fn_end = span_with_body.shrink_to_hi();
let return_block =
unpack!(builder.in_breakable_scope(None, Place::return_place(), fn_end, |builder| {
Some(builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(START_BLOCK, arguments, arg_scope, &thir[expr])
}))
}));
let source_info = builder.source_info(fn_end);
builder.cfg.terminate(return_block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
return_block.unit()
}));
let mut body = builder.finish();
body.spread_arg = if abi == Abi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
Some(Local::new(arguments.len()))
} else {
None
};
if yield_ty.is_some() {
body.generator.as_mut().unwrap().yield_ty = yield_ty;
}
body
}
fn construct_const<'a, 'tcx>(
tcx: TyCtxt<'tcx>,
def: LocalDefId,
thir: &'a Thir<'tcx>,
expr: ExprId,
const_ty: Ty<'tcx>,
) -> Body<'tcx> {
let hir_id = tcx.hir().local_def_id_to_hir_id(def);
// Figure out what primary body this item has.
let (span, const_ty_span) = match tcx.hir().get(hir_id) {
Node::Item(hir::Item {
kind: hir::ItemKind::Static(ty, _, _) | hir::ItemKind::Const(ty, _),
span,
..
})
| Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(ty, _), span, .. })
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Const(ty, Some(_)),
span,
..
}) => (*span, ty.span),
Node::AnonConst(_) => {
let span = tcx.def_span(def);
(span, span)
}
_ => span_bug!(tcx.def_span(def), "can't build MIR for {:?}", def),
};
let infcx = tcx.infer_ctxt().build();
let mut builder = Builder::new(
thir,
infcx,
def,
hir_id,
span,
0,
Safety::Safe,
const_ty,
const_ty_span,
None,
);
let mut block = START_BLOCK;
unpack!(block = builder.expr_into_dest(Place::return_place(), block, &thir[expr]));
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
builder.build_drop_trees();
builder.finish()
}
/// Construct MIR for an item that has had errors in type checking.
///
/// This is required because we may still want to run MIR passes on an item
/// with type errors, but normal MIR construction can't handle that in general.
fn construct_error(tcx: TyCtxt<'_>, def: LocalDefId, err: ErrorGuaranteed) -> Body<'_> {
let span = tcx.def_span(def);
let hir_id = tcx.hir().local_def_id_to_hir_id(def);
let generator_kind = tcx.generator_kind(def);
let body_owner_kind = tcx.hir().body_owner_kind(def);
let ty = tcx.ty_error(err);
let num_params = match body_owner_kind {
hir::BodyOwnerKind::Fn => tcx.fn_sig(def).skip_binder().inputs().skip_binder().len(),
hir::BodyOwnerKind::Closure => {
let ty = tcx.type_of(def).subst_identity();
match ty.kind() {
ty::Closure(_, substs) => {
1 + substs.as_closure().sig().inputs().skip_binder().len()
}
ty::Generator(..) => 2,
_ => bug!("expected closure or generator, found {ty:?}"),
}
}
hir::BodyOwnerKind::Const => 0,
hir::BodyOwnerKind::Static(_) => 0,
};
let mut cfg = CFG { basic_blocks: IndexVec::new() };
let mut source_scopes = IndexVec::new();
let mut local_decls = IndexVec::from_elem_n(LocalDecl::new(ty, span), 1);
cfg.start_new_block();
source_scopes.push(SourceScopeData {
span,
parent_scope: None,
inlined: None,
inlined_parent_scope: None,
local_data: ClearCrossCrate::Set(SourceScopeLocalData {
lint_root: hir_id,
safety: Safety::Safe,
}),
});
let source_info = SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE };
// Some MIR passes will expect the number of parameters to match the
// function declaration.
for _ in 0..num_params {
local_decls.push(LocalDecl::with_source_info(ty, source_info));
}
cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
let mut body = Body::new(
MirSource::item(def.to_def_id()),
cfg.basic_blocks,
source_scopes,
local_decls,
IndexVec::new(),
num_params,
vec![],
span,
generator_kind,
Some(err),
);
body.generator.as_mut().map(|gen| gen.yield_ty = Some(ty));
body
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(
thir: &'a Thir<'tcx>,
infcx: InferCtxt<'tcx>,
def: LocalDefId,
hir_id: hir::HirId,
span: Span,
arg_count: usize,
safety: Safety,
return_ty: Ty<'tcx>,
return_span: Span,
generator_kind: Option<GeneratorKind>,
) -> Builder<'a, 'tcx> {
let tcx = infcx.tcx;
let attrs = tcx.hir().attrs(hir_id);
// Some functions always have overflow checks enabled,
// however, they may not get codegen'd, depending on
// the settings for the crate they are codegened in.
