blob: b6aabb1758b0854ff6a1bdc2d31a223f7e179ab5 [file] [log] [blame]
mod impl_debug;
mod impl_partialeq;
mod error;
mod helpers;
pub mod struct_layout;
#[cfg(test)]
#[allow(warnings)]
pub(crate) mod bitfield_unit;
#[cfg(test)]
mod bitfield_unit_tests;
use self::helpers::attributes;
use self::struct_layout::StructLayoutTracker;
use super::BindgenOptions;
use ir::analysis::{HasVtable, Sizedness};
use ir::annotations::FieldAccessorKind;
use ir::comment;
use ir::comp::{Base, Bitfield, BitfieldUnit, CompInfo, CompKind, Field,
FieldData, FieldMethods, Method, MethodKind};
use ir::context::{BindgenContext, ItemId};
use ir::derive::{CanDeriveCopy, CanDeriveDebug, CanDeriveDefault,
CanDeriveHash, CanDerivePartialOrd, CanDeriveOrd,
CanDerivePartialEq, CanDeriveEq, CanDerive};
use ir::dot;
use ir::enum_ty::{Enum, EnumVariant, EnumVariantValue};
use ir::function::{Abi, Function, FunctionKind, FunctionSig, Linkage};
use ir::int::IntKind;
use ir::item::{IsOpaque, Item, ItemCanonicalName, ItemCanonicalPath};
use ir::item_kind::ItemKind;
use ir::layout::Layout;
use ir::module::Module;
use ir::objc::{ObjCInterface, ObjCMethod};
use ir::template::{AsTemplateParam, TemplateInstantiation, TemplateParameters};
use ir::ty::{Type, TypeKind};
use ir::var::Var;
use quote;
use proc_macro2::{self, Term, Span};
use std::borrow::Cow;
use std::cell::Cell;
use std::collections::{HashSet, VecDeque};
use std::collections::hash_map::{Entry, HashMap};
use std::fmt::Write;
use std::iter;
use std::ops;
// Name of type defined in constified enum module
pub static CONSTIFIED_ENUM_MODULE_REPR_NAME: &'static str = "Type";
fn top_level_path(ctx: &BindgenContext, item: &Item) -> Vec<quote::Tokens> {
let mut path = vec![quote! { self }];
if ctx.options().enable_cxx_namespaces {
for _ in 0..item.codegen_depth(ctx) {
path.push(quote! { super });
}
}
path
}
fn root_import(ctx: &BindgenContext, module: &Item) -> quote::Tokens {
assert!(ctx.options().enable_cxx_namespaces, "Somebody messed it up");
assert!(module.is_module());
let mut path = top_level_path(ctx, module);
let root = ctx.root_module().canonical_name(ctx);
let root_ident = ctx.rust_ident(&root);
path.push(quote! { #root_ident });
let mut tokens = quote! {};
tokens.append_separated(path, Term::new("::", Span::call_site()));
quote! {
#[allow(unused_imports)]
use #tokens ;
}
}
struct CodegenResult<'a> {
items: Vec<quote::Tokens>,
/// A monotonic counter used to add stable unique id's to stuff that doesn't
/// need to be referenced by anything.
codegen_id: &'a Cell<usize>,
/// Whether a bindgen union has been generated at least once.
saw_bindgen_union: bool,
/// Whether an union has been generated at least once.
saw_union: bool,
/// Whether an incomplete array has been generated at least once.
saw_incomplete_array: bool,
/// Whether Objective C types have been seen at least once.
saw_objc: bool,
/// Whether a bitfield allocation unit has been seen at least once.
saw_bitfield_unit: bool,
items_seen: HashSet<ItemId>,
/// The set of generated function/var names, needed because in C/C++ is
/// legal to do something like:
///
/// ```c++
/// extern "C" {
/// void foo();
/// extern int bar;
/// }
///
/// extern "C" {
/// void foo();
/// extern int bar;
/// }
/// ```
///
/// Being these two different declarations.
functions_seen: HashSet<String>,
vars_seen: HashSet<String>,
/// Used for making bindings to overloaded functions. Maps from a canonical
/// function name to the number of overloads we have already codegen'd for
/// that name. This lets us give each overload a unique suffix.
overload_counters: HashMap<String, u32>,
}
impl<'a> CodegenResult<'a> {
fn new(codegen_id: &'a Cell<usize>) -> Self {
CodegenResult {
items: vec![],
saw_union: false,
saw_bindgen_union: false,
saw_incomplete_array: false,
saw_objc: false,
saw_bitfield_unit: false,
codegen_id: codegen_id,
items_seen: Default::default(),
functions_seen: Default::default(),
vars_seen: Default::default(),
overload_counters: Default::default(),
}
}
fn saw_union(&mut self) {
self.saw_union = true;
}
fn saw_bindgen_union(&mut self) {
self.saw_union();
self.saw_bindgen_union = true;
}
fn saw_incomplete_array(&mut self) {
self.saw_incomplete_array = true;
}
fn saw_objc(&mut self) {
self.saw_objc = true;
}
fn saw_bitfield_unit(&mut self) {
self.saw_bitfield_unit = true;
}
fn seen<Id: Into<ItemId>>(&self, item: Id) -> bool {
self.items_seen.contains(&item.into())
}
fn set_seen<Id: Into<ItemId>>(&mut self, item: Id) {
self.items_seen.insert(item.into());
}
fn seen_function(&self, name: &str) -> bool {
self.functions_seen.contains(name)
}
fn saw_function(&mut self, name: &str) {
self.functions_seen.insert(name.into());
}
/// Get the overload number for the given function name. Increments the
/// counter internally so the next time we ask for the overload for this
/// name, we get the incremented value, and so on.
fn overload_number(&mut self, name: &str) -> u32 {
let counter = self.overload_counters.entry(name.into()).or_insert(0);
let number = *counter;
*counter += 1;
number
}
fn seen_var(&self, name: &str) -> bool {
self.vars_seen.contains(name)
}
fn saw_var(&mut self, name: &str) {
self.vars_seen.insert(name.into());
}
fn inner<F>(&mut self, cb: F) -> Vec<quote::Tokens>
where
F: FnOnce(&mut Self),
{
let mut new = Self::new(self.codegen_id);
cb(&mut new);
self.saw_union |= new.saw_union;
self.saw_incomplete_array |= new.saw_incomplete_array;
self.saw_objc |= new.saw_objc;
self.saw_bitfield_unit |= new.saw_bitfield_unit;
new.items
}
}
impl<'a> ops::Deref for CodegenResult<'a> {
type Target = Vec<quote::Tokens>;
fn deref(&self) -> &Self::Target {
&self.items
}
}
impl<'a> ops::DerefMut for CodegenResult<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.items
}
}
/// A trait to convert a rust type into a pointer, optionally const, to the same
/// type.
trait ToPtr {
fn to_ptr(self, is_const: bool) -> quote::Tokens;
}
impl ToPtr for quote::Tokens {
fn to_ptr(self, is_const: bool) -> quote::Tokens {
if is_const {
quote! { *const #self }
} else {
quote! { *mut #self }
}
}
}
/// An extension trait for `quote::Tokens` that lets us append any implicit
/// template parameters that exist for some type, if necessary.
trait AppendImplicitTemplateParams {
fn append_implicit_template_params(
&mut self,
ctx: &BindgenContext,
item: &Item,
);
}
impl AppendImplicitTemplateParams for quote::Tokens {
fn append_implicit_template_params(
&mut self,
ctx: &BindgenContext,
item: &Item,
) {
let item = item.id()
.into_resolver()
.through_type_refs()
.resolve(ctx);
match *item.expect_type().kind() {
TypeKind::UnresolvedTypeRef(..) => {
unreachable!("already resolved unresolved type refs")
}
TypeKind::ResolvedTypeRef(..) => {
unreachable!("we resolved item through type refs")
}
// None of these types ever have implicit template parameters.
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Pointer(..) |
TypeKind::Reference(..) |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Array(..) |
TypeKind::TypeParam |
TypeKind::Opaque |
TypeKind::Function(..) |
TypeKind::Enum(..) |
TypeKind::BlockPointer |
TypeKind::ObjCId |
TypeKind::ObjCSel |
TypeKind::TemplateInstantiation(..) => return,
_ => {},
}
let params: Vec<_> = item.used_template_params(ctx).iter().map(|p| {
p.try_to_rust_ty(ctx, &())
.expect("template params cannot fail to be a rust type")
}).collect();
if !params.is_empty() {
self.append_all(quote! {
< #( #params ),* >
});
}
}
}
trait CodeGenerator {
/// Extra information from the caller.
type Extra;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
extra: &Self::Extra,
);
}
impl CodeGenerator for Item {
type Extra = ();
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
_extra: &(),
) {
if !self.is_enabled_for_codegen(ctx) {
return;
}
if self.is_blacklisted(ctx) || result.seen(self.id()) {
debug!(
"<Item as CodeGenerator>::codegen: Ignoring hidden or seen: \
self = {:?}",
self
);
return;
}
debug!("<Item as CodeGenerator>::codegen: self = {:?}", self);
if !ctx.codegen_items().contains(&self.id()) {
// TODO(emilio, #453): Figure out what to do when this happens
// legitimately, we could track the opaque stuff and disable the
// assertion there I guess.
error!("Found non-whitelisted item in code generation: {:?}", self);
}
result.set_seen(self.id());
match *self.kind() {
ItemKind::Module(ref module) => {
module.codegen(ctx, result, self);
}
ItemKind::Function(ref fun) => {
fun.codegen(ctx, result, self);
}
ItemKind::Var(ref var) => {
var.codegen(ctx, result, self);
}
ItemKind::Type(ref ty) => {
ty.codegen(ctx, result, self);
}
}
}
}
impl CodeGenerator for Module {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug!("<Module as CodeGenerator>::codegen: item = {:?}", item);
let codegen_self = |result: &mut CodegenResult,
found_any: &mut bool| {
for child in self.children() {
if ctx.codegen_items().contains(child) {
*found_any = true;
ctx.resolve_item(*child).codegen(ctx, result, &());
}
}
if item.id() == ctx.root_module() {
if result.saw_bindgen_union {
utils::prepend_union_types(ctx, &mut *result);
}
if result.saw_incomplete_array {
utils::prepend_incomplete_array_types(ctx, &mut *result);
}
if ctx.need_bindegen_complex_type() {
utils::prepend_complex_type(&mut *result);
}
if result.saw_objc {
utils::prepend_objc_header(ctx, &mut *result);
}
if result.saw_bitfield_unit {
utils::prepend_bitfield_unit_type(&mut *result);
}
}
};
if !ctx.options().enable_cxx_namespaces ||
(self.is_inline() &&
!ctx.options().conservative_inline_namespaces)
{
codegen_self(result, &mut false);
return;
}
let mut found_any = false;
let inner_items = result.inner(|result| {
result.push(root_import(ctx, item));
let path = item.namespace_aware_canonical_path(ctx).join("::");
if let Some(raw_lines) = ctx.options().module_lines.get(&path) {
for raw_line in raw_lines {
found_any = true;
// FIXME(emilio): The use of `Term` is an abuse, but we abuse it
// in a bunch more places.
let line = Term::new(raw_line, Span::call_site());
result.push(quote! { #line });
}
}
codegen_self(result, &mut found_any);
});
// Don't bother creating an empty module.
if !found_any {
return;
}
let name = item.canonical_name(ctx);
let ident = ctx.rust_ident(name);
result.push(if item.id() == ctx.root_module() {
quote! {
#[allow(non_snake_case, non_camel_case_types, non_upper_case_globals)]
pub mod #ident {
#( #inner_items )*
}
}
} else {
quote! {
pub mod #ident {
#( #inner_items )*
}
}
});
}
}
impl CodeGenerator for Var {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
use ir::var::VarType;
debug!("<Var as CodeGenerator>::codegen: item = {:?}", item);
debug_assert!(item.is_enabled_for_codegen(ctx));
let canonical_name = item.canonical_name(ctx);
if result.seen_var(&canonical_name) {
return;
}
result.saw_var(&canonical_name);
let canonical_ident = ctx.rust_ident(&canonical_name);
// We can't generate bindings to static variables of templates. The
// number of actual variables for a single declaration are open ended
// and we don't know what instantiations do or don't exist.
if !item.all_template_params(ctx).is_empty() {
return;
}
let ty = self.ty().to_rust_ty_or_opaque(ctx, &());
if let Some(val) = self.val() {
match *val {
VarType::Bool(val) => {
result.push(quote! {
pub const #canonical_ident : #ty = #val ;
});
}
VarType::Int(val) => {
let int_kind = self.ty()
.into_resolver()
.through_type_aliases()
.through_type_refs()
.resolve(ctx)
.expect_type()
.as_integer()
.unwrap();
let val = if int_kind.is_signed() {
helpers::ast_ty::int_expr(val)
} else {
helpers::ast_ty::uint_expr(val as _)
};
result.push(quote! {
pub const #canonical_ident : #ty = #val ;
});
}
VarType::String(ref bytes) => {
// Account the trailing zero.
