blob: d7c92ab44489fedb3728a6c9e6b90a863b90176c [file] [log] [blame]
//! Bindgen's core intermediate representation type.
use super::super::codegen::{EnumVariation, CONSTIFIED_ENUM_MODULE_REPR_NAME};
use super::analysis::{HasVtable, HasVtableResult, Sizedness, SizednessResult};
use super::annotations::Annotations;
use super::comment;
use super::comp::MethodKind;
use super::context::{BindgenContext, ItemId, PartialType, TypeId};
use super::derive::{
CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq,
CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd,
};
use super::dot::DotAttributes;
use super::function::{Function, FunctionKind};
use super::item_kind::ItemKind;
use super::layout::Opaque;
use super::module::Module;
use super::template::{AsTemplateParam, TemplateParameters};
use super::traversal::{EdgeKind, Trace, Tracer};
use super::ty::{Type, TypeKind};
use crate::clang;
use crate::parse::{
ClangItemParser, ClangSubItemParser, ParseError, ParseResult,
};
use clang_sys;
use lazycell::LazyCell;
use regex;
use std::cell::Cell;
use std::collections::BTreeSet;
use std::fmt::Write;
use std::io;
use std::iter;
/// A trait to get the canonical name from an item.
///
/// This is the trait that will eventually isolate all the logic related to name
/// mangling and that kind of stuff.
///
/// This assumes no nested paths, at some point I'll have to make it a more
/// complex thing.
///
/// This name is required to be safe for Rust, that is, is not expected to
/// return any rust keyword from here.
pub trait ItemCanonicalName {
/// Get the canonical name for this item.
fn canonical_name(&self, ctx: &BindgenContext) -> String;
}
/// The same, but specifies the path that needs to be followed to reach an item.
///
/// To contrast with canonical_name, here's an example:
///
/// ```c++
/// namespace foo {
/// const BAR = 3;
/// }
/// ```
///
/// For bar, the canonical path is `vec!["foo", "BAR"]`, while the canonical
/// name is just `"BAR"`.
pub trait ItemCanonicalPath {
/// Get the namespace-aware canonical path for this item. This means that if
/// namespaces are disabled, you'll get a single item, and otherwise you get
/// the whole path.
fn namespace_aware_canonical_path(
&self,
ctx: &BindgenContext,
) -> Vec<String>;
/// Get the canonical path for this item.
fn canonical_path(&self, ctx: &BindgenContext) -> Vec<String>;
}
/// A trait for determining if some IR thing is opaque or not.
pub trait IsOpaque {
/// Extra context the IR thing needs to determine if it is opaque or not.
type Extra;
/// Returns `true` if the thing is opaque, and `false` otherwise.
///
/// May only be called when `ctx` is in the codegen phase.
fn is_opaque(&self, ctx: &BindgenContext, extra: &Self::Extra) -> bool;
}
/// A trait for determining if some IR thing has type parameter in array or not.
pub trait HasTypeParamInArray {
/// Returns `true` if the thing has Array, and `false` otherwise.
fn has_type_param_in_array(&self, ctx: &BindgenContext) -> bool;
}
/// A trait for determining if some IR thing has float or not.
pub trait HasFloat {
/// Returns `true` if the thing has float, and `false` otherwise.
fn has_float(&self, ctx: &BindgenContext) -> bool;
}
/// A trait for iterating over an item and its parents and up its ancestor chain
/// up to (but not including) the implicit root module.
pub trait ItemAncestors {
/// Get an iterable over this item's ancestors.
fn ancestors<'a>(&self, ctx: &'a BindgenContext) -> ItemAncestorsIter<'a>;
}
#[cfg(testing_only_extra_assertions)]
type DebugOnlyItemSet = ItemSet;
#[cfg(not(testing_only_extra_assertions))]
struct DebugOnlyItemSet;
#[cfg(not(testing_only_extra_assertions))]
impl DebugOnlyItemSet {
fn new() -> Self {
DebugOnlyItemSet
}
fn contains(&self, _id: &ItemId) -> bool {
false
}
fn insert(&mut self, _id: ItemId) {}
}
/// An iterator over an item and its ancestors.
pub struct ItemAncestorsIter<'a> {
item: ItemId,
ctx: &'a BindgenContext,
seen: DebugOnlyItemSet,
}
impl<'a> ItemAncestorsIter<'a> {
fn new<Id: Into<ItemId>>(ctx: &'a BindgenContext, id: Id) -> Self {
ItemAncestorsIter {
item: id.into(),
ctx,
seen: DebugOnlyItemSet::new(),
}
}
}
impl<'a> Iterator for ItemAncestorsIter<'a> {
type Item = ItemId;
fn next(&mut self) -> Option<Self::Item> {
let item = self.ctx.resolve_item(self.item);
if item.parent_id() == self.item {
None
} else {
self.item = item.parent_id();
extra_assert!(!self.seen.contains(&item.id()));
self.seen.insert(item.id());
Some(item.id())
}
}
}
impl<T> AsTemplateParam for T
where
T: Copy + Into<ItemId>,
{
type Extra = ();
fn as_template_param(
&self,
ctx: &BindgenContext,
_: &(),
) -> Option<TypeId> {
ctx.resolve_item((*self).into()).as_template_param(ctx, &())
}
}
impl AsTemplateParam for Item {
type Extra = ();
fn as_template_param(
&self,
ctx: &BindgenContext,
_: &(),
) -> Option<TypeId> {
self.kind.as_template_param(ctx, self)
}
}
impl AsTemplateParam for ItemKind {
type Extra = Item;
fn as_template_param(
&self,
ctx: &BindgenContext,
item: &Item,
) -> Option<TypeId> {
match *self {
ItemKind::Type(ref ty) => ty.as_template_param(ctx, item),
ItemKind::Module(..) |
ItemKind::Function(..) |
ItemKind::Var(..) => None,
}
}
}
impl<T> ItemCanonicalName for T
where
T: Copy + Into<ItemId>,
{
fn canonical_name(&self, ctx: &BindgenContext) -> String {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.resolve_item(*self).canonical_name(ctx)
}
}
impl<T> ItemCanonicalPath for T
where
T: Copy + Into<ItemId>,
{
fn namespace_aware_canonical_path(
&self,
ctx: &BindgenContext,
) -> Vec<String> {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.resolve_item(*self).namespace_aware_canonical_path(ctx)
}
fn canonical_path(&self, ctx: &BindgenContext) -> Vec<String> {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.resolve_item(*self).canonical_path(ctx)
}
}
impl<T> ItemAncestors for T
where
T: Copy + Into<ItemId>,
{
fn ancestors<'a>(&self, ctx: &'a BindgenContext) -> ItemAncestorsIter<'a> {
ItemAncestorsIter::new(ctx, *self)
}
}
impl ItemAncestors for Item {
fn ancestors<'a>(&self, ctx: &'a BindgenContext) -> ItemAncestorsIter<'a> {
self.id().ancestors(ctx)
}
}
impl<Id> Trace for Id
where
Id: Copy + Into<ItemId>,
{
type Extra = ();
fn trace<T>(&self, ctx: &BindgenContext, tracer: &mut T, extra: &())
where
T: Tracer,
{
ctx.resolve_item(*self).trace(ctx, tracer, extra);
}
}
impl Trace for Item {
type Extra = ();
fn trace<T>(&self, ctx: &BindgenContext, tracer: &mut T, _extra: &())
where
T: Tracer,
{
// Even if this item is blocklisted/hidden, we want to trace it. It is
// traversal iterators' consumers' responsibility to filter items as
// needed. Generally, this filtering happens in the implementation of
// `Iterator` for `allowlistedItems`. Fully tracing blocklisted items is
// necessary for things like the template parameter usage analysis to
// function correctly.
