blob: 594ce2ab8fc652a1586522370e43717b4091a2cc [file] [log] [blame]
//! Traits for determining whether we can derive traits for a thing or not.
//!
//! These traits tend to come in pairs:
//!
//! 1. A "trivial" version, whose implementations aren't allowed to recursively
//! look at other types or the results of fix point analyses.
//!
//! 2. A "normal" version, whose implementations simply query the results of a
//! fix point analysis.
//!
//! The former is used by the analyses when creating the results queried by the
//! second.
use super::context::BindgenContext;
use std::cmp;
use std::ops;
/// A trait that encapsulates the logic for whether or not we can derive `Debug`
/// for a given thing.
pub trait CanDeriveDebug {
/// Return `true` if `Debug` can be derived for this thing, `false`
/// otherwise.
fn can_derive_debug(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive `Copy`
/// for a given thing.
pub trait CanDeriveCopy {
/// Return `true` if `Copy` can be derived for this thing, `false`
/// otherwise.
fn can_derive_copy(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive
/// `Default` for a given thing.
pub trait CanDeriveDefault {
/// Return `true` if `Default` can be derived for this thing, `false`
/// otherwise.
fn can_derive_default(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive `Hash`
/// for a given thing.
pub trait CanDeriveHash {
/// Return `true` if `Hash` can be derived for this thing, `false`
/// otherwise.
fn can_derive_hash(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive
/// `PartialEq` for a given thing.
pub trait CanDerivePartialEq {
/// Return `true` if `PartialEq` can be derived for this thing, `false`
/// otherwise.
fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive
/// `PartialOrd` for a given thing.
pub trait CanDerivePartialOrd {
/// Return `true` if `PartialOrd` can be derived for this thing, `false`
/// otherwise.
fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive `Eq`
/// for a given thing.
pub trait CanDeriveEq {
/// Return `true` if `Eq` can be derived for this thing, `false` otherwise.
fn can_derive_eq(&self, ctx: &BindgenContext) -> bool;
}
/// A trait that encapsulates the logic for whether or not we can derive `Ord`
/// for a given thing.
pub trait CanDeriveOrd {
/// Return `true` if `Ord` can be derived for this thing, `false` otherwise.
fn can_derive_ord(&self, ctx: &BindgenContext) -> bool;
}
/// Whether it is possible or not to automatically derive trait for an item.
///
/// ```ignore
/// No
/// ^
/// |
/// Manually
/// ^
/// |
/// Yes
/// ```
///
/// Initially we assume that we can derive trait for all types and then
/// update our understanding as we learn more about each type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum CanDerive {
/// Yes, we can derive automatically.
Yes,
/// The only thing that stops us from automatically deriving is that
/// array with more than maximum number of elements is used.
///
/// This means we probably can "manually" implement such trait.
Manually,
/// No, we cannot.
No,
}
impl Default for CanDerive {
fn default() -> CanDerive {
CanDerive::Yes
}
}
impl CanDerive {
/// Take the least upper bound of `self` and `rhs`.
pub fn join(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOr for CanDerive {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
self.join(rhs)
}
}
impl ops::BitOrAssign for CanDerive {
fn bitor_assign(&mut self, rhs: Self) {
*self = self.join(rhs)
}
}