//
// TODO: Here we ignore the type we just made up, probably
// we should refactor how the variable type and ty id work.
let len = bytes.len() + 1;
let ty = quote! {
[u8; #len]
};
match String::from_utf8(bytes.clone()) {
Ok(string) => {
let cstr = helpers::ast_ty::cstr_expr(string);
result.push(quote! {
pub const #canonical_ident : &'static #ty = #cstr ;
});
}
Err(..) => {
let bytes = helpers::ast_ty::byte_array_expr(bytes);
result.push(quote! {
pub const #canonical_ident : #ty = #bytes ;
});
}
}
}
VarType::Float(f) => {
match helpers::ast_ty::float_expr(ctx, f) {
Ok(expr) => result.push(quote! {
pub const #canonical_ident : #ty = #expr ;
}),
Err(..) => return,
}
}
VarType::Char(c) => {
result.push(quote! {
pub const #canonical_ident : #ty = #c ;
});
}
}
} else {
let mut attrs = vec![];
if let Some(mangled) = self.mangled_name() {
attrs.push(attributes::link_name(mangled));
} else if canonical_name != self.name() {
attrs.push(attributes::link_name(self.name()));
}
let mut tokens = quote!(
extern "C" {
#(#attrs)*
pub static mut #canonical_ident: #ty;
}
);
result.push(tokens);
}
}
}
impl CodeGenerator for Type {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug!("<Type as CodeGenerator>::codegen: item = {:?}", item);
debug_assert!(item.is_enabled_for_codegen(ctx));
match *self.kind() {
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Array(..) |
TypeKind::Pointer(..) |
TypeKind::BlockPointer |
TypeKind::Reference(..) |
TypeKind::Function(..) |
TypeKind::ResolvedTypeRef(..) |
TypeKind::Opaque |
TypeKind::TypeParam => {
// These items don't need code generation, they only need to be
// converted to rust types in fields, arguments, and such.
return;
}
TypeKind::TemplateInstantiation(ref inst) => {
inst.codegen(ctx, result, item)
}
TypeKind::Comp(ref ci) => ci.codegen(ctx, result, item),
TypeKind::TemplateAlias(inner, _) |
TypeKind::Alias(inner) => {
let inner_item = inner.into_resolver()
.through_type_refs()
.resolve(ctx);
let name = item.canonical_name(ctx);
{
let through_type_aliases = inner.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(ctx);
// Try to catch the common pattern:
//
// typedef struct foo { ... } foo;
//
// here, and also other more complex cases like #946.
if through_type_aliases.canonical_name(ctx) == name {
return;
}
}
// If this is a known named type, disallow generating anything
// for it too.
let spelling = self.name().expect("Unnamed alias?");
if utils::type_from_named(ctx, spelling).is_some() {
return;
}
let mut outer_params = item.used_template_params(ctx);
let inner_rust_type = if item.is_opaque(ctx, &()) {
outer_params = vec![];
self.to_opaque(ctx, item)
} else {
// Its possible that we have better layout information than
// the inner type does, so fall back to an opaque blob based
// on our layout if converting the inner item fails.
let mut inner_ty = inner_item
.try_to_rust_ty_or_opaque(ctx, &())
.unwrap_or_else(|_| self.to_opaque(ctx, item));
inner_ty.append_implicit_template_params(ctx, inner_item);
inner_ty
};
{
// FIXME(emilio): This is a workaround to avoid generating
// incorrect type aliases because of types that we haven't
// been able to resolve (because, eg, they depend on a
// template parameter).
//
// It's kind of a shame not generating them even when they
// could be referenced, but we already do the same for items
// with invalid template parameters, and at least this way
// they can be replaced, instead of generating plain invalid
// code.
let inner_canon_type =
inner_item.expect_type().canonical_type(ctx);
if inner_canon_type.is_invalid_type_param() {
warn!(
"Item contained invalid named type, skipping: \
{:?}, {:?}",
item,
inner_item
);
return;
}
}
let rust_name = ctx.rust_ident(&name);
let mut tokens = if let Some(comment) = item.comment(ctx) {
attributes::doc(comment)
} else {
quote! {}
};
// We prefer using `pub use` over `pub type` because of:
// https://github.com/rust-lang/rust/issues/26264
if inner_rust_type.to_string()
.chars()
.all(|c| match c {
// These are the only characters allowed in simple
// paths, eg `good::dogs::Bront`.
'A'...'Z' | 'a'...'z' | '0'...'9' | ':' | '_' | ' ' => true,
_ => false,
}) &&
outer_params.is_empty() &&
inner_item.expect_type().canonical_type(ctx).is_enum()
{
tokens.append_all(quote! {
pub use
});
let path = top_level_path(ctx, item);
tokens.append_separated(path, Term::new("::", Span::call_site()));
tokens.append_all(quote! {
:: #inner_rust_type as #rust_name ;
});
result.push(tokens);
return;
}
tokens.append_all(quote! {
pub type #rust_name
});
let params: Vec<_> = outer_params.into_iter()
.filter_map(|p| p.as_template_param(ctx, &()))
.collect();
if params.iter().any(|p| ctx.resolve_type(*p).is_invalid_type_param()) {
warn!(
"Item contained invalid template \
parameter: {:?}",
item
);
return;
}
let params: Vec<_> = params.iter().map(|p| {
p.try_to_rust_ty(ctx, &())
.expect("type parameters can always convert to rust ty OK")
}).collect();
if !params.is_empty() {
tokens.append_all(quote! {
< #( #params ),* >
});
}
tokens.append_all(quote! {
= #inner_rust_type ;
});
result.push(tokens);
}
TypeKind::Enum(ref ei) => ei.codegen(ctx, result, item),
TypeKind::ObjCId | TypeKind::ObjCSel => {
result.saw_objc();
}
TypeKind::ObjCInterface(ref interface) => {
interface.codegen(ctx, result, item)
}
ref u @ TypeKind::UnresolvedTypeRef(..) => {
unreachable!("Should have been resolved after parsing {:?}!", u)
}
}
}
}
struct Vtable<'a> {
item_id: ItemId,
#[allow(dead_code)]
methods: &'a [Method],
#[allow(dead_code)]
base_classes: &'a [Base],
}
impl<'a> Vtable<'a> {
fn new(
item_id: ItemId,
methods: &'a [Method],
base_classes: &'a [Base],
) -> Self {
Vtable {
item_id: item_id,
methods: methods,
base_classes: base_classes,
}
}
}
impl<'a> CodeGenerator for Vtable<'a> {
type Extra = Item;
fn codegen<'b>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'b>,
item: &Item,
) {
assert_eq!(item.id(), self.item_id);
debug_assert!(item.is_enabled_for_codegen(ctx));
// For now, generate an empty struct, later we should generate function
// pointers and whatnot.
let name = ctx.rust_ident(&self.canonical_name(ctx));
let void = helpers::ast_ty::raw_type(ctx, "c_void");
result.push(quote! {
#[repr(C)]
pub struct #name ( #void );
});
}
}
impl<'a> ItemCanonicalName for Vtable<'a> {
fn canonical_name(&self, ctx: &BindgenContext) -> String {
format!("{}__bindgen_vtable", self.item_id.canonical_name(ctx))
}
}
impl<'a> TryToRustTy for Vtable<'a> {
type Extra = ();
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<quote::Tokens> {
let name = ctx.rust_ident(self.canonical_name(ctx));
Ok(quote! {
#name
})
}
}
impl CodeGenerator for TemplateInstantiation {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug_assert!(item.is_enabled_for_codegen(ctx));
// Although uses of instantiations don't need code generation, and are
// just converted to rust types in fields, vars, etc, we take this
// opportunity to generate tests for their layout here. If the
// instantiation is opaque, then its presumably because we don't
// properly understand it (maybe because of specializations), and so we
// shouldn't emit layout tests either.
if !ctx.options().layout_tests || self.is_opaque(ctx, item) {
return;
}
// If there are any unbound type parameters, then we can't generate a
// layout test because we aren't dealing with a concrete type with a
// concrete size and alignment.
if ctx.uses_any_template_parameters(item.id()) {
return;
}
let layout = item.kind().expect_type().layout(ctx);
if let Some(layout) = layout {
let size = layout.size;
let align = layout.align;
let name = item.full_disambiguated_name(ctx);
let mut fn_name =
format!("__bindgen_test_layout_{}_instantiation", name);
let times_seen = result.overload_number(&fn_name);
if times_seen > 0 {
write!(&mut fn_name, "_{}", times_seen).unwrap();
}
let fn_name = ctx.rust_ident_raw(fn_name);
let prefix = ctx.trait_prefix();
let ident = item.to_rust_ty_or_opaque(ctx, &());
let size_of_expr = quote! {
::#prefix::mem::size_of::<#ident>()
};
let align_of_expr = quote! {
::#prefix::mem::align_of::<#ident>()
};
let item = quote! {
#[test]
fn #fn_name() {
assert_eq!(#size_of_expr, #size,
concat!("Size of template specialization: ",
stringify!(#ident)));
assert_eq!(#align_of_expr, #align,
concat!("Alignment of template specialization: ",
stringify!(#ident)));
}
};
result.push(item);
}
}
}
/// Trait for implementing the code generation of a struct or union field.
trait FieldCodegen<'a> {
type Extra;
fn codegen<F, M>(
&self,
ctx: &BindgenContext,
fields_should_be_private: bool,
codegen_depth: usize,
accessor_kind: FieldAccessorKind,
parent: &CompInfo,
result: &mut CodegenResult,
struct_layout: &mut StructLayoutTracker,
fields: &mut F,
methods: &mut M,
extra: Self::Extra,
) where
F: Extend<quote::Tokens>,
M: Extend<quote::Tokens>;
}
impl<'a> FieldCodegen<'a> for Field {
type Extra = ();
fn codegen<F, M>(
&self,
ctx: &BindgenContext,
fields_should_be_private: bool,
codegen_depth: usize,
accessor_kind: FieldAccessorKind,
parent: &CompInfo,
result: &mut CodegenResult,
struct_layout: &mut StructLayoutTracker,
fields: &mut F,
methods: &mut M,
_: (),
) where
F: Extend<quote::Tokens>,
M: Extend<quote::Tokens>,
{
match *self {
Field::DataMember(ref data) => {
data.codegen(
ctx,
fields_should_be_private,
codegen_depth,
accessor_kind,
parent,
result,
struct_layout,
fields,
methods,
(),
);
}
Field::Bitfields(ref unit) => {
unit.codegen(
ctx,
fields_should_be_private,
codegen_depth,
accessor_kind,
parent,
result,
struct_layout,
fields,
methods,
(),
);
}
}
}
}
impl<'a> FieldCodegen<'a> for FieldData {
type Extra = ();
fn codegen<F, M>(
&self,
ctx: &BindgenContext,
fields_should_be_private: bool,
codegen_depth: usize,
accessor_kind: FieldAccessorKind,
parent: &CompInfo,
result: &mut CodegenResult,
struct_layout: &mut StructLayoutTracker,
fields: &mut F,
methods: &mut M,
_: (),
) where
F: Extend<quote::Tokens>,
M: Extend<quote::Tokens>,
{
// Bitfields are handled by `FieldCodegen` implementations for
// `BitfieldUnit` and `Bitfield`.