match *self.kind() {
ItemKind::Type(ref ty) => {
// There are some types, like resolved type references, where we
// don't want to stop collecting types even though they may be
// opaque.
if ty.should_be_traced_unconditionally() ||
!self.is_opaque(ctx, &())
{
ty.trace(ctx, tracer, self);
}
}
ItemKind::Function(ref fun) => {
// Just the same way, it has not real meaning for a function to
// be opaque, so we trace across it.
tracer.visit(fun.signature().into());
}
ItemKind::Var(ref var) => {
tracer.visit_kind(var.ty().into(), EdgeKind::VarType);
}
ItemKind::Module(_) => {
// Module -> children edges are "weak", and we do not want to
// trace them. If we did, then allowlisting wouldn't work as
// expected: everything in every module would end up
// allowlisted.
//
// TODO: make a new edge kind for module -> children edges and
// filter them during allowlisting traversals.
}
}
}
}
impl CanDeriveDebug for Item {
fn can_derive_debug(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_debug(ctx)
}
}
impl CanDeriveDefault for Item {
fn can_derive_default(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_default(ctx)
}
}
impl CanDeriveCopy for Item {
fn can_derive_copy(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_copy(ctx)
}
}
impl CanDeriveHash for Item {
fn can_derive_hash(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_hash(ctx)
}
}
impl CanDerivePartialOrd for Item {
fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_partialord(ctx)
}
}
impl CanDerivePartialEq for Item {
fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_partialeq(ctx)
}
}
impl CanDeriveEq for Item {
fn can_derive_eq(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_eq(ctx)
}
}
impl CanDeriveOrd for Item {
fn can_derive_ord(&self, ctx: &BindgenContext) -> bool {
self.id().can_derive_ord(ctx)
}
}
/// An item is the base of the bindgen representation, it can be either a
/// module, a type, a function, or a variable (see `ItemKind` for more
/// information).
///
/// Items refer to each other by `ItemId`. Every item has its parent's
/// id. Depending on the kind of item this is, it may also refer to other items,
/// such as a compound type item referring to other types. Collectively, these
/// references form a graph.
///
/// The entry-point to this graph is the "root module": a meta-item used to hold
/// all top-level items.
///
/// An item may have a comment, and annotations (see the `annotations` module).
///
/// Note that even though we parse all the types of annotations in comments, not
/// all of them apply to every item. Those rules are described in the
/// `annotations` module.
#[derive(Debug)]
pub struct Item {
/// This item's id.
id: ItemId,
/// The item's local id, unique only amongst its siblings. Only used for
/// anonymous items.
///
/// Lazily initialized in local_id().
///
/// Note that only structs, unions, and enums get a local type id. In any
/// case this is an implementation detail.
local_id: LazyCell<usize>,
/// The next local id to use for a child or template instantiation.
next_child_local_id: Cell<usize>,
/// A cached copy of the canonical name, as returned by `canonical_name`.
///
/// This is a fairly used operation during codegen so this makes bindgen
/// considerably faster in those cases.
canonical_name: LazyCell<String>,
/// The path to use for allowlisting and other name-based checks, as
/// returned by `path_for_allowlisting`, lazily constructed.
path_for_allowlisting: LazyCell<Vec<String>>,
/// A doc comment over the item, if any.
comment: Option<String>,
/// Annotations extracted from the doc comment, or the default ones
/// otherwise.
annotations: Annotations,
/// An item's parent id. This will most likely be a class where this item
/// was declared, or a module, etc.
///
/// All the items have a parent, except the root module, in which case the
/// parent id is its own id.
parent_id: ItemId,
/// The item kind.
kind: ItemKind,
}
impl AsRef<ItemId> for Item {
fn as_ref(&self) -> &ItemId {
&self.id
}
}
impl Item {
/// Construct a new `Item`.
pub fn new(
id: ItemId,
comment: Option<String>,
annotations: Option<Annotations>,
parent_id: ItemId,
kind: ItemKind,
) -> Self {
debug_assert!(id != parent_id || kind.is_module());
Item {
id: id,
local_id: LazyCell::new(),
next_child_local_id: Cell::new(1),
canonical_name: LazyCell::new(),
path_for_allowlisting: LazyCell::new(),
parent_id: parent_id,
comment: comment,
annotations: annotations.unwrap_or_default(),
kind: kind,
}
}
/// Construct a new opaque item type.
pub fn new_opaque_type(
with_id: ItemId,
ty: &clang::Type,
ctx: &mut BindgenContext,
) -> TypeId {
let ty = Opaque::from_clang_ty(ty, ctx);
let kind = ItemKind::Type(ty);
let parent = ctx.root_module().into();
ctx.add_item(Item::new(with_id, None, None, parent, kind), None, None);
with_id.as_type_id_unchecked()
}
/// Get this `Item`'s identifier.
pub fn id(&self) -> ItemId {
self.id
}
/// Get this `Item`'s parent's identifier.
///
/// For the root module, the parent's ID is its own ID.
pub fn parent_id(&self) -> ItemId {
self.parent_id
}
/// Set this item's parent id.
