blob: ffb49d740032c2cb88811b734d3e99758838a83e [file] [log] [blame]
//! Common context that is passed around during parsing and codegen.
use super::super::time::Timer;
use super::analysis::{
analyze, as_cannot_derive_set, CannotDerive, DeriveTrait,
HasDestructorAnalysis, HasFloat, HasTypeParameterInArray,
HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult,
UsedTemplateParameters,
};
use super::derive::{
CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq,
CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd,
};
use super::function::Function;
use super::int::IntKind;
use super::item::{IsOpaque, Item, ItemAncestors, ItemSet};
use super::item_kind::ItemKind;
use super::module::{Module, ModuleKind};
use super::template::{TemplateInstantiation, TemplateParameters};
use super::traversal::{self, Edge, ItemTraversal};
use super::ty::{FloatKind, Type, TypeKind};
use crate::callbacks::ParseCallbacks;
use crate::clang::{self, Cursor};
use crate::parse::ClangItemParser;
use crate::BindgenOptions;
use crate::{Entry, HashMap, HashSet};
use cexpr;
use clang_sys;
use proc_macro2::{Ident, Span};
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::collections::{BTreeSet, HashMap as StdHashMap};
use std::iter::IntoIterator;
use std::mem;
/// An identifier for some kind of IR item.
#[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
pub struct ItemId(usize);
macro_rules! item_id_newtype {
(
$( #[$attr:meta] )*
pub struct $name:ident(ItemId)
where
$( #[$checked_attr:meta] )*
checked = $checked:ident with $check_method:ident,
$( #[$expected_attr:meta] )*
expected = $expected:ident,
$( #[$unchecked_attr:meta] )*
unchecked = $unchecked:ident;
) => {
$( #[$attr] )*
#[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
pub struct $name(ItemId);
impl $name {
/// Create an `ItemResolver` from this id.
pub fn into_resolver(self) -> ItemResolver {
let id: ItemId = self.into();
id.into()
}
}
impl<T> ::std::cmp::PartialEq<T> for $name
where
T: Copy + Into<ItemId>
{
fn eq(&self, rhs: &T) -> bool {
let rhs: ItemId = (*rhs).into();
self.0 == rhs
}
}
impl From<$name> for ItemId {
fn from(id: $name) -> ItemId {
id.0
}
}
impl<'a> From<&'a $name> for ItemId {
fn from(id: &'a $name) -> ItemId {
id.0
}
}
impl ItemId {
$( #[$checked_attr] )*
pub fn $checked(&self, ctx: &BindgenContext) -> Option<$name> {
if ctx.resolve_item(*self).kind().$check_method() {
Some($name(*self))
} else {
None
}
}
$( #[$expected_attr] )*
pub fn $expected(&self, ctx: &BindgenContext) -> $name {
self.$checked(ctx)
.expect(concat!(
stringify!($expected),
" called with ItemId that points to the wrong ItemKind"
))
}
$( #[$unchecked_attr] )*
pub fn $unchecked(&self) -> $name {
$name(*self)
}
}
}
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Type`.
pub struct TypeId(ItemId)
where
/// Convert this `ItemId` into a `TypeId` if its associated item is a type,
/// otherwise return `None`.
checked = as_type_id with is_type,
/// Convert this `ItemId` into a `TypeId`.
///
/// If this `ItemId` does not point to a type, then panic.
expected = expect_type_id,
/// Convert this `ItemId` into a `TypeId` without actually checking whether
/// this id actually points to a `Type`.
unchecked = as_type_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Module`.
pub struct ModuleId(ItemId)
where
/// Convert this `ItemId` into a `ModuleId` if its associated item is a
/// module, otherwise return `None`.
checked = as_module_id with is_module,
/// Convert this `ItemId` into a `ModuleId`.
///
/// If this `ItemId` does not point to a module, then panic.
expected = expect_module_id,
/// Convert this `ItemId` into a `ModuleId` without actually checking
/// whether this id actually points to a `Module`.
unchecked = as_module_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Var`.
pub struct VarId(ItemId)
where
/// Convert this `ItemId` into a `VarId` if its associated item is a var,
/// otherwise return `None`.
checked = as_var_id with is_var,
/// Convert this `ItemId` into a `VarId`.
///
/// If this `ItemId` does not point to a var, then panic.
expected = expect_var_id,
/// Convert this `ItemId` into a `VarId` without actually checking whether
/// this id actually points to a `Var`.
unchecked = as_var_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Function`.
pub struct FunctionId(ItemId)
where
/// Convert this `ItemId` into a `FunctionId` if its associated item is a function,
/// otherwise return `None`.
checked = as_function_id with is_function,
/// Convert this `ItemId` into a `FunctionId`.