assert!(self.bitfield_width().is_none());
let field_item = self.ty().into_resolver().through_type_refs().resolve(ctx);
let field_ty = field_item.expect_type();
let mut ty = self.ty().to_rust_ty_or_opaque(ctx, &());
// NB: If supported, we use proper `union` types.
let ty = if parent.is_union() && !parent.can_be_rust_union(ctx) {
if ctx.options().enable_cxx_namespaces {
quote! {
root::__BindgenUnionField<#ty>
}
} else {
quote! {
__BindgenUnionField<#ty>
}
}
} else if let Some(item) = field_ty.is_incomplete_array(ctx) {
result.saw_incomplete_array();
let inner = item.to_rust_ty_or_opaque(ctx, &());
if ctx.options().enable_cxx_namespaces {
quote! {
root::__IncompleteArrayField<#inner>
}
} else {
quote! {
__IncompleteArrayField<#inner>
}
}
} else {
ty.append_implicit_template_params(ctx, field_item);
ty
};
let mut field = quote! {};
if ctx.options().generate_comments {
if let Some(raw_comment) = self.comment() {
let comment =
comment::preprocess(raw_comment, codegen_depth + 1);
field = attributes::doc(comment);
}
}
let field_name =
self.name()
.map(|name| ctx.rust_mangle(name).into_owned())
.expect("Each field should have a name in codegen!");
let field_ident = ctx.rust_ident_raw(field_name.as_str());
if !parent.is_union() {
if let Some(padding_field) =
struct_layout.pad_field(&field_name, field_ty, self.offset())
{
fields.extend(Some(padding_field));
}
}
let is_private = self.annotations().private_fields().unwrap_or(
fields_should_be_private,
);
let accessor_kind =
self.annotations().accessor_kind().unwrap_or(accessor_kind);
if is_private {
field.append_all(quote! {
#field_ident : #ty ,
});
} else {
field.append_all(quote! {
pub #field_ident : #ty ,
});
}
fields.extend(Some(field));
// TODO: Factor the following code out, please!
if accessor_kind == FieldAccessorKind::None {
return;
}
let getter_name = ctx.rust_ident_raw(format!("get_{}", field_name));
let mutable_getter_name =
ctx.rust_ident_raw(format!("get_{}_mut", field_name));
let field_name = ctx.rust_ident_raw(field_name);
methods.extend(Some(match accessor_kind {
FieldAccessorKind::None => unreachable!(),
FieldAccessorKind::Regular => {
quote! {
#[inline]
pub fn #getter_name(&self) -> & #ty {
&self.#field_name
}
#[inline]
pub fn #mutable_getter_name(&mut self) -> &mut #ty {
&mut self.#field_name
}
}
}
FieldAccessorKind::Unsafe => {
quote! {
#[inline]
pub unsafe fn #getter_name(&self) -> & #ty {
&self.#field_name
}
#[inline]
pub unsafe fn #mutable_getter_name(&mut self) -> &mut #ty {
&mut self.#field_name
}
}
}
FieldAccessorKind::Immutable => {
quote! {
#[inline]
pub fn #getter_name(&self) -> & #ty {
&self.#field_name
}
}
}
}));
}
}
impl BitfieldUnit {
/// Get the constructor name for this bitfield unit.
fn ctor_name(&self) -> quote::Tokens {
let ctor_name = Term::new(&format!("new_bitfield_{}", self.nth()), Span::call_site());
quote! {
#ctor_name
}
}
}
impl Bitfield {
/// Extend an under construction bitfield unit constructor with this
/// bitfield. This involves two things:
///
/// 1. Adding a parameter with this bitfield's name and its type.
///
/// 2. Setting the relevant bits on the `__bindgen_bitfield_unit` variable
/// that's being constructed.
fn extend_ctor_impl(
&self,
ctx: &BindgenContext,
param_name: quote::Tokens,
mut ctor_impl: quote::Tokens,
) -> quote::Tokens {
let bitfield_ty = ctx.resolve_type(self.ty());
let bitfield_ty_layout = bitfield_ty.layout(ctx).expect(
"Bitfield without layout? Gah!",
);
let bitfield_int_ty = helpers::blob(bitfield_ty_layout);
let offset = self.offset_into_unit();
let width = self.width() as u8;
let prefix = ctx.trait_prefix();
ctor_impl.append_all(quote! {
__bindgen_bitfield_unit.set(
#offset,
#width,
{
let #param_name: #bitfield_int_ty = unsafe {
::#prefix::mem::transmute(#param_name)
};
#param_name as u64
}
);
});
ctor_impl
}
}
impl<'a> FieldCodegen<'a> for BitfieldUnit {
type Extra = ();
fn codegen<F, M>(
&self,
ctx: &BindgenContext,
fields_should_be_private: bool,
codegen_depth: usize,
accessor_kind: FieldAccessorKind,
parent: &CompInfo,
result: &mut CodegenResult,
struct_layout: &mut StructLayoutTracker,
fields: &mut F,
methods: &mut M,
_: (),
) where
F: Extend<quote::Tokens>,
M: Extend<quote::Tokens>,
{
result.saw_bitfield_unit();
let field_ty = {
let ty = helpers::bitfield_unit(ctx, self.layout());
if parent.is_union() && !parent.can_be_rust_union(ctx) {
if ctx.options().enable_cxx_namespaces {
quote! {
root::__BindgenUnionField<#ty>
}
} else {
quote! {
__BindgenUnionField<#ty>
}
}
} else {
ty
}
};
let unit_field_name = format!("_bitfield_{}", self.nth());
let unit_field_ident = ctx.rust_ident(&unit_field_name);
let field = quote! {
pub #unit_field_ident : #field_ty ,
};
fields.extend(Some(field));
let unit_field_ty = helpers::bitfield_unit(ctx, self.layout());
let ctor_name = self.ctor_name();
let mut ctor_params = vec![];
let mut ctor_impl = quote! {};
let mut generate_ctor = true;
for bf in self.bitfields() {
// Codegen not allowed for anonymous bitfields
if bf.name().is_none() {
continue;
}
let mut bitfield_representable_as_int = true;
bf.codegen(
ctx,
fields_should_be_private,
codegen_depth,
accessor_kind,
parent,
result,
struct_layout,
fields,
methods,
(&unit_field_name, &mut bitfield_representable_as_int),
);
// Generating a constructor requires the bitfield to be representable as an integer.
if !bitfield_representable_as_int {
generate_ctor = false;
continue;
}
let param_name = bitfield_getter_name(ctx, bf);
let bitfield_ty_item = ctx.resolve_item(bf.ty());
let bitfield_ty = bitfield_ty_item.expect_type();
let bitfield_ty =
bitfield_ty.to_rust_ty_or_opaque(ctx, bitfield_ty_item);
ctor_params.push(quote! {
#param_name : #bitfield_ty
});
ctor_impl = bf.extend_ctor_impl(
ctx,
param_name,
ctor_impl,
);
}
if generate_ctor {
methods.extend(Some(quote! {
#[inline]
pub fn #ctor_name ( #( #ctor_params ),* ) -> #unit_field_ty {
let mut __bindgen_bitfield_unit: #unit_field_ty = Default::default();
#ctor_impl
__bindgen_bitfield_unit
}
}));
}
struct_layout.saw_bitfield_unit(self.layout());
}
}
fn bitfield_getter_name(
ctx: &BindgenContext,
bitfield: &Bitfield,
) -> quote::Tokens {
let name = bitfield.getter_name();
let name = ctx.rust_ident_raw(name);
quote! { #name }
}
fn bitfield_setter_name(
ctx: &BindgenContext,
bitfield: &Bitfield,
) -> quote::Tokens {
let setter = bitfield.setter_name();
let setter = ctx.rust_ident_raw(setter);
quote! { #setter }
}
impl<'a> FieldCodegen<'a> for Bitfield {
type Extra = (&'a str, &'a mut bool);
fn codegen<F, M>(
&self,
ctx: &BindgenContext,
_fields_should_be_private: bool,
_codegen_depth: usize,
_accessor_kind: FieldAccessorKind,
parent: &CompInfo,
_result: &mut CodegenResult,
_struct_layout: &mut StructLayoutTracker,
_fields: &mut F,
methods: &mut M,
(unit_field_name, bitfield_representable_as_int): (&'a str, &mut bool),
) where
F: Extend<quote::Tokens>,
M: Extend<quote::Tokens>,
{
let prefix = ctx.trait_prefix();
let getter_name = bitfield_getter_name(ctx, self);
let setter_name = bitfield_setter_name(ctx, self);
let unit_field_ident = Term::new(unit_field_name, Span::call_site());
let bitfield_ty_item = ctx.resolve_item(self.ty());
let bitfield_ty = bitfield_ty_item.expect_type();
let bitfield_ty_layout = bitfield_ty.layout(ctx).expect(
"Bitfield without layout? Gah!",
);
let bitfield_int_ty = match helpers::integer_type(bitfield_ty_layout) {
Some(int_ty) => {
*bitfield_representable_as_int = true;
int_ty
}
None => {
*bitfield_representable_as_int = false;
return;
}
};
let bitfield_ty =
bitfield_ty.to_rust_ty_or_opaque(ctx, bitfield_ty_item);
let offset = self.offset_into_unit();
let width = self.width() as u8;
if parent.is_union() && !parent.can_be_rust_union(ctx) {
methods.extend(Some(quote! {
#[inline]
pub fn #getter_name(&self) -> #bitfield_ty {
unsafe {
::#prefix::mem::transmute(
self.#unit_field_ident.as_ref().get(#offset, #width)
as #bitfield_int_ty
)
}
}
#[inline]
pub fn #setter_name(&mut self, val: #bitfield_ty) {
unsafe {
let val: #bitfield_int_ty = ::#prefix::mem::transmute(val);
self.#unit_field_ident.as_mut().set(
#offset,
#width,
val as u64
)
}
}
}));
} else {
methods.extend(Some(quote! {
#[inline]
pub fn #getter_name(&self) -> #bitfield_ty {
unsafe {
::#prefix::mem::transmute(
self.#unit_field_ident.get(#offset, #width)
as #bitfield_int_ty
)
}
}
#[inline]
pub fn #setter_name(&mut self, val: #bitfield_ty) {
unsafe {
let val: #bitfield_int_ty = ::#prefix::mem::transmute(val);
self.#unit_field_ident.set(
#offset,
#width,
val as u64
)
}
}
}));
}
}
}
impl CodeGenerator for CompInfo {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug!("<CompInfo as CodeGenerator>::codegen: item = {:?}", item);
debug_assert!(item.is_enabled_for_codegen(ctx));
// Don't output classes with template parameters that aren't types, and
// also don't output template specializations, neither total or partial.
if self.has_non_type_template_params() {
return;
}
let ty = item.expect_type();
let layout = ty.layout(ctx);
let mut packed = self.is_packed(ctx, &layout);
let canonical_name = item.canonical_name(ctx);
let canonical_ident = ctx.rust_ident(&canonical_name);
// Generate the vtable from the method list if appropriate.
//
// TODO: I don't know how this could play with virtual methods that are
// not in the list of methods found by us, we'll see. Also, could the
// order of the vtable pointers vary?
//
// FIXME: Once we generate proper vtables, we need to codegen the
// vtable, but *not* generate a field for it in the case that
// HasVtable::has_vtable_ptr is false but HasVtable::has_vtable is true.