///
/// This is only used so replacements get generated in the proper module.
pub fn set_parent_for_replacement<Id: Into<ItemId>>(&mut self, id: Id) {
self.parent_id = id.into();
}
/// Returns the depth this item is indented to.
///
/// FIXME(emilio): This may need fixes for the enums within modules stuff.
pub fn codegen_depth(&self, ctx: &BindgenContext) -> usize {
if !ctx.options().enable_cxx_namespaces {
return 0;
}
self.ancestors(ctx)
.filter(|id| {
ctx.resolve_item(*id).as_module().map_or(false, |module| {
!module.is_inline() ||
ctx.options().conservative_inline_namespaces
})
})
.count() +
1
}
/// Get this `Item`'s comment, if it has any, already preprocessed and with
/// the right indentation.
pub fn comment(&self, ctx: &BindgenContext) -> Option<String> {
if !ctx.options().generate_comments {
return None;
}
self.comment.as_ref().map(|comment| {
comment::preprocess(comment, self.codegen_depth(ctx))
})
}
/// What kind of item is this?
pub fn kind(&self) -> &ItemKind {
&self.kind
}
/// Get a mutable reference to this item's kind.
pub fn kind_mut(&mut self) -> &mut ItemKind {
&mut self.kind
}
/// Get an identifier that differentiates this item from its siblings.
///
/// This should stay relatively stable in the face of code motion outside or
/// below this item's lexical scope, meaning that this can be useful for
/// generating relatively stable identifiers within a scope.
pub fn local_id(&self, ctx: &BindgenContext) -> usize {
*self.local_id.borrow_with(|| {
let parent = ctx.resolve_item(self.parent_id);
parent.next_child_local_id()
})
}
/// Get an identifier that differentiates a child of this item of other
/// related items.
///
/// This is currently used for anonymous items, and template instantiation
/// tests, in both cases in order to reduce noise when system headers are at
/// place.
pub fn next_child_local_id(&self) -> usize {
let local_id = self.next_child_local_id.get();
self.next_child_local_id.set(local_id + 1);
local_id
}
/// Returns whether this item is a top-level item, from the point of view of
/// bindgen.
///
/// This point of view changes depending on whether namespaces are enabled
/// or not. That way, in the following example:
///
/// ```c++
/// namespace foo {
/// static int var;
/// }
/// ```
///
/// `var` would be a toplevel item if namespaces are disabled, but won't if
/// they aren't.
///
/// This function is used to determine when the codegen phase should call
/// `codegen` on an item, since any item that is not top-level will be
/// generated by its parent.
pub fn is_toplevel(&self, ctx: &BindgenContext) -> bool {
// FIXME: Workaround for some types falling behind when parsing weird
// stl classes, for example.
if ctx.options().enable_cxx_namespaces &&
self.kind().is_module() &&
self.id() != ctx.root_module()
{
return false;
}
let mut parent = self.parent_id;
loop {
let parent_item = match ctx.resolve_item_fallible(parent) {
Some(item) => item,
None => return false,
};
if parent_item.id() == ctx.root_module() {
return true;
} else if ctx.options().enable_cxx_namespaces ||
!parent_item.kind().is_module()
{
return false;
}
parent = parent_item.parent_id();
}
}
/// Get a reference to this item's underlying `Type`. Panic if this is some
/// other kind of item.
pub fn expect_type(&self) -> &Type {
self.kind().expect_type()
}
/// Get a reference to this item's underlying `Type`, or `None` if this is
/// some other kind of item.
pub fn as_type(&self) -> Option<&Type> {
self.kind().as_type()
}
/// Get a reference to this item's underlying `Function`. Panic if this is
/// some other kind of item.
pub fn expect_function(&self) -> &Function {
self.kind().expect_function()
}
/// Is this item a module?
pub fn is_module(&self) -> bool {
match self.kind {
ItemKind::Module(..) => true,
_ => false,
}
}
/// Get this item's annotations.
pub fn annotations(&self) -> &Annotations {
&self.annotations
}
/// Whether this item should be blocklisted.
///
/// This may be due to either annotations or to other kind of configuration.
pub fn is_blocklisted(&self, ctx: &BindgenContext) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
if self.annotations.hide() {
return true;
}
let path = self.path_for_allowlisting(ctx);
let name = path[1..].join("::");
ctx.options().blocklisted_items.matches(&name) ||
match self.kind {
ItemKind::Type(..) => {
ctx.options().blocklisted_types.matches(&name) ||
ctx.is_replaced_type(&path, self.id)
}
ItemKind::Function(..) => {
ctx.options().blocklisted_functions.matches(&name)
}
// TODO: Add constant / namespace blocklisting?
ItemKind::Var(..) | ItemKind::Module(..) => false,
}
}
/// Is this a reference to another type?
pub fn is_type_ref(&self) -> bool {
self.as_type().map_or(false, |ty| ty.is_type_ref())
}
/// Is this item a var type?
pub fn is_var(&self) -> bool {
match *self.kind() {
ItemKind::Var(..) => true,
_ => false,
}
}
/// Take out item NameOptions
pub fn name<'a>(&'a self, ctx: &'a BindgenContext) -> NameOptions<'a> {
NameOptions::new(self, ctx)
}
/// Get the target item id for name generation.
fn name_target(&self, ctx: &BindgenContext) -> ItemId {
let mut targets_seen = DebugOnlyItemSet::new();
let mut item = self;
loop {
extra_assert!(!targets_seen.contains(&item.id()));
targets_seen.insert(item.id());
if self.annotations().use_instead_of().is_some() {
return self.id();
}
match *item.kind() {
ItemKind::Type(ref ty) => match *ty.kind() {
TypeKind::ResolvedTypeRef(inner) => {
item = ctx.resolve_item(inner);
}
TypeKind::TemplateInstantiation(ref inst) => {
item = ctx.resolve_item(inst.template_definition());
}
_ => return item.id(),
},
_ => return item.id(),
}
}
}
/// Create a fully disambiguated name for an item, including template
/// parameters if it is a type
pub fn full_disambiguated_name(&self, ctx: &BindgenContext) -> String {
let mut s = String::new();
let level = 0;
self.push_disambiguated_name(ctx, &mut s, level);
s
}
/// Helper function for full_disambiguated_name
fn push_disambiguated_name(
&self,
ctx: &BindgenContext,
to: &mut String,
level: u8,
) {
to.push_str(&self.canonical_name(ctx));
if let ItemKind::Type(ref ty) = *self.kind() {
if let TypeKind::TemplateInstantiation(ref inst) = *ty.kind() {
to.push_str(&format!("_open{}_", level));
for arg in inst.template_arguments() {
arg.into_resolver()
.through_type_refs()
.resolve(ctx)
.push_disambiguated_name(ctx, to, level + 1);
to.push_str("_");
}
to.push_str(&format!("close{}", level));
}
}
}
/// Get this function item's name, or `None` if this item is not a function.