let mut check_overflow = attr::contains_name(attrs, sym::rustc_inherit_overflow_checks);
// Respect -C overflow-checks.
check_overflow |= tcx.sess.overflow_checks();
// Constants always need overflow checks.
check_overflow |= matches!(
tcx.hir().body_owner_kind(def),
hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_)
);
let lint_level = LintLevel::Explicit(hir_id);
let param_env = tcx.param_env(def);
let mut builder = Builder {
thir,
tcx,
infcx,
region_scope_tree: tcx.region_scope_tree(def),
param_env,
def_id: def,
hir_id,
parent_module: tcx.parent_module(hir_id).to_def_id(),
check_overflow,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
generator_kind,
scopes: scope::Scopes::new(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
guard_context: vec![],
in_scope_unsafe: safety,
local_decls: IndexVec::from_elem_n(LocalDecl::new(return_ty, return_span), 1),
canonical_user_type_annotations: IndexVec::new(),
upvars: CaptureMap::new(),
var_indices: Default::default(),
unit_temp: None,
var_debug_info: vec![],
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(
builder.new_source_scope(span, lint_level, Some(safety)),
OUTERMOST_SOURCE_SCOPE
);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self) -> Body<'tcx> {
for (index, block) in self.cfg.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
Body::new(
MirSource::item(self.def_id.to_def_id()),
self.cfg.basic_blocks,
self.source_scopes,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.var_debug_info,
self.fn_span,
self.generator_kind,
None,
)
}
fn insert_upvar_arg(&mut self) {
let Some(closure_arg) = self.local_decls.get(ty::CAPTURE_STRUCT_LOCAL) else { return };
let mut closure_ty = closure_arg.ty;
let mut closure_env_projs = vec![];
if let ty::Ref(_, ty, _) = closure_ty.kind() {
closure_env_projs.push(ProjectionElem::Deref);
closure_ty = *ty;
}
let upvar_substs = match closure_ty.kind() {
ty::Closure(_, substs) => ty::UpvarSubsts::Closure(substs),
ty::Generator(_, substs, _) => ty::UpvarSubsts::Generator(substs),
_ => return,
};
// In analyze_closure() in upvar.rs we gathered a list of upvars used by an
// indexed closure and we stored in a map called closure_min_captures in TypeckResults
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create upvar
// debuginfo and to fill `self.upvars`.
let capture_tys = upvar_substs.upvar_tys();
let tcx = self.tcx;
self.upvars = tcx
.closure_captures(self.def_id)
.iter()
.zip(capture_tys)
.enumerate()
.map(|(i, (captured_place, ty))| {
let name = captured_place.to_symbol();
let capture = captured_place.info.capture_kind;
let var_id = match captured_place.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
_ => bug!("Expected an upvar"),
};
let mutability = captured_place.mutability;
let mut projs = closure_env_projs.clone();
projs.push(ProjectionElem::Field(FieldIdx::new(i), ty));
match capture {
ty::UpvarCapture::ByValue => {}
ty::UpvarCapture::ByRef(..) => {
projs.push(ProjectionElem::Deref);
}
};
let use_place = Place {
local: ty::CAPTURE_STRUCT_LOCAL,
projection: tcx.mk_place_elems(&projs),
};
self.var_debug_info.push(VarDebugInfo {
name,
references: 0,
source_info: SourceInfo::outermost(captured_place.var_ident.span),
value: VarDebugInfoContents::Place(use_place),
argument_index: None,
});
let capture = Capture { captured_place, use_place, mutability };
(var_id, capture)
})
.collect();
}
fn args_and_body(
&mut self,
mut block: BasicBlock,
arguments: &IndexSlice<ParamId, Param<'tcx>>,
argument_scope: region::Scope,
expr: &Expr<'tcx>,
) -> BlockAnd<()> {
// Allocate locals for the function arguments
for (argument_index, param) in arguments.iter().enumerate() {
let source_info =
SourceInfo::outermost(param.pat.as_ref().map_or(self.fn_span, |pat| pat.span));
let arg_local =
self.local_decls.push(LocalDecl::with_source_info(param.ty, source_info));
// If this is a simple binding pattern, give debuginfo a nice name.