//
// Also, we need to generate the vtable in such a way it "inherits" from
// the parent too.
let is_opaque = item.is_opaque(ctx, &());
let mut fields = vec![];
let mut struct_layout =
StructLayoutTracker::new(ctx, self, ty, &canonical_name);
if !is_opaque {
if item.has_vtable_ptr(ctx) {
let vtable =
Vtable::new(item.id(), self.methods(), self.base_members());
vtable.codegen(ctx, result, item);
let vtable_type = vtable
.try_to_rust_ty(ctx, &())
.expect("vtable to Rust type conversion is infallible")
.to_ptr(true);
fields.push(quote! {
pub vtable_: #vtable_type ,
});
struct_layout.saw_vtable();
}
for base in self.base_members() {
if !base.requires_storage(ctx) {
continue;
}
let inner = base.ty.to_rust_ty_or_opaque(ctx, &());
let field_name = ctx.rust_ident(&base.field_name);
let base_ty = ctx.resolve_type(base.ty);
struct_layout.saw_base(base_ty);
fields.push(quote! {
pub #field_name : #inner ,
});
}
}
let mut methods = vec![];
if !is_opaque {
let codegen_depth = item.codegen_depth(ctx);
let fields_should_be_private =
item.annotations().private_fields().unwrap_or(false);
let struct_accessor_kind = item.annotations()
.accessor_kind()
.unwrap_or(FieldAccessorKind::None);
for field in self.fields() {
field.codegen(
ctx,
fields_should_be_private,
codegen_depth,
struct_accessor_kind,
self,
result,
&mut struct_layout,
&mut fields,
&mut methods,
(),
);
}
}
let is_union = self.kind() == CompKind::Union;
let layout = item.kind().expect_type().layout(ctx);
if is_union && !is_opaque && !self.is_forward_declaration() {
result.saw_union();
if !self.can_be_rust_union(ctx) {
result.saw_bindgen_union();
}
let layout = layout.expect("Unable to get layout information?");
let ty = helpers::blob(layout);
fields.push(if self.can_be_rust_union(ctx) {
quote! {
_bindgen_union_align: #ty ,
}
} else {
struct_layout.saw_union(layout);
quote! {
pub bindgen_union_field: #ty ,
}
});
}
let mut explicit_align = None;
if is_opaque {
// Opaque item should not have generated methods, fields.
debug_assert!(fields.is_empty());
debug_assert!(methods.is_empty());
match layout {
Some(l) => {
explicit_align = Some(l.align);
let ty = helpers::blob(l);
fields.push(quote! {
pub _bindgen_opaque_blob: #ty ,
});
}
None => {
warn!("Opaque type without layout! Expect dragons!");
}
}
} else if !is_union && !item.is_zero_sized(ctx) {
if let Some(padding_field) =
layout.and_then(|layout| struct_layout.pad_struct(layout))
{
fields.push(padding_field);
}
if let Some(layout) = layout {
if struct_layout.requires_explicit_align(layout) {
if layout.align == 1 {
packed = true;
} else {
explicit_align = Some(layout.align);
let ty = helpers::blob(Layout::new(0, layout.align));
fields.push(quote! {
pub __bindgen_align: #ty ,
});
}
}
}
}
// C++ requires every struct to be addressable, so what C++ compilers do
// is making the struct 1-byte sized.
//
// This is apparently not the case for C, see:
// https://github.com/rust-lang-nursery/rust-bindgen/issues/551
//
// Just get the layout, and assume C++ if not.
//
// NOTE: This check is conveniently here to avoid the dummy fields we
// may add for unused template parameters.
if self.is_forward_declaration() {
fields.push(quote! {
_unused: [u8; 0],
});
} else if item.is_zero_sized(ctx) {
let has_address = if is_opaque {
// Generate the address field if it's an opaque type and
// couldn't determine the layout of the blob.
layout.is_none()
} else {
layout.map_or(true, |l| l.size != 0)
};
if has_address {
let ty = helpers::blob(Layout::new(1, 1));
fields.push(quote! {
pub _address: #ty,
});
}
}
let mut generic_param_names = vec![];
for (idx, ty) in item.used_template_params(ctx).iter().enumerate() {
let param = ctx.resolve_type(*ty);
let name = param.name().unwrap();
let ident = ctx.rust_ident(name);
generic_param_names.push(ident.clone());
let prefix = ctx.trait_prefix();
let field_name = ctx.rust_ident(format!("_phantom_{}", idx));
fields.push(quote! {
pub #field_name : ::#prefix::marker::PhantomData<
::#prefix::cell::UnsafeCell<#ident>
> ,
});
}
let generics = if !generic_param_names.is_empty() {
let generic_param_names = generic_param_names.clone();
quote! {
< #( #generic_param_names ),* >
}
} else {
quote! { }
};
let mut attributes = vec![];
let mut needs_clone_impl = false;
let mut needs_default_impl = false;
let mut needs_debug_impl = false;
let mut needs_partialeq_impl = false;
if let Some(comment) = item.comment(ctx) {
attributes.push(attributes::doc(comment));
}
if packed && !is_opaque {
attributes.push(attributes::repr_list(&["C", "packed"]));
} else {
attributes.push(attributes::repr("C"));
}
if ctx.options().rust_features().repr_align {
if let Some(explicit) = explicit_align {
// Ensure that the struct has the correct alignment even in
// presence of alignas.
let explicit = helpers::ast_ty::int_expr(explicit as i64);
attributes.push(quote! {
#[repr(align(#explicit))]
});
}
}
let mut derives = vec![];
if item.can_derive_debug(ctx) {
derives.push("Debug");
} else {
needs_debug_impl = ctx.options().derive_debug &&
ctx.options().impl_debug
}
if item.can_derive_default(ctx) {
derives.push("Default");
} else {
needs_default_impl =
ctx.options().derive_default && !self.is_forward_declaration();
}
let all_template_params = item.all_template_params(ctx);
if item.can_derive_copy(ctx) && !item.annotations().disallow_copy() {
derives.push("Copy");
if ctx.options().rust_features().builtin_clone_impls ||
!all_template_params.is_empty()
{
// FIXME: This requires extra logic if you have a big array in a
// templated struct. The reason for this is that the magic:
// fn clone(&self) -> Self { *self }
// doesn't work for templates.
//
// It's not hard to fix though.
derives.push("Clone");
} else {
needs_clone_impl = true;
}
}
if item.can_derive_hash(ctx) {
derives.push("Hash");
}
if item.can_derive_partialord(ctx) {
derives.push("PartialOrd");
}
if item.can_derive_ord(ctx) {
derives.push("Ord");
}
if item.can_derive_partialeq(ctx) {
derives.push("PartialEq");
} else {
needs_partialeq_impl =
ctx.options().derive_partialeq &&
ctx.options().impl_partialeq &&
ctx.lookup_can_derive_partialeq_or_partialord(item.id()) == CanDerive::ArrayTooLarge;
}
if item.can_derive_eq(ctx) {
derives.push("Eq");
}
if !derives.is_empty() {
attributes.push(attributes::derives(&derives))
}
let mut tokens = if is_union && self.can_be_rust_union(ctx) {
quote! {
#( #attributes )*
pub union #canonical_ident
}
} else {
quote! {
#( #attributes )*
pub struct #canonical_ident
}
};
tokens.append_all(quote! {
#generics {
#( #fields )*
}
});
result.push(tokens);
// Generate the inner types and all that stuff.
//
// TODO: In the future we might want to be smart, and use nested
// modules, and whatnot.
for ty in self.inner_types() {
let child_item = ctx.resolve_item(*ty);
// assert_eq!(child_item.parent_id(), item.id());
child_item.codegen(ctx, result, &());
}
// NOTE: Some unexposed attributes (like alignment attributes) may
// affect layout, so we're bad and pray to the gods for avoid sending
// all the tests to shit when parsing things like max_align_t.
if self.found_unknown_attr() {
warn!(
"Type {} has an unkown attribute that may affect layout",
canonical_ident.as_str()
);
}
if all_template_params.is_empty() {
if !is_opaque {
for var in self.inner_vars() {
ctx.resolve_item(*var).codegen(ctx, result, &());
}
}
if ctx.options().layout_tests && !self.is_forward_declaration() {
if let Some(layout) = layout {
let fn_name =
format!("bindgen_test_layout_{}", canonical_ident.as_str());
let fn_name = ctx.rust_ident_raw(fn_name);
let prefix = ctx.trait_prefix();
let size_of_expr = quote! {
::#prefix::mem::size_of::<#canonical_ident>()
};
let align_of_expr = quote! {
::#prefix::mem::align_of::<#canonical_ident>()
};
let size = layout.size;
let align = layout.align;
let check_struct_align =
if align > ctx.target_pointer_size() &&
!ctx.options().rust_features().repr_align
{
None
} else {
Some(quote! {
assert_eq!(#align_of_expr,
#align,
concat!("Alignment of ", stringify!(#canonical_ident)));
})
};
// FIXME when [issue #465](https://github.com/rust-lang-nursery/rust-bindgen/issues/465) ready
let too_many_base_vtables = self.base_members()
.iter()
.filter(|base| base.ty.has_vtable(ctx))
.count() > 1;
let should_skip_field_offset_checks = is_opaque ||
too_many_base_vtables;
let check_field_offset =
if should_skip_field_offset_checks {
vec![]
} else {
let asserts = self.fields()
.iter()
.filter_map(|field| match *field {
Field::DataMember(ref f) if f.name().is_some() => Some(f),
_ => None,
})
.flat_map(|field| {
let name = field.name().unwrap();
field.offset().and_then(|offset| {
let field_offset = offset / 8;
let field_name = ctx.rust_ident(name);
Some(quote! {
assert_eq!(
unsafe {
&(*(::#prefix::ptr::null::<#canonical_ident>())).#field_name as *const _ as usize
},
#field_offset,
concat!("Offset of field: ", stringify!(#canonical_ident), "::", stringify!(#field_name))
);
})
})
})
.collect::<Vec<quote::Tokens>>();
asserts
};
let item = quote! {
#[test]
fn #fn_name() {
assert_eq!(#size_of_expr,
#size,
concat!("Size of: ", stringify!(#canonical_ident)));
#check_struct_align
#( #check_field_offset )*
}
};
result.push(item);
}
}
let mut method_names = Default::default();
if ctx.options().codegen_config.methods {
for method in self.methods() {
assert!(method.kind() != MethodKind::Constructor);
method.codegen_method(
ctx,
&mut methods,
&mut method_names,
result,
self,
);
}
}
if ctx.options().codegen_config.constructors {
for sig in self.constructors() {
Method::new(
MethodKind::Constructor,
*sig,
/* const */
false,
).codegen_method(
ctx,
&mut methods,
&mut method_names,
result,
self,
);
}
}
if ctx.options().codegen_config.destructors {
if let Some((kind, destructor)) = self.destructor() {
debug_assert!(kind.is_destructor());
Method::new(kind, destructor, false).codegen_method(
ctx,
&mut methods,
&mut method_names,
result,
self,
);
}
}
}
// NB: We can't use to_rust_ty here since for opaque types this tries to
// use the specialization knowledge to generate a blob field.
let ty_for_impl = quote! {
#canonical_ident #generics
};
if needs_clone_impl {
result.push(quote! {
impl #generics Clone for #ty_for_impl {
fn clone(&self) -> Self { *self }
}
});
}
if needs_default_impl {
let prefix = ctx.trait_prefix();
result.push(quote! {
impl #generics Default for #ty_for_impl {
fn default() -> Self { unsafe { ::#prefix::mem::zeroed() } }
}
});
}
if needs_debug_impl {
let impl_ = impl_debug::gen_debug_impl(
ctx,
self.fields(),
item,
self.kind(),
);
result.push(quote! {
impl #generics ::std::fmt::Debug for #ty_for_impl {
#impl_
}
});
}
if needs_partialeq_impl {
if let Some(impl_) = impl_partialeq::gen_partialeq_impl(ctx, self, item, &ty_for_impl) {
let partialeq_bounds = if !generic_param_names.is_empty() {
let bounds = generic_param_names.iter().map(|t| {
quote! { #t: PartialEq }
});
quote! { where #( #bounds ),* }
} else {
quote! { }
};
let prefix = ctx.trait_prefix();
result.push(quote! {
impl #generics ::#prefix::cmp::PartialEq for #ty_for_impl #partialeq_bounds {
#impl_
}
});
}
}
if !methods.is_empty() {
result.push(quote! {
impl #generics #ty_for_impl {
#( #methods )*
}
});
}
}
}
trait MethodCodegen {
fn codegen_method<'a>(
&self,
ctx: &BindgenContext,
methods: &mut Vec<quote::Tokens>,
method_names: &mut HashMap<String, usize>,
result: &mut CodegenResult<'a>,
parent: &CompInfo,
);
}
impl MethodCodegen for Method {
fn codegen_method<'a>(
&self,
ctx: &BindgenContext,
methods: &mut Vec<quote::Tokens>,
method_names: &mut HashMap<String, usize>,
result: &mut CodegenResult<'a>,
_parent: &CompInfo,
) {
assert!({
let cc = &ctx.options().codegen_config;
match self.kind() {
MethodKind::Constructor => cc.constructors,
MethodKind::Destructor => cc.destructors,
MethodKind::VirtualDestructor { .. } => cc.destructors,
MethodKind::Static | MethodKind::Normal |
MethodKind::Virtual { .. } => cc.methods,
}
});
// TODO(emilio): We could generate final stuff at least.