fn func_name(&self) -> Option<&str> {
match *self.kind() {
ItemKind::Function(ref func) => Some(func.name()),
_ => None,
}
}
/// Get the overload index for this method. If this is not a method, return
/// `None`.
fn overload_index(&self, ctx: &BindgenContext) -> Option<usize> {
self.func_name().and_then(|func_name| {
let parent = ctx.resolve_item(self.parent_id());
if let ItemKind::Type(ref ty) = *parent.kind() {
if let TypeKind::Comp(ref ci) = *ty.kind() {
// All the constructors have the same name, so no need to
// resolve and check.
return ci
.constructors()
.iter()
.position(|c| *c == self.id())
.or_else(|| {
ci.methods()
.iter()
.filter(|m| {
let item = ctx.resolve_item(m.signature());
let func = item.expect_function();
func.name() == func_name
})
.position(|m| m.signature() == self.id())
});
}
}
None
})
}
/// Get this item's base name (aka non-namespaced name).
fn base_name(&self, ctx: &BindgenContext) -> String {
if let Some(path) = self.annotations().use_instead_of() {
return path.last().unwrap().clone();
}
match *self.kind() {
ItemKind::Var(ref var) => var.name().to_owned(),
ItemKind::Module(ref module) => {
module.name().map(ToOwned::to_owned).unwrap_or_else(|| {
format!("_bindgen_mod_{}", self.exposed_id(ctx))
})
}
ItemKind::Type(ref ty) => {
ty.sanitized_name(ctx).map(Into::into).unwrap_or_else(|| {
format!("_bindgen_ty_{}", self.exposed_id(ctx))
})
}
ItemKind::Function(ref fun) => {
let mut name = fun.name().to_owned();
if let Some(idx) = self.overload_index(ctx) {
if idx > 0 {
write!(&mut name, "{}", idx).unwrap();
}
}
name
}
}
}
fn is_anon(&self) -> bool {
match self.kind() {
ItemKind::Module(module) => module.name().is_none(),
ItemKind::Type(ty) => ty.name().is_none(),
ItemKind::Function(_) => false,
ItemKind::Var(_) => false,
}
}
/// Get the canonical name without taking into account the replaces
/// annotation.
///
/// This is the base logic used to implement hiding and replacing via
/// annotations, and also to implement proper name mangling.
///
/// The idea is that each generated type in the same "level" (read: module
/// or namespace) has a unique canonical name.
///
/// This name should be derived from the immutable state contained in the
/// type and the parent chain, since it should be consistent.
///
/// If `BindgenOptions::disable_nested_struct_naming` is true then returned
/// name is the inner most non-anonymous name plus all the anonymous base names
/// that follows.
pub fn real_canonical_name(
&self,
ctx: &BindgenContext,
opt: &NameOptions,
) -> String {
let target = ctx.resolve_item(self.name_target(ctx));
// Short-circuit if the target has an override, and just use that.
if let Some(path) = target.annotations.use_instead_of() {
if ctx.options().enable_cxx_namespaces {
return path.last().unwrap().clone();
}
return path.join("_").to_owned();
}
let base_name = target.base_name(ctx);
// Named template type arguments are never namespaced, and never
// mangled.
if target.is_template_param(ctx, &()) {
return base_name;
}
// Ancestors' id iter
let mut ids_iter = target
.parent_id()
.ancestors(ctx)
.filter(|id| *id != ctx.root_module())
.take_while(|id| {
// Stop iterating ancestors once we reach a non-inline namespace
// when opt.within_namespaces is set.
!opt.within_namespaces || !ctx.resolve_item(*id).is_module()
})
.filter(|id| {
if !ctx.options().conservative_inline_namespaces {
if let ItemKind::Module(ref module) =
*ctx.resolve_item(*id).kind()
{
return !module.is_inline();
}
}
true
});
let ids: Vec<_> = if ctx.options().disable_nested_struct_naming {
let mut ids = Vec::new();
// If target is anonymous we need find its first named ancestor.
if target.is_anon() {
while let Some(id) = ids_iter.next() {
ids.push(id);
if !ctx.resolve_item(id).is_anon() {
break;
}
}
}
ids
} else {
ids_iter.collect()
};
// Concatenate this item's ancestors' names together.
let mut names: Vec<_> = ids
.into_iter()
.map(|id| {
let item = ctx.resolve_item(id);
let target = ctx.resolve_item(item.name_target(ctx));
target.base_name(ctx)
})
.filter(|name| !name.is_empty())
.collect();
names.reverse();
if !base_name.is_empty() {
names.push(base_name);
}
let name = names.join("_");
let name = if opt.user_mangled == UserMangled::Yes {
ctx.parse_callbacks()
.and_then(|callbacks| callbacks.item_name(&name))
.unwrap_or(name)
} else {
name
};
ctx.rust_mangle(&name).into_owned()
}
/// The exposed id that represents an unique id among the siblings of a
/// given item.
pub fn exposed_id(&self, ctx: &BindgenContext) -> String {
// Only use local ids for enums, classes, structs and union types. All
// other items use their global id.
let ty_kind = self.kind().as_type().map(|t| t.kind());
if let Some(ty_kind) = ty_kind {
match *ty_kind {
TypeKind::Comp(..) |
TypeKind::TemplateInstantiation(..) |
TypeKind::Enum(..) => return self.local_id(ctx).to_string(),
_ => {}
}
}
// Note that this `id_` prefix prevents (really unlikely) collisions
// between the global id and the local id of an item with the same
// parent.
format!("id_{}", self.id().as_usize())
}
/// Get a reference to this item's `Module`, or `None` if this is not a
/// `Module` item.
pub fn as_module(&self) -> Option<&Module> {
match self.kind {
ItemKind::Module(ref module) => Some(module),
_ => None,
}
}
/// Get a mutable reference to this item's `Module`, or `None` if this is
/// not a `Module` item.
pub fn as_module_mut(&mut self) -> Option<&mut Module> {
match self.kind {
ItemKind::Module(ref mut module) => Some(module),
_ => None,
}
}
/// Returns whether the item is a constified module enum
fn is_constified_enum_module(&self, ctx: &BindgenContext) -> bool {
// Do not jump through aliases, except for aliases that point to a type
// with the same name, since we dont generate coe for them.