///
/// If this `ItemId` does not point to a function, then panic.
expected = expect_function_id,
/// Convert this `ItemId` into a `FunctionId` without actually checking whether
/// this id actually points to a `Function`.
unchecked = as_function_id_unchecked;
}
impl From<ItemId> for usize {
fn from(id: ItemId) -> usize {
id.0
}
}
impl ItemId {
/// Get a numeric representation of this id.
pub fn as_usize(&self) -> usize {
(*self).into()
}
}
impl<T> ::std::cmp::PartialEq<T> for ItemId
where
T: Copy + Into<ItemId>,
{
fn eq(&self, rhs: &T) -> bool {
let rhs: ItemId = (*rhs).into();
self.0 == rhs.0
}
}
impl<T> CanDeriveDebug for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_debug(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self)
}
}
impl<T> CanDeriveDefault for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_default(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_default && ctx.lookup_can_derive_default(*self)
}
}
impl<T> CanDeriveCopy for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_copy(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self)
}
}
impl<T> CanDeriveHash for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_hash(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self)
}
}
impl<T> CanDerivePartialOrd for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_partialord &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes
}
}
impl<T> CanDerivePartialEq for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_partialeq &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes
}
}
impl<T> CanDeriveEq for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_eq(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_eq &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes &&
!ctx.lookup_has_float(*self)
}
}
impl<T> CanDeriveOrd for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_ord(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_ord &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes &&
!ctx.lookup_has_float(*self)
}
}
/// A key used to index a resolved type, so we only process it once.
///
/// This is almost always a USR string (an unique identifier generated by
/// clang), but it can also be the canonical declaration if the type is unnamed,
/// in which case clang may generate the same USR for multiple nested unnamed
/// types.
#[derive(Eq, PartialEq, Hash, Debug)]
enum TypeKey {
Usr(String),
Declaration(Cursor),
}
/// A context used during parsing and generation of structs.
#[derive(Debug)]
pub struct BindgenContext {
/// The map of all the items parsed so far, keyed off ItemId.
items: Vec<Option<Item>>,
/// Clang USR to type map. This is needed to be able to associate types with
/// item ids during parsing.
types: HashMap<TypeKey, TypeId>,
/// Maps from a cursor to the item id of the named template type parameter
/// for that cursor.
type_params: HashMap<clang::Cursor, TypeId>,
/// A cursor to module map. Similar reason than above.
modules: HashMap<Cursor, ModuleId>,
/// The root module, this is guaranteed to be an item of kind Module.
root_module: ModuleId,
/// Current module being traversed.
current_module: ModuleId,
/// A HashMap keyed on a type definition, and whose value is the parent id
/// of the declaration.
///
/// This is used to handle the cases where the semantic and the lexical
/// parents of the cursor differ, like when a nested class is defined
/// outside of the parent class.
semantic_parents: HashMap<clang::Cursor, ItemId>,
/// A stack with the current type declarations and types we're parsing. This
/// is needed to avoid infinite recursion when parsing a type like:
///
/// struct c { struct c* next; };
///
/// This means effectively, that a type has a potential ID before knowing if
/// it's a correct type. But that's not important in practice.
///
/// We could also use the `types` HashMap, but my intention with it is that
/// only valid types and declarations end up there, and this could
/// potentially break that assumption.
currently_parsed_types: Vec<PartialType>,
/// A map with all the already parsed macro names. This is done to avoid
/// hard errors while parsing duplicated macros, as well to allow macro
/// expression parsing.
///
/// This needs to be an std::HashMap because the cexpr API requires it.
parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>,
/// A set of all the included filenames.
deps: BTreeSet<String>,
/// The active replacements collected from replaces="xxx" annotations.
replacements: HashMap<Vec<String>, ItemId>,
collected_typerefs: bool,
in_codegen: bool,
/// The clang index for parsing.
index: clang::Index,
/// The translation unit for parsing.
translation_unit: clang::TranslationUnit,
/// Target information that can be useful for some stuff.
target_info: Option<clang::TargetInfo>,
/// The options given by the user via cli or other medium.
options: BindgenOptions,
/// Whether a bindgen complex was generated
generated_bindgen_complex: Cell<bool>,
/// The set of `ItemId`s that are allowlisted. This the very first thing
/// computed after parsing our IR, and before running any of our analyses.
allowlisted: Option<ItemSet>,
/// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait`
blocklisted_types_implement_traits:
RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>,
/// The set of `ItemId`s that are allowlisted for code generation _and_ that
/// we should generate accounting for the codegen options.
///
/// It's computed right after computing the allowlisted items.
codegen_items: Option<ItemSet>,
/// Map from an item's id to the set of template parameter items that it
/// uses. See `ir::named` for more details. Always `Some` during the codegen
/// phase.
used_template_parameters: Option<HashMap<ItemId, ItemSet>>,
/// The set of `TypeKind::Comp` items found during parsing that need their
/// bitfield allocation units computed. Drained in `compute_bitfield_units`.
need_bitfield_allocation: Vec<ItemId>,
/// The set of (`ItemId`s of) types that can't derive debug.
