blob: 7ac67870eb751c717dd8d91f91fffd010f2e1daf [file] [log] [blame]
#![unstable(feature = "raw_vec_internals", reason = "implementation detail", issue = "none")]
#![doc(hidden)]
use core::alloc::MemoryBlock;
use core::cmp;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::ops::Drop;
use core::ptr::{NonNull, Unique};
use core::slice;
use crate::alloc::{
handle_alloc_error, AllocErr,
AllocInit::{self, *},
AllocRef, Global, Layout,
ReallocPlacement::{self, *},
};
use crate::boxed::Box;
use crate::collections::TryReserveError::{self, *};
#[cfg(test)]
mod tests;
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
/// In particular:
///
/// * Produces `Unique::empty()` on zero-sized types.
/// * Produces `Unique::empty()` on zero-length allocations.
/// * Avoids freeing `Unique::empty()`.
/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
/// * Guards against overflowing your length.
/// * Calls `handle_alloc_error` for fallible allocations.
/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
/// * Uses the excess returned from the allocator to use the largest available capacity.
///
/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
/// to handle the actual things *stored* inside of a `RawVec`.
///
/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
/// `Box<[T]>`, since `capacity()` won't yield the length.
#[allow(missing_debug_implementations)]
pub struct RawVec<T, A: AllocRef = Global> {
ptr: Unique<T>,
cap: usize,
alloc: A,
}
impl<T> RawVec<T, Global> {
/// HACK(Centril): This exists because `#[unstable]` `const fn`s needn't conform
/// to `min_const_fn` and so they cannot be called in `min_const_fn`s either.
///
/// If you change `RawVec<T>::new` or dependencies, please take care to not
/// introduce anything that would truly violate `min_const_fn`.
///
/// NOTE: We could avoid this hack and check conformance with some
/// `#[rustc_force_min_const_fn]` attribute which requires conformance
/// with `min_const_fn` but does not necessarily allow calling it in
/// `stable(...) const fn` / user code not enabling `foo` when
/// `#[rustc_const_unstable(feature = "foo", ..)]` is present.
pub const NEW: Self = Self::new();
/// Creates the biggest possible `RawVec` (on the system heap)
/// without allocating. If `T` has positive size, then this makes a
/// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
/// `RawVec` with capacity `usize::MAX`. Useful for implementing
/// delayed allocation.
pub const fn new() -> Self {
Self::new_in(Global)
}
/// Creates a `RawVec` (on the system heap) with exactly the
/// capacity and alignment requirements for a `[T; capacity]`. This is
/// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
/// zero-sized. Note that if `T` is zero-sized this means you will
/// *not* get a `RawVec` with the requested capacity.
///
/// # Panics
///
/// * Panics if the requested capacity exceeds `usize::MAX` bytes.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
/// Like `with_capacity`, but guarantees the buffer is zeroed.
#[inline]
pub fn with_capacity_zeroed(capacity: usize) -> Self {
Self::with_capacity_zeroed_in(capacity, Global)
}
/// Reconstitutes a `RawVec` from a pointer and capacity.
///
/// # Safety
///
/// The `ptr` must be allocated (on the system heap), and with the given `capacity`.
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
/// systems). ZST vectors may have a capacity up to `usize::MAX`.
/// If the `ptr` and `capacity` come from a `RawVec`, then this is guaranteed.
#[inline]
pub unsafe fn from_raw_parts(ptr: *mut T, capacity: usize) -> Self {
Self::from_raw_parts_in(ptr, capacity, Global)
}
/// Converts a `Box<[T]>` into a `RawVec<T>`.
pub fn from_box(slice: Box<[T]>) -> Self {
unsafe {
let mut slice = ManuallyDrop::new(slice);
RawVec::from_raw_parts(slice.as_mut_ptr(), slice.len())
}
}
}
impl<T, A: AllocRef> RawVec<T, A> {
/// Like `new`, but parameterized over the choice of allocator for
/// the returned `RawVec`.
pub const fn new_in(alloc: A) -> Self {
// `cap: 0` means "unallocated". zero-sized types are ignored.
Self { ptr: Unique::empty(), cap: 0, alloc }
}
/// Like `with_capacity`, but parameterized over the choice of
/// allocator for the returned `RawVec`.
#[inline]
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
Self::allocate_in(capacity, Uninitialized, alloc)
}
/// Like `with_capacity_zeroed`, but parameterized over the choice
/// of allocator for the returned `RawVec`.