let item = self.id.into_resolver().through_type_refs().resolve(ctx);
let type_ = match *item.kind() {
ItemKind::Type(ref type_) => type_,
_ => return false,
};
match *type_.kind() {
TypeKind::Enum(ref enum_) => {
enum_.computed_enum_variation(ctx, self) ==
EnumVariation::ModuleConsts
}
TypeKind::Alias(inner_id) => {
// TODO(emilio): Make this "hop through type aliases that aren't
// really generated" an option in `ItemResolver`?
let inner_item = ctx.resolve_item(inner_id);
let name = item.canonical_name(ctx);
if inner_item.canonical_name(ctx) == name {
inner_item.is_constified_enum_module(ctx)
} else {
false
}
}
_ => false,
}
}
/// Is this item of a kind that is enabled for code generation?
pub fn is_enabled_for_codegen(&self, ctx: &BindgenContext) -> bool {
let cc = &ctx.options().codegen_config;
match *self.kind() {
ItemKind::Module(..) => true,
ItemKind::Var(_) => cc.vars(),
ItemKind::Type(_) => cc.types(),
ItemKind::Function(ref f) => match f.kind() {
FunctionKind::Function => cc.functions(),
FunctionKind::Method(MethodKind::Constructor) => {
cc.constructors()
}
FunctionKind::Method(MethodKind::Destructor) |
FunctionKind::Method(MethodKind::VirtualDestructor {
..
}) => cc.destructors(),
FunctionKind::Method(MethodKind::Static) |
FunctionKind::Method(MethodKind::Normal) |
FunctionKind::Method(MethodKind::Virtual { .. }) => {
cc.methods()
}
},
}
}
/// Returns the path we should use for allowlisting / blocklisting, which
/// doesn't include user-mangling.
pub fn path_for_allowlisting(&self, ctx: &BindgenContext) -> &Vec<String> {
self.path_for_allowlisting
.borrow_with(|| self.compute_path(ctx, UserMangled::No))
}
fn compute_path(
&self,
ctx: &BindgenContext,
mangled: UserMangled,
) -> Vec<String> {
if let Some(path) = self.annotations().use_instead_of() {
let mut ret =
vec![ctx.resolve_item(ctx.root_module()).name(ctx).get()];
ret.extend_from_slice(path);
return ret;
}
let target = ctx.resolve_item(self.name_target(ctx));
let mut path: Vec<_> = target
.ancestors(ctx)
.chain(iter::once(ctx.root_module().into()))
.map(|id| ctx.resolve_item(id))
.filter(|item| {
item.id() == target.id() ||
item.as_module().map_or(false, |module| {
!module.is_inline() ||
ctx.options().conservative_inline_namespaces
})
})
.map(|item| {
ctx.resolve_item(item.name_target(ctx))
.name(ctx)
.within_namespaces()
.user_mangled(mangled)
.get()
})
.collect();
path.reverse();
path
}
}
impl<T> IsOpaque for T
where
T: Copy + Into<ItemId>,
{
type Extra = ();
fn is_opaque(&self, ctx: &BindgenContext, _: &()) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.resolve_item((*self).into()).is_opaque(ctx, &())
}
}
impl IsOpaque for Item {
type Extra = ();
fn is_opaque(&self, ctx: &BindgenContext, _: &()) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
self.annotations.opaque() ||
self.as_type().map_or(false, |ty| ty.is_opaque(ctx, self)) ||
ctx.opaque_by_name(&self.path_for_allowlisting(ctx))
}
}
impl<T> HasVtable for T
where
T: Copy + Into<ItemId>,
{
fn has_vtable(&self, ctx: &BindgenContext) -> bool {
let id: ItemId = (*self).into();
id.as_type_id(ctx)
.map_or(false, |id| match ctx.lookup_has_vtable(id) {
HasVtableResult::No => false,
_ => true,
})
}
fn has_vtable_ptr(&self, ctx: &BindgenContext) -> bool {
let id: ItemId = (*self).into();
id.as_type_id(ctx)
.map_or(false, |id| match ctx.lookup_has_vtable(id) {
HasVtableResult::SelfHasVtable => true,
_ => false,
})
}
}
impl HasVtable for Item {
fn has_vtable(&self, ctx: &BindgenContext) -> bool {
self.id().has_vtable(ctx)
}
fn has_vtable_ptr(&self, ctx: &BindgenContext) -> bool {
self.id().has_vtable_ptr(ctx)
}
}
impl<T> Sizedness for T
where
T: Copy + Into<ItemId>,
{
fn sizedness(&self, ctx: &BindgenContext) -> SizednessResult {
let id: ItemId = (*self).into();
id.as_type_id(ctx)
.map_or(SizednessResult::default(), |id| ctx.lookup_sizedness(id))
}
}
impl Sizedness for Item {
fn sizedness(&self, ctx: &BindgenContext) -> SizednessResult {
self.id().sizedness(ctx)
}
}
impl<T> HasTypeParamInArray for T
where
T: Copy + Into<ItemId>,
{
fn has_type_param_in_array(&self, ctx: &BindgenContext) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.lookup_has_type_param_in_array(*self)
}
}
impl HasTypeParamInArray for Item {
fn has_type_param_in_array(&self, ctx: &BindgenContext) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.lookup_has_type_param_in_array(self.id())
}
}
impl<T> HasFloat for T
where
T: Copy + Into<ItemId>,
{
fn has_float(&self, ctx: &BindgenContext) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.lookup_has_float(*self)
}
}
impl HasFloat for Item {
fn has_float(&self, ctx: &BindgenContext) -> bool {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
ctx.lookup_has_float(self.id())
}
}
/// A set of items.
pub type ItemSet = BTreeSet<ItemId>;
impl DotAttributes for Item {
fn dot_attributes<W>(
&self,
ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
writeln!(
out,
"<tr><td>{:?}</td></tr>
<tr><td>name</td><td>{}</td></tr>",
self.id,
self.name(ctx).get()
)?;
if self.is_opaque(ctx, &()) {
writeln!(out, "<tr><td>opaque</td><td>true</td></tr>")?;
}
self.kind.dot_attributes(ctx, out)
}
}
impl<T> TemplateParameters for T
where
T: Copy + Into<ItemId>,
{
fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
ctx.resolve_item_fallible(*self)
.map_or(vec![], |item| item.self_template_params(ctx))
}
}
impl TemplateParameters for Item {
fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
self.kind.self_template_params(ctx)
}
}
impl TemplateParameters for ItemKind {
fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
match *self {
ItemKind::Type(ref ty) => ty.self_template_params(ctx),
// If we start emitting bindings to explicitly instantiated
// functions, then we'll need to check ItemKind::Function for
// template params.