///
/// This is populated when we enter codegen by `compute_cannot_derive_debug`
/// and is always `None` before that and `Some` after.
cannot_derive_debug: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive default.
///
/// This is populated when we enter codegen by `compute_cannot_derive_default`
/// and is always `None` before that and `Some` after.
cannot_derive_default: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive copy.
///
/// This is populated when we enter codegen by `compute_cannot_derive_copy`
/// and is always `None` before that and `Some` after.
cannot_derive_copy: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive copy in array.
///
/// This is populated when we enter codegen by `compute_cannot_derive_copy`
/// and is always `None` before that and `Some` after.
cannot_derive_copy_in_array: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive hash.
///
/// This is populated when we enter codegen by `compute_can_derive_hash`
/// and is always `None` before that and `Some` after.
cannot_derive_hash: Option<HashSet<ItemId>>,
/// The map why specified `ItemId`s of) types that can't derive hash.
///
/// This is populated when we enter codegen by
/// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None`
/// before that and `Some` after.
cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>,
/// The sizedness of types.
///
/// This is populated by `compute_sizedness` and is always `None` before
/// that function is invoked and `Some` afterwards.
sizedness: Option<HashMap<TypeId, SizednessResult>>,
/// The set of (`ItemId's of`) types that has vtable.
///
/// Populated when we enter codegen by `compute_has_vtable`; always `None`
/// before that and `Some` after.
have_vtable: Option<HashMap<ItemId, HasVtableResult>>,
/// The set of (`ItemId's of`) types that has destructor.
///
/// Populated when we enter codegen by `compute_has_destructor`; always `None`
/// before that and `Some` after.
have_destructor: Option<HashSet<ItemId>>,
/// The set of (`ItemId's of`) types that has array.
///
/// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None`
/// before that and `Some` after.
has_type_param_in_array: Option<HashSet<ItemId>>,
/// The set of (`ItemId's of`) types that has float.
///
/// Populated when we enter codegen by `compute_has_float`; always `None`
/// before that and `Some` after.
has_float: Option<HashSet<ItemId>>,
}
/// A traversal of allowlisted items.
struct AllowlistedItemsTraversal<'ctx> {
ctx: &'ctx BindgenContext,
traversal: ItemTraversal<
'ctx,
ItemSet,
Vec<ItemId>,
for<'a> fn(&'a BindgenContext, Edge) -> bool,
>,
}
impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> {
type Item = ItemId;
fn next(&mut self) -> Option<ItemId> {
loop {
let id = self.traversal.next()?;
if self.ctx.resolve_item(id).is_blocklisted(self.ctx) {
continue;
}
return Some(id);
}
}
}
impl<'ctx> AllowlistedItemsTraversal<'ctx> {
/// Construct a new allowlisted items traversal.
pub fn new<R>(
ctx: &'ctx BindgenContext,
roots: R,
predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool,
) -> Self
where
R: IntoIterator<Item = ItemId>,
{
AllowlistedItemsTraversal {
ctx,
traversal: ItemTraversal::new(ctx, roots, predicate),
}
}
}
impl BindgenContext {
/// Construct the context for the given `options`.
pub(crate) fn new(options: BindgenOptions) -> Self {
// TODO(emilio): Use the CXTargetInfo here when available.
//
// see: https://reviews.llvm.org/D32389
let index = clang::Index::new(false, true);
let parse_options =
clang_sys::CXTranslationUnit_DetailedPreprocessingRecord;
let translation_unit = {
let _t =
Timer::new("translation_unit").with_output(options.time_phases);
clang::TranslationUnit::parse(
&index,
"",
&options.clang_args,
&options.input_unsaved_files,
parse_options,
).expect("libclang error; possible causes include:
- Invalid flag syntax
- Unrecognized flags
- Invalid flag arguments
- File I/O errors
- Host vs. target architecture mismatch
If you encounter an error missing from this list, please file an issue or a PR!")