#[inline]
pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
Self::allocate_in(capacity, Zeroed, alloc)
}
fn allocate_in(capacity: usize, init: AllocInit, mut alloc: A) -> Self {
if mem::size_of::<T>() == 0 {
Self::new_in(alloc)
} else {
let layout = Layout::array::<T>(capacity).unwrap_or_else(|_| capacity_overflow());
alloc_guard(layout.size()).unwrap_or_else(|_| capacity_overflow());
let memory = alloc.alloc(layout, init).unwrap_or_else(|_| handle_alloc_error(layout));
Self {
ptr: memory.ptr.cast().into(),
cap: Self::capacity_from_bytes(memory.size),
alloc,
}
}
}
/// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
///
/// # Safety
///
/// The `ptr` must be allocated (via the given allocator `a`), and with the given `capacity`.
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
/// systems). ZST vectors may have a capacity up to `usize::MAX`.
/// If the `ptr` and `capacity` come from a `RawVec` created via `a`, then this is guaranteed.
#[inline]
pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, a: A) -> Self {
Self { ptr: Unique::new_unchecked(ptr), cap: capacity, alloc: a }
}
/// Gets a raw pointer to the start of the allocation. Note that this is
/// `Unique::empty()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
/// be careful.
pub fn ptr(&self) -> *mut T {
self.ptr.as_ptr()
}
/// Gets the capacity of the allocation.
///
/// This will always be `usize::MAX` if `T` is zero-sized.
#[inline(always)]
pub fn capacity(&self) -> usize {
if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
}
/// Returns a shared reference to the allocator backing this `RawVec`.
pub fn alloc(&self) -> &A {
&self.alloc
}
/// Returns a mutable reference to the allocator backing this `RawVec`.
pub fn alloc_mut(&mut self) -> &mut A {
&mut self.alloc
}
fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
if mem::size_of::<T>() == 0 || self.cap == 0 {
None
} else {
// We have an allocated chunk of memory, so we can bypass runtime
// checks to get our current layout.
unsafe {
let align = mem::align_of::<T>();
let size = mem::size_of::<T>() * self.cap;
let layout = Layout::from_size_align_unchecked(size, align);
Some((self.ptr.cast().into(), layout))
}
}
}
/// Doubles the size of the type's backing allocation. This is common enough
/// to want to do that it's easiest to just have a dedicated method. Slightly
/// more efficient logic can be provided for this than the general case.
///
/// This function is ideal for when pushing elements one-at-a-time because
/// you don't need to incur the costs of the more general computations
/// reserve needs to do to guard against overflow. You do however need to
/// manually check if your `len == capacity`.
///
/// # Panics
///
/// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
/// all `usize::MAX` slots in your imaginary buffer.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM
///
/// # Examples
///
/// ```
/// # #![feature(raw_vec_internals)]
/// # extern crate alloc;
/// # use std::ptr;
/// # use alloc::raw_vec::RawVec;
/// struct MyVec<T> {
/// buf: RawVec<T>,
/// len: usize,
/// }
///
/// impl<T> MyVec<T> {
/// pub fn push(&mut self, elem: T) {
/// if self.len == self.buf.capacity() { self.buf.double(); }
/// // double would have aborted or panicked if the len exceeded
/// // `isize::MAX` so this is safe to do unchecked now.
/// unsafe {
/// ptr::write(self.buf.ptr().add(self.len), elem);
/// }
/// self.len += 1;
/// }
/// }
/// # fn main() {
/// # let mut vec = MyVec { buf: RawVec::new(), len: 0 };
/// # vec.push(1);
/// # }
/// ```
#[inline(never)]
#[cold]
pub fn double(&mut self) {
match self.grow(Double, MayMove, Uninitialized) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}
/// Attempts to double the size of the type's backing allocation in place. This is common
/// enough to want to do that it's easiest to just have a dedicated method. Slightly
/// more efficient logic can be provided for this than the general case.
///
/// Returns `true` if the reallocation attempt has succeeded.
///
/// # Panics
///
/// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
/// all `usize::MAX` slots in your imaginary buffer.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
#[inline(never)]
#[cold]
pub fn double_in_place(&mut self) -> bool {
self.grow(Double, InPlace, Uninitialized).is_ok()
}
/// Ensures that the buffer contains at least enough space to hold
/// `used_capacity + needed_extra_capacity` elements. If it doesn't already have
/// enough capacity, will reallocate enough space plus comfortable slack
/// space to get amortized `O(1)` behavior. Will limit this behavior
/// if it would needlessly cause itself to panic.
///
/// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe
/// code *you* write that relies on the behavior of this function may break.
///
/// This is ideal for implementing a bulk-push operation like `extend`.