ItemKind::Function(_) | ItemKind::Module(_) | ItemKind::Var(_) => {
vec![]
}
}
}
}
// An utility function to handle recursing inside nested types.
fn visit_child(
cur: clang::Cursor,
id: ItemId,
ty: &clang::Type,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
result: &mut Result<TypeId, ParseError>,
) -> clang_sys::CXChildVisitResult {
use clang_sys::*;
if result.is_ok() {
return CXChildVisit_Break;
}
*result = Item::from_ty_with_id(id, ty, cur, parent_id, ctx);
match *result {
Ok(..) => CXChildVisit_Break,
Err(ParseError::Recurse) => {
cur.visit(|c| visit_child(c, id, ty, parent_id, ctx, result));
CXChildVisit_Continue
}
Err(ParseError::Continue) => CXChildVisit_Continue,
}
}
impl ClangItemParser for Item {
fn builtin_type(
kind: TypeKind,
is_const: bool,
ctx: &mut BindgenContext,
) -> TypeId {
// Feel free to add more here, I'm just lazy.
match kind {
TypeKind::Void |
TypeKind::Int(..) |
TypeKind::Pointer(..) |
TypeKind::Float(..) => {}
_ => panic!("Unsupported builtin type"),
}
let ty = Type::new(None, None, kind, is_const);
let id = ctx.next_item_id();
let module = ctx.root_module().into();
ctx.add_item(
Item::new(id, None, None, module, ItemKind::Type(ty)),
None,
None,
);
id.as_type_id_unchecked()
}
fn parse(
cursor: clang::Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> Result<ItemId, ParseError> {
use crate::ir::var::Var;
use clang_sys::*;
if !cursor.is_valid() {
return Err(ParseError::Continue);
}
let comment = cursor.raw_comment();
let annotations = Annotations::new(&cursor);
let current_module = ctx.current_module().into();
let relevant_parent_id = parent_id.unwrap_or(current_module);
macro_rules! try_parse {
($what:ident) => {
match $what::parse(cursor, ctx) {
Ok(ParseResult::New(item, declaration)) => {
let id = ctx.next_item_id();
ctx.add_item(
Item::new(
id,
comment,
annotations,
relevant_parent_id,
ItemKind::$what(item),
),
declaration,
Some(cursor),
);
return Ok(id);
}
Ok(ParseResult::AlreadyResolved(id)) => {
return Ok(id);
}
Err(ParseError::Recurse) => return Err(ParseError::Recurse),
Err(ParseError::Continue) => {}
}
};
}
try_parse!(Module);
// NOTE: Is extremely important to parse functions and vars **before**
// types. Otherwise we can parse a function declaration as a type
// (which is legal), and lose functions to generate.
//
// In general, I'm not totally confident this split between
// ItemKind::Function and TypeKind::FunctionSig is totally worth it, but
// I guess we can try.
try_parse!(Function);
try_parse!(Var);
// Types are sort of special, so to avoid parsing template classes
// twice, handle them separately.
{
let definition = cursor.definition();
let applicable_cursor = definition.unwrap_or(cursor);
let relevant_parent_id = match definition {
Some(definition) => {
if definition != cursor {
ctx.add_semantic_parent(definition, relevant_parent_id);
return Ok(Item::from_ty_or_ref(
applicable_cursor.cur_type(),
cursor,
parent_id,
ctx,
)
.into());
}
ctx.known_semantic_parent(definition)
.or(parent_id)
.unwrap_or(ctx.current_module().into())
}
None => relevant_parent_id,
};
match Item::from_ty(
&applicable_cursor.cur_type(),
applicable_cursor,
Some(relevant_parent_id),
ctx,
) {
Ok(ty) => return Ok(ty.into()),
Err(ParseError::Recurse) => return Err(ParseError::Recurse),
Err(ParseError::Continue) => {}
}
}
// Guess how does clang treat extern "C" blocks?
if cursor.kind() == CXCursor_UnexposedDecl {
Err(ParseError::Recurse)
} else {
// We allowlist cursors here known to be unhandled, to prevent being
// too noisy about this.
match cursor.kind() {
CXCursor_MacroDefinition |
CXCursor_MacroExpansion |
CXCursor_UsingDeclaration |
CXCursor_UsingDirective |
CXCursor_StaticAssert |
CXCursor_FunctionTemplate => {
debug!(
"Unhandled cursor kind {:?}: {:?}",
cursor.kind(),
cursor
);
}
CXCursor_InclusionDirective => {
let file = cursor.get_included_file_name();
match file {
None => {
warn!(
"Inclusion of a nameless file in {:?}",
cursor
);
}
Some(filename) => {
ctx.include_file(filename);
}
}
}
_ => {
// ignore toplevel operator overloads
let spelling = cursor.spelling();
if !spelling.starts_with("operator") {
warn!(
"Unhandled cursor kind {:?}: {:?}",
cursor.kind(),
cursor
);
}
}
}
Err(ParseError::Continue)
}
}
fn from_ty_or_ref(
ty: clang::Type,
location: clang::Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> TypeId {
let id = ctx.next_item_id();
Self::from_ty_or_ref_with_id(id, ty, location, parent_id, ctx)
}
/// Parse a C++ type. If we find a reference to a type that has not been
/// defined yet, use `UnresolvedTypeRef` as a placeholder.
///
/// This logic is needed to avoid parsing items with the incorrect parent
/// and it's sort of complex to explain, so I'll just point to
/// `tests/headers/typeref.hpp` to see the kind of constructs that forced
/// this.