if self.is_virtual() {
return; // FIXME
}
// First of all, output the actual function.
let function_item = ctx.resolve_item(self.signature());
function_item.codegen(ctx, result, &());
let function = function_item.expect_function();
let signature_item = ctx.resolve_item(function.signature());
let mut name = match self.kind() {
MethodKind::Constructor => "new".into(),
MethodKind::Destructor => "destruct".into(),
_ => function.name().to_owned(),
};
let signature = match *signature_item.expect_type().kind() {
TypeKind::Function(ref sig) => sig,
_ => panic!("How in the world?"),
};
if let (Abi::ThisCall, false) = (signature.abi(), ctx.options().rust_features().thiscall_abi) {
return;
}
// Do not generate variadic methods, since rust does not allow
// implementing them, and we don't do a good job at it anyway.
if signature.is_variadic() {
return;
}
let count = {
let count = method_names.entry(name.clone()).or_insert(0);
*count += 1;
*count - 1
};
if count != 0 {
name.push_str(&count.to_string());
}
let function_name = ctx.rust_ident(function_item.canonical_name(ctx));
let mut args = utils::fnsig_arguments(ctx, signature);
let mut ret = utils::fnsig_return_ty(ctx, signature);
if !self.is_static() && !self.is_constructor() {
args[0] = if self.is_const() {
quote! { &self }
} else {
quote! { &mut self }
};
}
// If it's a constructor, we always return `Self`, and we inject the
// "this" parameter, so there's no need to ask the user for it.
//
// Note that constructors in Clang are represented as functions with
// return-type = void.
if self.is_constructor() {
args.remove(0);
ret = quote! { -> Self };
}
let mut exprs =
helpers::ast_ty::arguments_from_signature(&signature, ctx);
let mut stmts = vec![];
// If it's a constructor, we need to insert an extra parameter with a
// variable called `__bindgen_tmp` we're going to create.
if self.is_constructor() {
let prefix = ctx.trait_prefix();
let tmp_variable_decl =
quote! {
let mut __bindgen_tmp = ::#prefix::mem::uninitialized()
};
stmts.push(tmp_variable_decl);
exprs[0] = quote! {
&mut __bindgen_tmp
};
} else if !self.is_static() {
assert!(!exprs.is_empty());
exprs[0] = quote! {
self
};
};
let call = quote! {
#function_name (#( #exprs ),* )
};
stmts.push(call);
if self.is_constructor() {
stmts.push(quote! {
__bindgen_tmp
});
}
let block = quote! {
#( #stmts );*
};
let mut attrs = vec![];
attrs.push(attributes::inline());
let name = ctx.rust_ident(&name);
methods.push(quote! {
#[inline]
pub unsafe fn #name ( #( #args ),* ) #ret {
#block
}
});
}
}
/// A helper type that represents different enum variations.
#[derive(Copy, Clone)]
enum EnumVariation {
Rust,
Bitfield,
Consts,
ModuleConsts
}
impl EnumVariation {
fn is_rust(&self) -> bool {
match *self {
EnumVariation::Rust => true,
_ => false
}
}
fn is_bitfield(&self) -> bool {
match *self {
EnumVariation::Bitfield {..} => true,
_ => false
}
}
/// Both the `Const` and `ModuleConsts` variants will cause this to return
/// true.
fn is_const(&self) -> bool {
match *self {
EnumVariation::Consts | EnumVariation::ModuleConsts => true,
_ => false
}
}
}
/// A helper type to construct different enum variations.
enum EnumBuilder<'a> {
Rust {
codegen_depth: usize,
attrs: Vec<quote::Tokens>,
ident: Term,
tokens: quote::Tokens,
emitted_any_variants: bool,
},
Bitfield {
codegen_depth: usize,
canonical_name: &'a str,
tokens: quote::Tokens,
},
Consts {
variants: Vec<quote::Tokens>,
codegen_depth: usize,
},
ModuleConsts {
codegen_depth: usize,
module_name: &'a str,
module_items: Vec<quote::Tokens>,
},
}
impl<'a> EnumBuilder<'a> {
/// Returns the depth of the code generation for a variant of this enum.
fn codegen_depth(&self) -> usize {
match *self {
EnumBuilder::Rust { codegen_depth, .. } |
EnumBuilder::Bitfield { codegen_depth, .. } |
EnumBuilder::ModuleConsts { codegen_depth, .. } |
EnumBuilder::Consts { codegen_depth, .. } => codegen_depth,
}
}
/// Create a new enum given an item builder, a canonical name, a name for
/// the representation, and which variation it should be generated as.
fn new(
name: &'a str,
attrs: Vec<quote::Tokens>,
repr: quote::Tokens,
enum_variation: EnumVariation,
enum_codegen_depth: usize,
) -> Self {
let ident = Term::new(name, Span::call_site());
match enum_variation {
EnumVariation::Bitfield => {
EnumBuilder::Bitfield {
codegen_depth: enum_codegen_depth,
canonical_name: name,
tokens: quote! {
#( #attrs )*
pub struct #ident (pub #repr);
},
}
}
EnumVariation::Rust => {
let tokens = quote!();
EnumBuilder::Rust {
codegen_depth: enum_codegen_depth + 1,
attrs,
ident,
tokens,
emitted_any_variants: false,
}
}
EnumVariation::Consts => {
EnumBuilder::Consts {
variants: vec![
quote! {
#( #attrs )*
pub type #ident = #repr;
}
],
codegen_depth: enum_codegen_depth,
}
}
EnumVariation::ModuleConsts => {
let ident = Term::new(CONSTIFIED_ENUM_MODULE_REPR_NAME, Span::call_site());
let type_definition = quote! {
#( #attrs )*
pub type #ident = #repr;
};
EnumBuilder::ModuleConsts {
codegen_depth: enum_codegen_depth + 1,
module_name: name,
module_items: vec![type_definition],
}
}
}
}
/// Add a variant to this enum.
fn with_variant<'b>(
self,
ctx: &BindgenContext,
variant: &EnumVariant,
mangling_prefix: Option<&str>,
rust_ty: quote::Tokens,
result: &mut CodegenResult<'b>,
is_ty_named: bool,
) -> Self {
let variant_name = ctx.rust_mangle(variant.name());
let expr = match variant.val() {
EnumVariantValue::Signed(v) => helpers::ast_ty::int_expr(v),
EnumVariantValue::Unsigned(v) => helpers::ast_ty::uint_expr(v),
};
let mut doc = quote! {};
if ctx.options().generate_comments {
if let Some(raw_comment) = variant.comment() {
let comment = comment::preprocess(raw_comment, self.codegen_depth());
doc = attributes::doc(comment);
}
}
match self {
EnumBuilder::Rust { attrs, ident, tokens, emitted_any_variants: _, codegen_depth } => {
let name = ctx.rust_ident(variant_name);
EnumBuilder::Rust {
attrs,
ident,
codegen_depth,
tokens: quote! {
#tokens
#doc
#name = #expr,
},
emitted_any_variants: true,
}
}
EnumBuilder::Bitfield { canonical_name, .. } => {
if ctx.options().rust_features().associated_const && is_ty_named {
let enum_ident = ctx.rust_ident(canonical_name);
let variant_ident = ctx.rust_ident(variant_name);
result.push(quote! {
impl #enum_ident {
#doc
pub const #variant_ident : #rust_ty = #rust_ty ( #expr );
}
});
} else {
let ident = ctx.rust_ident(match mangling_prefix {
Some(prefix) => {
Cow::Owned(format!("{}_{}", prefix, variant_name))
}
None => variant_name,
});
result.push(quote! {
#doc
pub const #ident : #rust_ty = #rust_ty ( #expr );
});
}
self
}
EnumBuilder::Consts {
..
} => {
let constant_name = match mangling_prefix {
Some(prefix) => {
Cow::Owned(format!("{}_{}", prefix, variant_name))
}
None => variant_name,
};
let ident = ctx.rust_ident(constant_name);
result.push(quote! {
#doc
pub const #ident : #rust_ty = #expr ;
});
self
}
EnumBuilder::ModuleConsts {
codegen_depth,
module_name,
mut module_items,
} => {
let name = ctx.rust_ident(variant_name);
let ty = ctx.rust_ident(CONSTIFIED_ENUM_MODULE_REPR_NAME);
module_items.push(quote! {
#doc
pub const #name : #ty = #expr ;
});
EnumBuilder::ModuleConsts {
module_name,
module_items,
codegen_depth,
}
}
}
}
fn build<'b>(
self,
ctx: &BindgenContext,
rust_ty: quote::Tokens,
result: &mut CodegenResult<'b>,
) -> quote::Tokens {
match self {
EnumBuilder::Rust { attrs, ident, tokens, emitted_any_variants, .. } => {
let variants = if !emitted_any_variants {
quote!(__bindgen_cannot_repr_c_on_empty_enum = 0)
} else {
tokens
};
quote! {
#( #attrs )*
pub enum #ident {
#variants
}
}
}
EnumBuilder::Bitfield {
canonical_name,
tokens,
..
} => {
let rust_ty_name = ctx.rust_ident_raw(canonical_name);
let prefix = ctx.trait_prefix();
result.push(quote! {
impl ::#prefix::ops::BitOr<#rust_ty> for #rust_ty {
type Output = Self;
#[inline]
fn bitor(self, other: Self) -> Self {
#rust_ty_name(self.0 | other.0)
}
}
});
result.push(quote! {
impl ::#prefix::ops::BitOrAssign for #rust_ty {
#[inline]
fn bitor_assign(&mut self, rhs: #rust_ty) {
self.0 |= rhs.0;
}
}
});
result.push(quote! {
impl ::#prefix::ops::BitAnd<#rust_ty> for #rust_ty {
type Output = Self;
#[inline]
fn bitand(self, other: Self) -> Self {
#rust_ty_name(self.0 & other.0)
}
}
});
result.push(quote! {
impl ::#prefix::ops::BitAndAssign for #rust_ty {
#[inline]
fn bitand_assign(&mut self, rhs: #rust_ty) {
self.0 &= rhs.0;
}
}
});
tokens
}
EnumBuilder::Consts { variants, .. } => quote! { #( #variants )* },
EnumBuilder::ModuleConsts {
module_items,
module_name,
..
} => {
let ident = ctx.rust_ident(module_name);
quote! {
pub mod #ident {
#( #module_items )*
}
}
}
}
}
}
impl CodeGenerator for Enum {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug!("<Enum as CodeGenerator>::codegen: item = {:?}", item);
debug_assert!(item.is_enabled_for_codegen(ctx));
let name = item.canonical_name(ctx);
let ident = ctx.rust_ident(&name);
let enum_ty = item.expect_type();
let layout = enum_ty.layout(ctx);
let repr = self.repr().map(|repr| ctx.resolve_type(repr));
let repr = match repr {
Some(repr) => {
match *repr.canonical_type(ctx).kind() {
TypeKind::Int(int_kind) => int_kind,
_ => panic!("Unexpected type as enum repr"),
}
}
None => {
warn!(
"Guessing type of enum! Forward declarations of enums \
shouldn't be legal!"