///
/// # Panics
///
/// * Panics if the requested capacity exceeds `usize::MAX` bytes.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
///
/// # Examples
///
/// ```
/// # #![feature(raw_vec_internals)]
/// # extern crate alloc;
/// # use std::ptr;
/// # use alloc::raw_vec::RawVec;
/// struct MyVec<T> {
/// buf: RawVec<T>,
/// len: usize,
/// }
///
/// impl<T: Clone> MyVec<T> {
/// pub fn push_all(&mut self, elems: &[T]) {
/// self.buf.reserve(self.len, elems.len());
/// // reserve would have aborted or panicked if the len exceeded
/// // `isize::MAX` so this is safe to do unchecked now.
/// for x in elems {
/// unsafe {
/// ptr::write(self.buf.ptr().add(self.len), x.clone());
/// }
/// self.len += 1;
/// }
/// }
/// }
/// # fn main() {
/// # let mut vector = MyVec { buf: RawVec::new(), len: 0 };
/// # vector.push_all(&[1, 3, 5, 7, 9]);
/// # }
/// ```
pub fn reserve(&mut self, used_capacity: usize, needed_extra_capacity: usize) {
match self.try_reserve(used_capacity, needed_extra_capacity) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}
/// The same as `reserve`, but returns on errors instead of panicking or aborting.
pub fn try_reserve(
&mut self,
used_capacity: usize,
needed_extra_capacity: usize,
) -> Result<(), TryReserveError> {
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Amortized { used_capacity, needed_extra_capacity }, MayMove, Uninitialized)
} else {
Ok(())
}
}
/// Attempts to ensure that the buffer contains at least enough space to hold
/// `used_capacity + needed_extra_capacity` elements. If it doesn't already have
/// enough capacity, will reallocate in place enough space plus comfortable slack
/// space to get amortized `O(1)` behavior. Will limit this behaviour
/// if it would needlessly cause itself to panic.
///
/// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe
/// code *you* write that relies on the behavior of this function may break.
///
/// Returns `true` if the reallocation attempt has succeeded.
///
/// # Panics
///
/// * Panics if the requested capacity exceeds `usize::MAX` bytes.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
pub fn reserve_in_place(&mut self, used_capacity: usize, needed_extra_capacity: usize) -> bool {
// This is more readable than putting this in one line:
// `!self.needs_to_grow(...) || self.grow(...).is_ok()`
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Amortized { used_capacity, needed_extra_capacity }, InPlace, Uninitialized)
.is_ok()
} else {
true
}
}
/// Ensures that the buffer contains at least enough space to hold
/// `used_capacity + needed_extra_capacity` elements. If it doesn't already,
/// will reallocate the minimum possible amount of memory necessary.
/// Generally this will be exactly the amount of memory necessary,
/// but in principle the allocator is free to give back more than
/// we asked for.
///
/// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe
/// code *you* write that relies on the behavior of this function may break.
///
/// # Panics
///
/// * Panics if the requested capacity exceeds `usize::MAX` bytes.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
pub fn reserve_exact(&mut self, used_capacity: usize, needed_extra_capacity: usize) {
match self.try_reserve_exact(used_capacity, needed_extra_capacity) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}
/// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
pub fn try_reserve_exact(
&mut self,
used_capacity: usize,
needed_extra_capacity: usize,
) -> Result<(), TryReserveError> {
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Exact { used_capacity, needed_extra_capacity }, MayMove, Uninitialized)
} else {
Ok(())
}
}
/// Shrinks the allocation down to the specified amount. If the given amount
/// is 0, actually completely deallocates.
///
/// # Panics
///
/// Panics if the given amount is *larger* than the current capacity.
///
/// # Aborts
///
/// Aborts on OOM.
pub fn shrink_to_fit(&mut self, amount: usize) {
match self.shrink(amount, MayMove) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}
}
#[derive(Copy, Clone)]
enum Strategy {
Double,
Amortized { used_capacity: usize, needed_extra_capacity: usize },
Exact { used_capacity: usize, needed_extra_capacity: usize },
}
use Strategy::*;
impl<T, A: AllocRef> RawVec<T, A> {
/// Returns if the buffer needs to grow to fulfill the needed extra capacity.