///
/// Typerefs are resolved once parsing is completely done, see
/// `BindgenContext::resolve_typerefs`.
fn from_ty_or_ref_with_id(
potential_id: ItemId,
ty: clang::Type,
location: clang::Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> TypeId {
debug!(
"from_ty_or_ref_with_id: {:?} {:?}, {:?}, {:?}",
potential_id, ty, location, parent_id
);
if ctx.collected_typerefs() {
debug!("refs already collected, resolving directly");
return Item::from_ty_with_id(
potential_id,
&ty,
location,
parent_id,
ctx,
)
.unwrap_or_else(|_| Item::new_opaque_type(potential_id, &ty, ctx));
}
if let Some(ty) = ctx.builtin_or_resolved_ty(
potential_id,
parent_id,
&ty,
Some(location),
) {
debug!("{:?} already resolved: {:?}", ty, location);
return ty;
}
debug!("New unresolved type reference: {:?}, {:?}", ty, location);
let is_const = ty.is_const();
let kind = TypeKind::UnresolvedTypeRef(ty, location, parent_id);
let current_module = ctx.current_module();
ctx.add_item(
Item::new(
potential_id,
None,
None,
parent_id.unwrap_or(current_module.into()),
ItemKind::Type(Type::new(None, None, kind, is_const)),
),
None,
None,
);
potential_id.as_type_id_unchecked()
}
fn from_ty(
ty: &clang::Type,
location: clang::Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> Result<TypeId, ParseError> {
let id = ctx.next_item_id();
Item::from_ty_with_id(id, ty, location, parent_id, ctx)
}
/// This is one of the trickiest methods you'll find (probably along with
/// some of the ones that handle templates in `BindgenContext`).
///
/// This method parses a type, given the potential id of that type (if
/// parsing it was correct), an optional location we're scanning, which is
/// critical some times to obtain information, an optional parent item id,
/// that will, if it's `None`, become the current module id, and the
/// context.
fn from_ty_with_id(
id: ItemId,
ty: &clang::Type,
location: clang::Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> Result<TypeId, ParseError> {
use clang_sys::*;
debug!(
"Item::from_ty_with_id: {:?}\n\
\tty = {:?},\n\
\tlocation = {:?}",
id, ty, location
);
if ty.kind() == clang_sys::CXType_Unexposed ||
location.cur_type().kind() == clang_sys::CXType_Unexposed
{
if ty.is_associated_type() ||
location.cur_type().is_associated_type()
{
return Ok(Item::new_opaque_type(id, ty, ctx));
}
if let Some(param_id) = Item::type_param(None, location, ctx) {
return Ok(ctx.build_ty_wrapper(id, param_id, None, ty));
}
}
let decl = {
let decl = ty.declaration();
decl.definition().unwrap_or(decl)
};
let comment = decl.raw_comment().or_else(|| location.raw_comment());
let annotations =
Annotations::new(&decl).or_else(|| Annotations::new(&location));
if let Some(ref annotations) = annotations {
if let Some(ref replaced) = annotations.use_instead_of() {
ctx.replace(replaced, id);
}
}
if let Some(ty) =
ctx.builtin_or_resolved_ty(id, parent_id, ty, Some(location))
{
return Ok(ty);
}
// First, check we're not recursing.
let mut valid_decl = decl.kind() != CXCursor_NoDeclFound;
let declaration_to_look_for = if valid_decl {
decl.canonical()
} else if location.kind() == CXCursor_ClassTemplate {
valid_decl = true;
location
} else {
decl
};
if valid_decl {
if let Some(partial) = ctx
.currently_parsed_types()
.iter()
.find(|ty| *ty.decl() == declaration_to_look_for)
{
debug!("Avoiding recursion parsing type: {:?}", ty);
// Unchecked because we haven't finished this type yet.
return Ok(partial.id().as_type_id_unchecked());
}
}
let current_module = ctx.current_module().into();
let partial_ty = PartialType::new(declaration_to_look_for, id);
if valid_decl {
ctx.begin_parsing(partial_ty);
}
let result = Type::from_clang_ty(id, ty, location, parent_id, ctx);
let relevant_parent_id = parent_id.unwrap_or(current_module);
let ret = match result {
Ok(ParseResult::AlreadyResolved(ty)) => {
Ok(ty.as_type_id_unchecked())
}
Ok(ParseResult::New(item, declaration)) => {
ctx.add_item(
Item::new(
id,
comment,
annotations,
relevant_parent_id,
ItemKind::Type(item),
),
declaration,
Some(location),
);
Ok(id.as_type_id_unchecked())
}
Err(ParseError::Continue) => Err(ParseError::Continue),
Err(ParseError::Recurse) => {
debug!("Item::from_ty recursing in the ast");
let mut result = Err(ParseError::Recurse);
// Need to pop here, otherwise we'll get stuck.
//
// TODO: Find a nicer interface, really. Also, the
// declaration_to_look_for suspiciously shares a lot of
// logic with ir::context, so we should refactor that.
if valid_decl {
let finished = ctx.finish_parsing();
assert_eq!(*finished.decl(), declaration_to_look_for);
}
location.visit(|cur| {
visit_child(cur, id, ty, parent_id, ctx, &mut result)
});
if valid_decl {
let partial_ty =
PartialType::new(declaration_to_look_for, id);
ctx.begin_parsing(partial_ty);
}
// If we have recursed into the AST all we know, and we still
// haven't found what we've got, let's just try and make a named
// type.
//
// This is what happens with some template members, for example.
if let Err(ParseError::Recurse) = result {
warn!(
"Unknown type, assuming named template type: \
id = {:?}; spelling = {}",
id,
ty.spelling()
);
Item::type_param(Some(id), location, ctx)
.map(Ok)
.unwrap_or(Err(ParseError::Recurse))
} else {
result
}
}
};
if valid_decl {
let partial_ty = ctx.finish_parsing();
assert_eq!(*partial_ty.decl(), declaration_to_look_for);
}
ret
}
/// A named type is a template parameter, e.g., the "T" in Foo<T>. They're
/// always local so it's the only exception when there's no declaration for
/// a type.
fn type_param(
with_id: Option<ItemId>,
location: clang::Cursor,
ctx: &mut BindgenContext,
) -> Option<TypeId> {
let ty = location.cur_type();
debug!(
"Item::type_param:\n\
\twith_id = {:?},\n\
\tty = {} {:?},\n\
\tlocation: {:?}",
with_id,
ty.spelling(),
ty,
location
);
if ty.kind() != clang_sys::CXType_Unexposed {
// If the given cursor's type's kind is not Unexposed, then we
// aren't looking at a template parameter. This check may need to be
// updated in the future if they start properly exposing template
// type parameters.
return None;
}
let ty_spelling = ty.spelling();
// Clang does not expose any information about template type parameters
// via their clang::Type, nor does it give us their canonical cursors
// the straightforward way. However, there are three situations from
// which we can find the definition of the template type parameter, if
// the cursor is indeed looking at some kind of a template type
// parameter or use of one:
//
// 1. The cursor is pointing at the template type parameter's
// definition. This is the trivial case.