);
IntKind::Int
}
};
let signed = repr.is_signed();
let size = layout
.map(|l| l.size)
.or_else(|| repr.known_size())
.unwrap_or(0);
let repr_name = match (signed, size) {
(true, 1) => "i8",
(false, 1) => "u8",
(true, 2) => "i16",
(false, 2) => "u16",
(true, 4) => "i32",
(false, 4) => "u32",
(true, 8) => "i64",
(false, 8) => "u64",
_ => {
warn!("invalid enum decl: signed: {}, size: {}", signed, size);
"i32"
}
};
// ModuleConsts has higher precedence before Rust in order to avoid problems with
// overlapping match patterns
let variation = if self.is_constified_enum_module(ctx, item) {
EnumVariation::ModuleConsts
} else if self.is_bitfield(ctx, item) {
EnumVariation::Bitfield
} else if self.is_rustified_enum(ctx, item) {
EnumVariation::Rust
} else {
// We generate consts by default
EnumVariation::Consts
};
let mut attrs = vec![];
// TODO(emilio): Delegate this to the builders?
if variation.is_rust() {
attrs.push(attributes::repr(repr_name));
} else if variation.is_bitfield() {
attrs.push(attributes::repr("C"));
}
if let Some(comment) = item.comment(ctx) {
attrs.push(attributes::doc(comment));
}
if !variation.is_const() {
attrs.push(attributes::derives(
&["Debug", "Copy", "Clone", "PartialEq", "Eq", "Hash"],
));
}
fn add_constant<'a>(
ctx: &BindgenContext,
enum_: &Type,
// Only to avoid recomputing every time.
enum_canonical_name: &Term,
// May be the same as "variant" if it's because the
// enum is unnamed and we still haven't seen the
// value.
variant_name: &str,
referenced_name: &Term,
enum_rust_ty: quote::Tokens,
result: &mut CodegenResult<'a>,
) {
let constant_name = if enum_.name().is_some() {
if ctx.options().prepend_enum_name {
format!("{}_{}", enum_canonical_name.as_str(), variant_name)
} else {
variant_name.into()
}
} else {
variant_name.into()
};
let constant_name = ctx.rust_ident(constant_name);
result.push(quote! {
pub const #constant_name : #enum_rust_ty =
#enum_canonical_name :: #referenced_name ;
});
}
let repr = {
let repr_name = ctx.rust_ident_raw(repr_name);
quote! { #repr_name }
};
let mut builder = EnumBuilder::new(
&name,
attrs,
repr,
variation,
item.codegen_depth(ctx),
);
// A map where we keep a value -> variant relation.
let mut seen_values = HashMap::<_, Term>::new();
let enum_rust_ty = item.to_rust_ty_or_opaque(ctx, &());
let is_toplevel = item.is_toplevel(ctx);
// Used to mangle the constants we generate in the unnamed-enum case.
let parent_canonical_name = if is_toplevel {
None
} else {
Some(item.parent_id().canonical_name(ctx))
};
let constant_mangling_prefix = if ctx.options().prepend_enum_name {
if enum_ty.name().is_none() {
parent_canonical_name.as_ref().map(|n| &**n)
} else {
Some(&*name)
}
} else {
None
};
// NB: We defer the creation of constified variants, in case we find
// another variant with the same value (which is the common thing to
// do).
let mut constified_variants = VecDeque::new();
let mut iter = self.variants().iter().peekable();
while let Some(variant) = iter.next().or_else(|| {
constified_variants.pop_front()
}) {
if variant.hidden() {
continue;
}
if variant.force_constification() && iter.peek().is_some() {
constified_variants.push_back(variant);
continue;
}
match seen_values.entry(variant.val()) {
Entry::Occupied(ref entry) => {
if variation.is_rust() {
let variant_name = ctx.rust_mangle(variant.name());
let mangled_name =
if is_toplevel || enum_ty.name().is_some() {
variant_name
} else {
let parent_name =
parent_canonical_name.as_ref().unwrap();
Cow::Owned(
format!("{}_{}", parent_name, variant_name),
)
};
let existing_variant_name = entry.get();
add_constant(
ctx,
enum_ty,
&ident,
&*mangled_name,
existing_variant_name,
enum_rust_ty.clone(),
result,
);
} else {
builder = builder.with_variant(
ctx,
variant,
constant_mangling_prefix,
enum_rust_ty.clone(),
result,
enum_ty.name().is_some(),
);
}
}
Entry::Vacant(entry) => {
builder = builder.with_variant(
ctx,
variant,
constant_mangling_prefix,
enum_rust_ty.clone(),
result,
enum_ty.name().is_some(),
);
let variant_name = ctx.rust_ident(variant.name());
// If it's an unnamed enum, or constification is enforced,
// we also generate a constant so it can be properly
// accessed.
if (variation.is_rust() && enum_ty.name().is_none()) ||
variant.force_constification()
{
let mangled_name = if is_toplevel {
variant_name.clone()
} else {
let parent_name =
parent_canonical_name.as_ref().unwrap();
Term::new(
&format!(
"{}_{}",
parent_name,
variant_name.as_str()
),
Span::call_site()
)
};
add_constant(
ctx,
enum_ty,
&ident,
mangled_name.as_str(),
&variant_name,
enum_rust_ty.clone(),
result,
);
}
entry.insert(variant_name);
}
}
}
let item = builder.build(ctx, enum_rust_ty, result);
result.push(item);
}
}
/// Fallible conversion to an opaque blob.
///
/// Implementors of this trait should provide the `try_get_layout` method to
/// fallibly get this thing's layout, which the provided `try_to_opaque` trait
/// method will use to convert the `Layout` into an opaque blob Rust type.
trait TryToOpaque {
type Extra;
/// Get the layout for this thing, if one is available.
fn try_get_layout(
&self,
ctx: &BindgenContext,
extra: &Self::Extra,
) -> error::Result<Layout>;
/// Do not override this provided trait method.
fn try_to_opaque(
&self,
ctx: &BindgenContext,
extra: &Self::Extra,
) -> error::Result<quote::Tokens> {
self.try_get_layout(ctx, extra).map(|layout| {
helpers::blob(layout)
})
}
}
/// Infallible conversion of an IR thing to an opaque blob.
///
/// The resulting layout is best effort, and is unfortunately not guaranteed to
/// be correct. When all else fails, we fall back to a single byte layout as a
/// last resort, because C++ does not permit zero-sized types. See the note in
/// the `ToRustTyOrOpaque` doc comment about fallible versus infallible traits
/// and when each is appropriate.
///
/// Don't implement this directly. Instead implement `TryToOpaque`, and then
/// leverage the blanket impl for this trait.
trait ToOpaque: TryToOpaque {
fn get_layout(&self, ctx: &BindgenContext, extra: &Self::Extra) -> Layout {
self.try_get_layout(ctx, extra)
.unwrap_or_else(|_| Layout::for_size(ctx, 1))
}
fn to_opaque(
&self,
ctx: &BindgenContext,
extra: &Self::Extra,
) -> quote::Tokens {
let layout = self.get_layout(ctx, extra);
helpers::blob(layout)
}
}
impl<T> ToOpaque for T
where
T: TryToOpaque,
{
}
/// Fallible conversion from an IR thing to an *equivalent* Rust type.
///
/// If the C/C++ construct represented by the IR thing cannot (currently) be
/// represented in Rust (for example, instantiations of templates with
/// const-value generic parameters) then the impl should return an `Err`. It
/// should *not* attempt to return an opaque blob with the correct size and
/// alignment. That is the responsibility of the `TryToOpaque` trait.
trait TryToRustTy {
type Extra;
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
extra: &Self::Extra,
) -> error::Result<quote::Tokens>;
}
/// Fallible conversion to a Rust type or an opaque blob with the correct size
/// and alignment.
///
/// Don't implement this directly. Instead implement `TryToRustTy` and
/// `TryToOpaque`, and then leverage the blanket impl for this trait below.
trait TryToRustTyOrOpaque: TryToRustTy + TryToOpaque {
type Extra;
fn try_to_rust_ty_or_opaque(
&self,
ctx: &BindgenContext,
extra: &<Self as TryToRustTyOrOpaque>::Extra,
) -> error::Result<quote::Tokens>;
}
impl<E, T> TryToRustTyOrOpaque for T
where
T: TryToRustTy<Extra = E>
+ TryToOpaque<Extra = E>,
{
type Extra = E;
fn try_to_rust_ty_or_opaque(
&self,
ctx: &BindgenContext,
extra: &E,
) -> error::Result<quote::Tokens> {
self.try_to_rust_ty(ctx, extra).or_else(
|_| if let Ok(layout) =
self.try_get_layout(ctx, extra)
{
Ok(helpers::blob(layout))
} else {
Err(error::Error::NoLayoutForOpaqueBlob)
},
)
}
}
/// Infallible conversion to a Rust type, or an opaque blob with a best effort
/// of correct size and alignment.
///
/// Don't implement this directly. Instead implement `TryToRustTy` and
/// `TryToOpaque`, and then leverage the blanket impl for this trait below.
///
/// ### Fallible vs. Infallible Conversions to Rust Types
///
/// When should one use this infallible `ToRustTyOrOpaque` trait versus the
/// fallible `TryTo{RustTy, Opaque, RustTyOrOpaque}` triats? All fallible trait
/// implementations that need to convert another thing into a Rust type or
/// opaque blob in a nested manner should also use fallible trait methods and
/// propagate failure up the stack. Only infallible functions and methods like
/// CodeGenerator implementations should use the infallible
/// `ToRustTyOrOpaque`. The further out we push error recovery, the more likely
/// we are to get a usable `Layout` even if we can't generate an equivalent Rust
/// type for a C++ construct.
trait ToRustTyOrOpaque: TryToRustTy + ToOpaque {
type Extra;
fn to_rust_ty_or_opaque(
&self,
ctx: &BindgenContext,
extra: &<Self as ToRustTyOrOpaque>::Extra,
) -> quote::Tokens;
}
impl<E, T> ToRustTyOrOpaque for T
where
T: TryToRustTy<Extra = E> + ToOpaque<Extra = E>,
{
type Extra = E;
fn to_rust_ty_or_opaque(
&self,
ctx: &BindgenContext,
extra: &E,
) -> quote::Tokens {
self.try_to_rust_ty(ctx, extra).unwrap_or_else(|_| {
self.to_opaque(ctx, extra)
})
}
}
impl<T> TryToOpaque for T
where
T: Copy + Into<ItemId>
{
type Extra = ();
fn try_get_layout(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<Layout> {
ctx.resolve_item((*self).into()).try_get_layout(ctx, &())
}
}
impl<T> TryToRustTy for T
where
T: Copy + Into<ItemId>
{
type Extra = ();
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<quote::Tokens> {
ctx.resolve_item((*self).into()).try_to_rust_ty(ctx, &())
}
}
impl TryToOpaque for Item {
type Extra = ();
fn try_get_layout(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<Layout> {
self.kind().expect_type().try_get_layout(ctx, self)
}
}
impl TryToRustTy for Item {
type Extra = ();
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<quote::Tokens> {
self.kind().expect_type().try_to_rust_ty(ctx, self)
}
}
impl TryToOpaque for Type {
type Extra = Item;
fn try_get_layout(
&self,
ctx: &BindgenContext,
_: &Item,
) -> error::Result<Layout> {
self.layout(ctx).ok_or(error::Error::NoLayoutForOpaqueBlob)
}
}
impl TryToRustTy for Type {
type Extra = Item;
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
item: &Item,
) -> error::Result<quote::Tokens> {
use self::helpers::ast_ty::*;
match *self.kind() {
TypeKind::Void => Ok(raw_type(ctx, "c_void")),
// TODO: we should do something smart with nullptr, or maybe *const
// c_void is enough?
TypeKind::NullPtr => {
Ok(raw_type(ctx, "c_void").to_ptr(true))
}
TypeKind::Int(ik) => {
match ik {
IntKind::Bool => Ok(quote! { bool }),
IntKind::Char {
..