/// Mainly used to make inlining reserve-calls possible without inlining `grow`.
fn needs_to_grow(&self, used_capacity: usize, needed_extra_capacity: usize) -> bool {
needed_extra_capacity > self.capacity().wrapping_sub(used_capacity)
}
fn capacity_from_bytes(excess: usize) -> usize {
debug_assert_ne!(mem::size_of::<T>(), 0);
excess / mem::size_of::<T>()
}
fn set_memory(&mut self, memory: MemoryBlock) {
self.ptr = memory.ptr.cast().into();
self.cap = Self::capacity_from_bytes(memory.size);
}
/// Single method to handle all possibilities of growing the buffer.
fn grow(
&mut self,
strategy: Strategy,
placement: ReallocPlacement,
init: AllocInit,
) -> Result<(), TryReserveError> {
let elem_size = mem::size_of::<T>();
if elem_size == 0 {
// Since we return a capacity of `usize::MAX` when `elem_size` is
// 0, getting to here necessarily means the `RawVec` is overfull.
return Err(CapacityOverflow);
}
let new_layout = match strategy {
Double => unsafe {
// Since we guarantee that we never allocate more than `isize::MAX` bytes,
// `elem_size * self.cap <= isize::MAX` as a precondition, so this can't overflow.
// Additionally the alignment will never be too large as to "not be satisfiable",
// so `Layout::from_size_align` will always return `Some`.
//
// TL;DR, we bypass runtime checks due to dynamic assertions in this module,
// allowing us to use `from_size_align_unchecked`.
let cap = if self.cap == 0 {
// Skip to 4 because tiny `Vec`'s are dumb; but not if that would cause overflow.
if elem_size > usize::MAX / 8 { 1 } else { 4 }
} else {
self.cap * 2
};
Layout::from_size_align_unchecked(cap * elem_size, mem::align_of::<T>())
},
Amortized { used_capacity, needed_extra_capacity } => {
// Nothing we can really do about these checks, sadly.
let required_cap =
used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
// Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
let double_cap = self.cap * 2;
// `double_cap` guarantees exponential growth.
let cap = cmp::max(double_cap, required_cap);
Layout::array::<T>(cap).map_err(|_| CapacityOverflow)?
}
Exact { used_capacity, needed_extra_capacity } => {
let cap =
used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
Layout::array::<T>(cap).map_err(|_| CapacityOverflow)?
}
};
alloc_guard(new_layout.size())?;
let memory = if let Some((ptr, old_layout)) = self.current_memory() {
debug_assert_eq!(old_layout.align(), new_layout.align());
unsafe {
self.alloc
.grow(ptr, old_layout, new_layout.size(), placement, init)
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
}
} else {
match placement {
MayMove => self.alloc.alloc(new_layout, init),
InPlace => Err(AllocErr),
}
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
};
self.set_memory(memory);
Ok(())
}
fn shrink(
&mut self,
amount: usize,
placement: ReallocPlacement,
) -> Result<(), TryReserveError> {
assert!(amount <= self.capacity(), "Tried to shrink to a larger capacity");
let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
let new_size = amount * mem::size_of::<T>();
let memory = unsafe {
self.alloc.shrink(ptr, layout, new_size, placement).map_err(|_| {
TryReserveError::AllocError {
layout: Layout::from_size_align_unchecked(new_size, layout.align()),
non_exhaustive: (),
}
})?
};
self.set_memory(memory);
Ok(())
}
}
impl<T> RawVec<T, Global> {
/// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
///
/// Note that this will correctly reconstitute any `cap` changes
/// that may have been performed. (See description of type for details.)
///
/// # Safety
///
/// * `len` must be greater than or equal to the most recently requested capacity, and
/// * `len` must be less than or equal to `self.capacity()`.
///
/// Note, that the requested capacity and `self.capacity()` could differ, as
/// an allocator could overallocate and return a greater memory block than requested.
pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>]> {
// Sanity-check one half of the safety requirement (we cannot check the other half).
debug_assert!(
len <= self.capacity(),
"`len` must be smaller than or equal to `self.capacity()`"
);
let me = ManuallyDrop::new(self);
let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
Box::from_raw(slice)
}
}
unsafe impl<#[may_dangle] T, A: AllocRef> Drop for RawVec<T, A> {
/// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
fn drop(&mut self) {
if let Some((ptr, layout)) = self.current_memory() {
unsafe { self.alloc.dealloc(ptr, layout) }
}
}
}
// We need to guarantee the following:
// * We don't ever allocate `> isize::MAX` byte-size objects.
// * We don't overflow `usize::MAX` and actually allocate too little.
//
// On 64-bit we just need to check for overflow since trying to allocate
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
// an extra guard for this in case we're running on a platform which can use
// all 4GB in user-space, e.g., PAE or x32.
#[inline]
fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
if mem::size_of::<usize>() < 8 && alloc_size > core::isize::MAX as usize {
Err(CapacityOverflow)
} else {
Ok(())
}
}
// One central function responsible for reporting capacity overflows. This'll
// ensure that the code generation related to these panics is minimal as there's
// only one location which panics rather than a bunch throughout the module.
fn capacity_overflow() -> ! {
panic!("capacity overflow");
}