if let Some(ref pat) = param.pat && let Some(name) = pat.simple_ident() {
self.var_debug_info.push(VarDebugInfo {
name,
source_info,
references: 0,
value: VarDebugInfoContents::Place(arg_local.into()),
argument_index: Some(argument_index as u16 + 1),
});
}
}
self.insert_upvar_arg();
let mut scope = None;
// Bind the argument patterns
for (index, param) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
param.pat.as_ref().map_or(expr.span, |pat| pat.span),
argument_scope,
local,
DropKind::Value,
);
let Some(ref pat) = param.pat else {
continue;
};
let original_source_scope = self.source_scope;
let span = pat.span;
if let Some(arg_hir_id) = param.hir_id {
self.set_correct_source_scope_for_arg(arg_hir_id, original_source_scope, span);
}
match pat.kind {
// Don't introduce extra copies for simple bindings
PatKind::Binding {
mutability,
var,
mode: BindingMode::ByValue,
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].source_info.scope = self.source_scope;
**self.local_decls[local].local_info.as_mut().assert_crate_local() =
if let Some(kind) = param.self_kind {
LocalInfo::User(BindingForm::ImplicitSelf(kind))
} else {
let binding_mode = ty::BindingMode::BindByValue(mutability);
LocalInfo::User(BindingForm::Var(VarBindingForm {
binding_mode,
opt_ty_info: param.ty_span,
opt_match_place: Some((None, span)),
pat_span: span,
}))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
expr.span,
&pat,
None,
Some((Some(&place), span)),
);
let place_builder = PlaceBuilder::from(local);
unpack!(block = self.place_into_pattern(block, &pat, place_builder, false));
}
}
self.source_scope = original_source_scope;
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
self.expr_into_dest(Place::return_place(), block, &expr)
}
fn set_correct_source_scope_for_arg(
&mut self,
arg_hir_id: hir::HirId,
original_source_scope: SourceScope,
pattern_span: Span,
) {
let parent_id = self.source_scopes[original_source_scope]
.local_data
.as_ref()
.assert_crate_local()
.lint_root;
self.maybe_new_source_scope(pattern_span, None, arg_hir_id, parent_id);
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(tmp) => tmp,
None => {
let ty = self.tcx.mk_unit();
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp);
tmp
}
}
}
}
fn parse_float_into_constval<'tcx>(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<ConstValue<'tcx>> {
parse_float_into_scalar(num, float_ty, neg).map(ConstValue::Scalar)
}
pub(crate) fn parse_float_into_scalar(
num: Symbol,
float_ty: ty::FloatTy,
neg: bool,
) -> Option<Scalar> {
let num = num.as_str();
match float_ty {
ty::FloatTy::F32 => {
let Ok(rust_f) = num.parse::<f32>() else { return None };
let mut f = num.parse::<Single>().unwrap_or_else(|e| {
panic!("apfloat::ieee::Single failed to parse `{}`: {:?}", num, e)
});
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Single gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Single::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(Scalar::from_f32(f))
}
ty::FloatTy::F64 => {
let Ok(rust_f) = num.parse::<f64>() else { return None };
let mut f = num.parse::<Double>().unwrap_or_else(|e| {
panic!("apfloat::ieee::Double failed to parse `{}`: {:?}", num, e)
});
assert!(
u128::from(rust_f.to_bits()) == f.to_bits(),
"apfloat::ieee::Double gave different result for `{}`: \
{}({:#x}) vs Rust's {}({:#x})",
rust_f,
f,
f.to_bits(),
Double::from_bits(rust_f.to_bits().into()),
rust_f.to_bits()
);
if neg {
f = -f;
}
Some(Scalar::from_f64(f))
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod custom;
mod expr;
mod matches;
mod misc;
mod scope;
pub(crate) use expr::category::Category as ExprCategory;