//
// (kind = TemplateTypeParameter, ...)
//
// 2. The cursor is pointing at a TypeRef whose referenced() cursor is
// situation (1).
//
// (kind = TypeRef,
// referenced = (kind = TemplateTypeParameter, ...),
// ...)
//
// 3. The cursor is pointing at some use of a template type parameter
// (for example, in a FieldDecl), and this cursor has a child cursor
// whose spelling is the same as the parent's type's spelling, and whose
// kind is a TypeRef of the situation (2) variety.
//
// (kind = FieldDecl,
// type = (kind = Unexposed,
// spelling = "T",
// ...),
// children =
// (kind = TypeRef,
// spelling = "T",
// referenced = (kind = TemplateTypeParameter,
// spelling = "T",
// ...),
// ...)
// ...)
//
// TODO: The alternative to this hacky pattern matching would be to
// maintain proper scopes of template parameters while parsing and use
// de Brujin indices to access template parameters, which clang exposes
// in the cursor's type's canonical type's spelling:
// "type-parameter-x-y". That is probably a better approach long-term,
// but maintaining these scopes properly would require more changes to
// the whole libclang -> IR parsing code.
fn is_template_with_spelling(
refd: &clang::Cursor,
spelling: &str,
) -> bool {
lazy_static! {
static ref ANON_TYPE_PARAM_RE: regex::Regex =
regex::Regex::new(r"^type\-parameter\-\d+\-\d+$").unwrap();
}
if refd.kind() != clang_sys::CXCursor_TemplateTypeParameter {
return false;
}
let refd_spelling = refd.spelling();
refd_spelling == spelling ||
// Allow for anonymous template parameters.
(refd_spelling.is_empty() && ANON_TYPE_PARAM_RE.is_match(spelling.as_ref()))
}
let definition = if is_template_with_spelling(&location, &ty_spelling) {
// Situation (1)
location
} else if location.kind() == clang_sys::CXCursor_TypeRef {
// Situation (2)
match location.referenced() {
Some(refd)
if is_template_with_spelling(&refd, &ty_spelling) =>
{
refd
}
_ => return None,
}
} else {
// Situation (3)
let mut definition = None;
location.visit(|child| {
let child_ty = child.cur_type();
if child_ty.kind() == clang_sys::CXCursor_TypeRef &&
child_ty.spelling() == ty_spelling
{
match child.referenced() {
Some(refd)
if is_template_with_spelling(
&refd,
&ty_spelling,
) =>
{
definition = Some(refd);
return clang_sys::CXChildVisit_Break;
}
_ => {}
}
}
clang_sys::CXChildVisit_Continue
});
if let Some(def) = definition {
def
} else {
return None;
}
};
assert!(is_template_with_spelling(&definition, &ty_spelling));
// Named types are always parented to the root module. They are never
// referenced with namespace prefixes, and they can't inherit anything
// from their parent either, so it is simplest to just hang them off
// something we know will always exist.
let parent = ctx.root_module().into();
if let Some(id) = ctx.get_type_param(&definition) {
if let Some(with_id) = with_id {
return Some(ctx.build_ty_wrapper(
with_id,
id,
Some(parent),
&ty,
));
} else {
return Some(id);
}
}
// See tests/headers/const_tparam.hpp and
// tests/headers/variadic_tname.hpp.
let name = ty_spelling.replace("const ", "").replace(".", "");
let id = with_id.unwrap_or_else(|| ctx.next_item_id());
let item = Item::new(
id,
None,
None,
parent,
ItemKind::Type(Type::named(name)),
);
ctx.add_type_param(item, definition);
Some(id.as_type_id_unchecked())
}
}
impl ItemCanonicalName for Item {
fn canonical_name(&self, ctx: &BindgenContext) -> String {
debug_assert!(
ctx.in_codegen_phase(),
"You're not supposed to call this yet"
);
self.canonical_name
.borrow_with(|| {
let in_namespace = ctx.options().enable_cxx_namespaces ||
ctx.options().disable_name_namespacing;
if in_namespace {
self.name(ctx).within_namespaces().get()
} else {
self.name(ctx).get()
}
})
.clone()
}
}
impl ItemCanonicalPath for Item {
fn namespace_aware_canonical_path(
&self,
ctx: &BindgenContext,
) -> Vec<String> {
let mut path = self.canonical_path(ctx);
// ASSUMPTION: (disable_name_namespacing && cxx_namespaces)
// is equivalent to
// disable_name_namespacing
if ctx.options().disable_name_namespacing {
// Only keep the last item in path
let split_idx = path.len() - 1;
path = path.split_off(split_idx);
} else if !ctx.options().enable_cxx_namespaces {
// Ignore first item "root"
path = vec![path[1..].join("_")];
}
if self.is_constified_enum_module(ctx) {
path.push(CONSTIFIED_ENUM_MODULE_REPR_NAME.into());
}
return path;
}
fn canonical_path(&self, ctx: &BindgenContext) -> Vec<String> {
self.compute_path(ctx, UserMangled::Yes)
}
}
/// Whether to use the user-mangled name (mangled by the `item_name` callback or
/// not.
///
/// Most of the callers probably want just yes, but the ones dealing with
/// allowlisting and blocklisting don't.
#[derive(Copy, Clone, Debug, PartialEq)]
enum UserMangled {
No,
Yes,
}
/// Builder struct for naming variations, which hold inside different
/// flags for naming options.
#[derive(Debug)]
pub struct NameOptions<'a> {
item: &'a Item,
ctx: &'a BindgenContext,
within_namespaces: bool,
user_mangled: UserMangled,
}
impl<'a> NameOptions<'a> {
/// Construct a new `NameOptions`
pub fn new(item: &'a Item, ctx: &'a BindgenContext) -> Self {
NameOptions {
item: item,
ctx: ctx,
within_namespaces: false,
user_mangled: UserMangled::Yes,
}
}
/// Construct the name without the item's containing C++ namespaces mangled
/// into it. In other words, the item's name within the item's namespace.
pub fn within_namespaces(&mut self) -> &mut Self {
self.within_namespaces = true;
self
}
fn user_mangled(&mut self, user_mangled: UserMangled) -> &mut Self {
self.user_mangled = user_mangled;
self
}
/// Construct a name `String`
pub fn get(&self) -> String {
self.item.real_canonical_name(self.ctx, self)
}
}