} => Ok(raw_type(ctx, "c_char")),
IntKind::SChar => Ok(raw_type(ctx, "c_schar")),
IntKind::UChar => Ok(raw_type(ctx, "c_uchar")),
IntKind::Short => Ok(raw_type(ctx, "c_short")),
IntKind::UShort => Ok(raw_type(ctx, "c_ushort")),
IntKind::Int => Ok(raw_type(ctx, "c_int")),
IntKind::UInt => Ok(raw_type(ctx, "c_uint")),
IntKind::Long => Ok(raw_type(ctx, "c_long")),
IntKind::ULong => Ok(raw_type(ctx, "c_ulong")),
IntKind::LongLong => Ok(raw_type(ctx, "c_longlong")),
IntKind::ULongLong => Ok(raw_type(ctx, "c_ulonglong")),
IntKind::I8 => Ok(quote! { i8 }),
IntKind::U8 => Ok(quote! { u8 }),
IntKind::I16 => Ok(quote! { i16 }),
IntKind::U16 => Ok(quote! { u16 }),
IntKind::I32 => Ok(quote! { i32 }),
IntKind::U32 => Ok(quote! { u32 }),
IntKind::I64 => Ok(quote! { i64 }),
IntKind::U64 => Ok(quote! { u64 }),
IntKind::Custom {
name, ..
} => {
let ident = ctx.rust_ident_raw(name);
Ok(quote! {
#ident
})
}
// FIXME: This doesn't generate the proper alignment, but we
// can't do better right now. We should be able to use
// i128/u128 when they're available.
IntKind::U128 | IntKind::I128 => {
Ok(quote! { [u64; 2] })
}
}
}
TypeKind::Float(fk) => Ok(float_kind_rust_type(ctx, fk)),
TypeKind::Complex(fk) => {
let float_path = float_kind_rust_type(ctx, fk);
ctx.generated_bindegen_complex();
Ok(if ctx.options().enable_cxx_namespaces {
quote! {
root::__BindgenComplex<#float_path>
}
} else {
quote! {
__BindgenComplex<#float_path>
}
})
}
TypeKind::Function(ref fs) => {
// We can't rely on the sizeof(Option<NonZero<_>>) ==
// sizeof(NonZero<_>) optimization with opaque blobs (because
// they aren't NonZero), so don't *ever* use an or_opaque
// variant here.
let ty = fs.try_to_rust_ty(ctx, &())?;
let prefix = ctx.trait_prefix();
Ok(quote! {
::#prefix::option::Option<#ty>
})
}
TypeKind::Array(item, len) => {
let ty = item.try_to_rust_ty(ctx, &())?;
Ok(quote! {
[ #ty ; #len ]
})
}
TypeKind::Enum(..) => {
let path = item.namespace_aware_canonical_path(ctx);
let path = Term::new(&path.join("::"), Span::call_site());
Ok(quote!(#path))
}
TypeKind::TemplateInstantiation(ref inst) => {
inst.try_to_rust_ty(ctx, item)
}
TypeKind::ResolvedTypeRef(inner) => inner.try_to_rust_ty(ctx, &()),
TypeKind::TemplateAlias(..) |
TypeKind::Alias(..) => {
let template_params = item.used_template_params(ctx)
.into_iter()
.filter(|param| param.is_template_param(ctx, &()))
.collect::<Vec<_>>();
let spelling = self.name().expect("Unnamed alias?");
if item.is_opaque(ctx, &()) && !template_params.is_empty() {
self.try_to_opaque(ctx, item)
} else if let Some(ty) = utils::type_from_named(
ctx,
spelling,
)
{
Ok(ty)
} else {
utils::build_path(item, ctx)
}
}
TypeKind::Comp(ref info) => {
let template_params = item.all_template_params(ctx);
if info.has_non_type_template_params() ||
(item.is_opaque(ctx, &()) && !template_params.is_empty())
{
return self.try_to_opaque(ctx, item);
}
utils::build_path(item, ctx)
}
TypeKind::Opaque => self.try_to_opaque(ctx, item),
TypeKind::BlockPointer => {
let void = raw_type(ctx, "c_void");
Ok(void.to_ptr(
/* is_const = */
false
))
}
TypeKind::Pointer(inner) |
TypeKind::Reference(inner) => {
let is_const = ctx.resolve_type(inner).is_const();
let inner = inner.into_resolver().through_type_refs().resolve(ctx);
let inner_ty = inner.expect_type();
// Regardless if we can properly represent the inner type, we
// should always generate a proper pointer here, so use
// infallible conversion of the inner type.
let mut ty = inner.to_rust_ty_or_opaque(ctx, &());
ty.append_implicit_template_params(ctx, inner);
// Avoid the first function pointer level, since it's already
// represented in Rust.
if inner_ty.canonical_type(ctx).is_function() {
Ok(ty)
} else {
Ok(ty.to_ptr(is_const))
}
}
TypeKind::TypeParam => {
let name = item.canonical_name(ctx);
let ident = ctx.rust_ident(&name);
Ok(quote! {
#ident
})
}
TypeKind::ObjCSel => {
Ok(quote! {
objc::runtime::Sel
})
}
TypeKind::ObjCId |
TypeKind::ObjCInterface(..) => Ok(quote! {
id
}),
ref u @ TypeKind::UnresolvedTypeRef(..) => {
unreachable!("Should have been resolved after parsing {:?}!", u)
}
}
}
}
impl TryToOpaque for TemplateInstantiation {
type Extra = Item;
fn try_get_layout(
&self,
ctx: &BindgenContext,
item: &Item,
) -> error::Result<Layout> {
item.expect_type().layout(ctx).ok_or(
error::Error::NoLayoutForOpaqueBlob,
)
}
}
impl TryToRustTy for TemplateInstantiation {
type Extra = Item;
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
item: &Item,
) -> error::Result<quote::Tokens> {
if self.is_opaque(ctx, item) {
return Err(error::Error::InstantiationOfOpaqueType);
}
let def = self.template_definition()
.into_resolver()
.through_type_refs()
.resolve(ctx);
let mut ty = quote! {};
let def_path = def.namespace_aware_canonical_path(ctx);
ty.append_separated(def_path.into_iter().map(|p| ctx.rust_ident(p)), Term::new("::", Span::call_site()));
let def_params = def.self_template_params(ctx);
if def_params.is_empty() {
// This can happen if we generated an opaque type for a partial
// template specialization, and we've hit an instantiation of
// that partial specialization.
extra_assert!(
def.is_opaque(ctx, &())
);
return Err(error::Error::InstantiationOfOpaqueType);
}
// TODO: If the definition type is a template class/struct
// definition's member template definition, it could rely on
// generic template parameters from its outer template
// class/struct. When we emit bindings for it, it could require
// *more* type arguments than we have here, and we will need to
// reconstruct them somehow. We don't have any means of doing
// that reconstruction at this time.
let template_args = self.template_arguments()
.iter()
.zip(def_params.iter())
// Only pass type arguments for the type parameters that
// the def uses.
.filter(|&(_, param)| ctx.uses_template_parameter(def.id(), *param))
.map(|(arg, _)| {
let arg = arg.into_resolver().through_type_refs().resolve(ctx);
let mut ty = arg.try_to_rust_ty(ctx, &())?;
ty.append_implicit_template_params(ctx, arg);
Ok(ty)
})
.collect::<error::Result<Vec<_>>>()?;
if template_args.is_empty() {
return Ok(ty);
}
Ok(quote! {
#ty < #( #template_args ),* >
})
}
}
impl TryToRustTy for FunctionSig {
type Extra = ();
fn try_to_rust_ty(
&self,
ctx: &BindgenContext,
_: &(),
) -> error::Result<quote::Tokens> {
// TODO: we might want to consider ignoring the reference return value.
let ret = utils::fnsig_return_ty(ctx, &self);
let arguments = utils::fnsig_arguments(ctx, &self);
let abi = self.abi();
match abi {
Abi::ThisCall if !ctx.options().rust_features().thiscall_abi => {
warn!("Skipping function with thiscall ABI that isn't supported by the configured Rust target");
Ok(quote::Tokens::new())
}
_ => {
Ok(quote! {
unsafe extern #abi fn ( #( #arguments ),* ) #ret
})
}
}
}
}
impl CodeGenerator for Function {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug!("<Function as CodeGenerator>::codegen: item = {:?}", item);
debug_assert!(item.is_enabled_for_codegen(ctx));
// We can't currently do anything with Internal functions so just
// avoid generating anything for them.
match self.linkage() {
Linkage::Internal => return,
Linkage::External => {}
}
// Pure virtual methods have no actual symbol, so we can't generate
// something meaningful for them.
match self.kind() {
FunctionKind::Method(ref method_kind) if method_kind.is_pure_virtual() => {
return;
}
_ => {},
}
// Similar to static member variables in a class template, we can't
// generate bindings to template functions, because the set of
// instantiations is open ended and we have no way of knowing which
// monomorphizations actually exist.
if !item.all_template_params(ctx).is_empty() {
return;
}
let name = self.name();
let mut canonical_name = item.canonical_name(ctx);
let mangled_name = self.mangled_name();
{
let seen_symbol_name = mangled_name.unwrap_or(&canonical_name);
// TODO: Maybe warn here if there's a type/argument mismatch, or
// something?
if result.seen_function(seen_symbol_name) {
return;
}
result.saw_function(seen_symbol_name);
}
let signature_item = ctx.resolve_item(self.signature());
let signature = signature_item.kind().expect_type().canonical_type(ctx);
let signature = match *signature.kind() {
TypeKind::Function(ref sig) => sig,
_ => panic!("Signature kind is not a Function: {:?}", signature),
};
let args = utils::fnsig_arguments(ctx, signature);
let ret = utils::fnsig_return_ty(ctx, signature);
let mut attributes = vec![];
if let Some(comment) = item.comment(ctx) {
attributes.push(attributes::doc(comment));
}
if let Some(mangled) = mangled_name {
attributes.push(attributes::link_name(mangled));
} else if name != canonical_name {
attributes.push(attributes::link_name(name));
}
// Handle overloaded functions by giving each overload its own unique
// suffix.
let times_seen = result.overload_number(&canonical_name);
if times_seen > 0 {
write!(&mut canonical_name, "{}", times_seen).unwrap();
}
let abi = match signature.abi() {
Abi::ThisCall if !ctx.options().rust_features().thiscall_abi => {
warn!("Skipping function with thiscall ABI that isn't supported by the configured Rust target");
return;
}
Abi::Unknown(unknown_abi) => {
panic!(
"Invalid or unknown abi {:?} for function {:?} ({:?})",
unknown_abi,
canonical_name,
self
);
}
abi => abi,
};
let ident = ctx.rust_ident(canonical_name);
let tokens = quote!( extern #abi {
#(#attributes)*
pub fn #ident ( #( #args ),* ) #ret;
});
result.push(tokens);
}
}
fn objc_method_codegen(
ctx: &BindgenContext,
method: &ObjCMethod,
class_name: Option<&str>,
prefix: &str,
) -> (quote::Tokens, quote::Tokens) {
let signature = method.signature();
let fn_args = utils::fnsig_arguments(ctx, signature);
let fn_ret = utils::fnsig_return_ty(ctx, signature);
let sig = if method.is_class_method() {
let fn_args = fn_args.clone();
quote! {
( #( #fn_args ),* ) #fn_ret
}
} else {
let fn_args = fn_args.clone();
let args = iter::once(quote! { self })
.chain(fn_args.into_iter());
quote! {
( #( #args ),* ) #fn_ret
}
};
let methods_and_args = method.format_method_call(&fn_args);
let body = if method.is_class_method() {
let class_name = class_name
.expect("Generating a class method without class name?")
.to_owned();
let expect_msg = proc_macro2::Literal::string(&format!("Couldn't find {}", class_name));
quote! {
msg_send!(objc::runtime::Class::get(#class_name).expect(#expect_msg), #methods_and_args)
}
} else {
quote! {
msg_send!(self, #methods_and_args)
}
};
let method_name = ctx.rust_ident(format!("{}{}", prefix, method.rust_name()));
(
quote! {
unsafe fn #method_name #sig {
#body
}
},
quote! {
unsafe fn #method_name #sig ;
}
)
}
impl CodeGenerator for ObjCInterface {
type Extra = Item;
fn codegen<'a>(
&self,
ctx: &BindgenContext,
result: &mut CodegenResult<'a>,
item: &Item,
) {
debug_assert!(item.is_enabled_for_codegen(ctx));
let mut impl_items = vec![];
let mut trait_items = vec![];
for method in self.methods() {
let (impl_item, trait_item) =
objc_method_codegen(ctx, method, None, "");
impl_items.push(impl_item);
trait_items.push(trait_item)
}
let instance_method_names: Vec<_> = self.methods()
.iter()
.map({
|m| m.rust_name()
})
.collect();
for class_method in self.class_methods() {
let ambiquity =
instance_method_names.contains(&class_method.rust_name());
let prefix = if ambiquity { "class_" } else { "" };
let (impl_item, trait_item) = objc_method_codegen(
ctx,
class_method,
Some(self.name()),
prefix,
);
impl_items.push(impl_item);
trait_items.push(trait_item)
}
let trait_name = ctx.rust_ident(self.rust_name());
let trait_block = quote! {
pub trait #trait_name {
#( #trait_items )*
}
};
let ty_for_impl = quote! {
id
};
let impl_block = quote! {
impl #trait_name for #ty_for_impl {
#( #impl_items )*
}
};
result.push(trait_block);
result.push(impl_block);
result.saw_objc();
}
}
pub(crate) fn codegen(context: BindgenContext) -> (Vec<quote::Tokens>, BindgenOptions) {
context.gen(|context| {
let _t = context.timer("codegen");
let counter = Cell::new(0);
let mut result = CodegenResult::new(&counter);
debug!("codegen: {:?}", context.options());
let codegen_items = context.codegen_items();
if context.options().emit_ir {
for &id in codegen_items {
let item = context.resolve_item(id);
println!("ir: {:?} = {:#?}", id, item);
}
}
if let Some(path) = context.options().emit_ir_graphviz.as_ref() {
match dot::write_dot_file(context, path) {
Ok(()) => info!("Your dot file was generated successfully into: {}", path),
Err(e) => error!("{}", e),
}
}
context.resolve_item(context.root_module())
.codegen(context, &mut result, &());
result.items
})
}
mod utils {
use super::{ToRustTyOrOpaque, error};
use ir::context::BindgenContext;
use ir::function::FunctionSig;
use ir::item::{Item, ItemCanonicalPath};
use ir::ty::TypeKind;
use quote;
use proc_macro2::{Term, Span};
use std::mem;
pub fn prepend_bitfield_unit_type(result: &mut Vec<quote::Tokens>) {
let bitfield_unit_type = Term::new(include_str!("./bitfield_unit.rs"), Span::call_site());
let bitfield_unit_type = quote!(#bitfield_unit_type);
let items = vec![bitfield_unit_type];
let old_items = mem::replace(result, items);
result.extend(old_items);
}
pub fn prepend_objc_header(
ctx: &BindgenContext,
result: &mut Vec<quote::Tokens>,
) {
let use_objc = if ctx.options().objc_extern_crate {
quote! {
#[macro_use]
extern crate objc;
}
} else {
quote! {
use objc;
}
};
let id_type = quote! {
#[allow(non_camel_case_types)]
pub type id = *mut objc::runtime::Object;
};
let items = vec![use_objc, id_type];
let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
}
pub fn prepend_union_types(
ctx: &BindgenContext,
result: &mut Vec<quote::Tokens>,
) {
let prefix = ctx.trait_prefix();
// TODO(emilio): The fmt::Debug impl could be way nicer with
// std::intrinsics::type_name, but...
let union_field_decl = quote! {
#[repr(C)]
pub struct __BindgenUnionField<T>(::#prefix::marker::PhantomData<T>);
};
let union_field_impl = quote! {
impl<T> __BindgenUnionField<T> {
#[inline]
pub fn new() -> Self {
__BindgenUnionField(::#prefix::marker::PhantomData)
}
#[inline]
pub unsafe fn as_ref(&self) -> &T {
::#prefix::mem::transmute(self)
}
#[inline]
pub unsafe fn as_mut(&mut self) -> &mut T {
::#prefix::mem::transmute(self)
}
}
};
let union_field_default_impl = quote! {
impl<T> ::#prefix::default::Default for __BindgenUnionField<T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
};
let union_field_clone_impl = quote! {
impl<T> ::#prefix::clone::Clone for __BindgenUnionField<T> {
#[inline]
fn clone(&self) -> Self {
Self::new()
}
}
};
let union_field_copy_impl = quote! {
impl<T> ::#prefix::marker::Copy for __BindgenUnionField<T> {}
};
let union_field_debug_impl = quote! {
impl<T> ::#prefix::fmt::Debug for __BindgenUnionField<T> {
fn fmt(&self, fmt: &mut ::#prefix::fmt::Formatter)
-> ::#prefix::fmt::Result {
fmt.write_str("__BindgenUnionField")
}
}
};
// The actual memory of the filed will be hashed, so that's why these
// field doesn't do anything with the hash.
let union_field_hash_impl = quote! {
impl<T> ::#prefix::hash::Hash for __BindgenUnionField<T> {
fn hash<H: ::#prefix::hash::Hasher>(&self, _state: &mut H) {
}
}
};
let union_field_partialeq_impl = quote! {
impl<T> ::#prefix::cmp::PartialEq for __BindgenUnionField<T> {
fn eq(&self, _other: &__BindgenUnionField<T>) -> bool {
true
}
}
};
let union_field_eq_impl = quote! {
impl<T> ::#prefix::cmp::Eq for __BindgenUnionField<T> {
}
};
let items = vec![union_field_decl,
union_field_impl,
union_field_default_impl,
union_field_clone_impl,
union_field_copy_impl,
union_field_debug_impl,
union_field_hash_impl,
union_field_partialeq_impl,
union_field_eq_impl];
let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
}
pub fn prepend_incomplete_array_types(
ctx: &BindgenContext,
result: &mut Vec<quote::Tokens>,
) {
let prefix = ctx.trait_prefix();
let incomplete_array_decl = quote! {
#[repr(C)]
#[derive(Default)]
pub struct __IncompleteArrayField<T>(
::#prefix::marker::PhantomData<T>);
};
let incomplete_array_impl = quote! {
impl<T> __IncompleteArrayField<T> {
#[inline]
pub fn new() -> Self {
__IncompleteArrayField(::#prefix::marker::PhantomData)
}
#[inline]
pub unsafe fn as_ptr(&self) -> *const T {
::#prefix::mem::transmute(self)
}
#[inline]
pub unsafe fn as_mut_ptr(&mut self) -> *mut T {
::#prefix::mem::transmute(self)
}
#[inline]
pub unsafe fn as_slice(&self, len: usize) -> &[T] {
::#prefix::slice::from_raw_parts(self.as_ptr(), len)
}
#[inline]
pub unsafe fn as_mut_slice(&mut self, len: usize) -> &mut [T] {
::#prefix::slice::from_raw_parts_mut(self.as_mut_ptr(), len)
}
}
};
let incomplete_array_debug_impl = quote! {
impl<T> ::#prefix::fmt::Debug for __IncompleteArrayField<T> {
fn fmt(&self, fmt: &mut ::#prefix::fmt::Formatter)
-> ::#prefix::fmt::Result {
fmt.write_str("__IncompleteArrayField")
}
}
};
let incomplete_array_clone_impl = quote! {
impl<T> ::#prefix::clone::Clone for __IncompleteArrayField<T> {
#[inline]
fn clone(&self) -> Self {
Self::new()
}
}
};
let incomplete_array_copy_impl = quote! {
impl<T> ::#prefix::marker::Copy for __IncompleteArrayField<T> {}
};
let items = vec![incomplete_array_decl,
incomplete_array_impl,
incomplete_array_debug_impl,
incomplete_array_clone_impl,
incomplete_array_copy_impl];
let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
}
pub fn prepend_complex_type(
result: &mut Vec<quote::Tokens>,
) {
let complex_type = quote! {
#[derive(PartialEq, Copy, Clone, Hash, Debug, Default)]
#[repr(C)]
pub struct __BindgenComplex<T> {
pub re: T,
pub im: T
}
};
let items = vec![complex_type];
let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
}
pub fn build_path(
item: &Item,
ctx: &BindgenContext,
) -> error::Result<quote::Tokens> {
use proc_macro2::{Term, Span};
let path = item.namespace_aware_canonical_path(ctx);
let path = Term::new(&path.join("::"), Span::call_site());
let tokens = quote! {#path};
//tokens.append_separated(path, "::");
Ok(tokens)
}
fn primitive_ty(ctx: &BindgenContext, name: &str) -> quote::Tokens {
let ident = ctx.rust_ident_raw(name);
quote! {
#ident
}
}
pub fn type_from_named(
ctx: &BindgenContext,
name: &str,
) -> Option<quote::Tokens> {
// FIXME: We could use the inner item to check this is really a
// primitive type but, who the heck overrides these anyway?
Some(match name {
"int8_t" => primitive_ty(ctx, "i8"),
"uint8_t" => primitive_ty(ctx, "u8"),
"int16_t" => primitive_ty(ctx, "i16"),
"uint16_t" => primitive_ty(ctx, "u16"),
"int32_t" => primitive_ty(ctx, "i32"),
"uint32_t" => primitive_ty(ctx, "u32"),
"int64_t" => primitive_ty(ctx, "i64"),
"uint64_t" => primitive_ty(ctx, "u64"),
"uintptr_t" | "size_t" => primitive_ty(ctx, "usize"),
"intptr_t" | "ptrdiff_t" | "ssize_t" => primitive_ty(ctx, "isize"),
_ => return None,
})
}
pub fn fnsig_return_ty(
ctx: &BindgenContext,
sig: &FunctionSig,
) -> quote::Tokens {
let return_item = ctx.resolve_item(sig.return_type());
if let TypeKind::Void = *return_item.kind().expect_type().kind() {
quote! { }
} else {
let ret_ty = return_item.to_rust_ty_or_opaque(ctx, &());
quote! {
-> #ret_ty
}
}
}
pub fn fnsig_arguments(
ctx: &BindgenContext,
sig: &FunctionSig,
) -> Vec<quote::Tokens> {
use super::ToPtr;
let mut unnamed_arguments = 0;
let mut args = sig.argument_types().iter().map(|&(ref name, ty)| {
let arg_item = ctx.resolve_item(ty);
let arg_ty = arg_item.kind().expect_type();
// From the C90 standard[1]:
//
// A declaration of a parameter as "array of type" shall be
// adjusted to "qualified pointer to type", where the type
// qualifiers (if any) are those specified within the [ and ] of
// the array type derivation.
//
// [1]: http://c0x.coding-guidelines.com/6.7.5.3.html
let arg_ty = match *arg_ty.canonical_type(ctx).kind() {
TypeKind::Array(t, _) => {
t.to_rust_ty_or_opaque(ctx, &())
.to_ptr(ctx.resolve_type(t).is_const())
},
TypeKind::Pointer(inner) => {
let inner = ctx.resolve_item(inner);
let inner_ty = inner.expect_type();
if let TypeKind::ObjCInterface(_) = *inner_ty.canonical_type(ctx).kind() {
quote! {
id
}
} else {
arg_item.to_rust_ty_or_opaque(ctx, &())
}
},
_ => {
arg_item.to_rust_ty_or_opaque(ctx, &())
}
};
let arg_name = match *name {
Some(ref name) => ctx.rust_mangle(name).into_owned(),
None => {
unnamed_arguments += 1;
format!("arg{}", unnamed_arguments)
}
};
assert!(!arg_name.is_empty());
let arg_name = ctx.rust_ident(arg_name);
quote! {
#arg_name : #arg_ty
}
}).collect::<Vec<_>>();
if sig.is_variadic() {
args.push(quote! { ... })
}
args
}
}