};
let target_info = clang::TargetInfo::new(&translation_unit);
let root_module = Self::build_root_module(ItemId(0));
let root_module_id = root_module.id().as_module_id_unchecked();
// depfiles need to include the explicitly listed headers too
let mut deps = BTreeSet::default();
if let Some(filename) = &options.input_header {
deps.insert(filename.clone());
}
deps.extend(options.extra_input_headers.iter().cloned());
BindgenContext {
items: vec![Some(root_module)],
deps,
types: Default::default(),
type_params: Default::default(),
modules: Default::default(),
root_module: root_module_id,
current_module: root_module_id,
semantic_parents: Default::default(),
currently_parsed_types: vec![],
parsed_macros: Default::default(),
replacements: Default::default(),
collected_typerefs: false,
in_codegen: false,
index,
translation_unit,
target_info,
options,
generated_bindgen_complex: Cell::new(false),
allowlisted: None,
blocklisted_types_implement_traits: Default::default(),
codegen_items: None,
used_template_parameters: None,
need_bitfield_allocation: Default::default(),
cannot_derive_debug: None,
cannot_derive_default: None,
cannot_derive_copy: None,
cannot_derive_copy_in_array: None,
cannot_derive_hash: None,
cannot_derive_partialeq_or_partialord: None,
sizedness: None,
have_vtable: None,
have_destructor: None,
has_type_param_in_array: None,
has_float: None,
}
}
/// Returns `true` if the target architecture is wasm32
pub fn is_target_wasm32(&self) -> bool {
match self.target_info {
Some(ref ti) => ti.triple.starts_with("wasm32-"),
None => false,
}
}
/// Creates a timer for the current bindgen phase. If time_phases is `true`,
/// the timer will print to stderr when it is dropped, otherwise it will do
/// nothing.
pub fn timer<'a>(&self, name: &'a str) -> Timer<'a> {
Timer::new(name).with_output(self.options.time_phases)
}
/// Returns the pointer width to use for the target for the current
/// translation.
pub fn target_pointer_size(&self) -> usize {
if let Some(ref ti) = self.target_info {
return ti.pointer_width / 8;
}
mem::size_of::<*mut ()>()
}
/// Get the stack of partially parsed types that we are in the middle of
/// parsing.
pub fn currently_parsed_types(&self) -> &[PartialType] {
&self.currently_parsed_types[..]
}
/// Begin parsing the given partial type, and push it onto the
/// `currently_parsed_types` stack so that we won't infinite recurse if we
/// run into a reference to it while parsing it.
pub fn begin_parsing(&mut self, partial_ty: PartialType) {
self.currently_parsed_types.push(partial_ty);
}
/// Finish parsing the current partial type, pop it off the
/// `currently_parsed_types` stack, and return it.
pub fn finish_parsing(&mut self) -> PartialType {
self.currently_parsed_types.pop().expect(
"should have been parsing a type, if we finished parsing a type",
)
}
/// Get the user-provided callbacks by reference, if any.
pub fn parse_callbacks(&self) -> Option<&dyn ParseCallbacks> {
self.options().parse_callbacks.as_deref()
}
/// Add another path to the set of included files.
pub fn include_file(&mut self, filename: String) {
if let Some(cbs) = self.parse_callbacks() {
cbs.include_file(&filename);
}
self.deps.insert(filename);
}
/// Get any included files.
pub fn deps(&self) -> &BTreeSet<String> {
&self.deps
}
/// Define a new item.
///
/// This inserts it into the internal items set, and its type into the
/// internal types set.
pub fn add_item(
&mut self,
item: Item,
declaration: Option<Cursor>,
location: Option<Cursor>,
) {
debug!(
"BindgenContext::add_item({:?}, declaration: {:?}, loc: {:?}",
item, declaration, location
);
debug_assert!(
declaration.is_some() ||
!item.kind().is_type() ||
item.kind().expect_type().is_builtin_or_type_param() ||
item.kind().expect_type().is_opaque(self, &item) ||
item.kind().expect_type().is_unresolved_ref(),
"Adding a type without declaration?"
);
let id = item.id();
let is_type = item.kind().is_type();
let is_unnamed = is_type && item.expect_type().name().is_none();
let is_template_instantiation =
is_type && item.expect_type().is_template_instantiation();
if item.id() != self.root_module {
self.add_item_to_module(&item);
}
if is_type && item.expect_type().is_comp() {
self.need_bitfield_allocation.push(id);
}
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(
old_item.is_none(),
"should not have already associated an item with the given id"
);
// Unnamed items can have an USR, but they can't be referenced from
// other sites explicitly and the USR can match if the unnamed items are
// nested, so don't bother tracking them.
if !is_type || is_template_instantiation {
return;
}
if let Some(mut declaration) = declaration {
if !declaration.is_valid() {
if let Some(location) = location {
if location.is_template_like() {
declaration = location;
}
}
}
declaration = declaration.canonical();
if !declaration.is_valid() {
// This could happen, for example, with types like `int*` or
// similar.
//
// Fortunately, we don't care about those types being
// duplicated, so we can just ignore them.
debug!(
"Invalid declaration {:?} found for type {:?}",
declaration,
self.resolve_item_fallible(id)
.unwrap()
.kind()
.expect_type()
);
return;
}
let key = if is_unnamed {
TypeKey::Declaration(declaration)
} else if let Some(usr) = declaration.usr() {
TypeKey::Usr(usr)
} else {
warn!(
"Valid declaration with no USR: {:?}, {:?}",
declaration, location
);
TypeKey::Declaration(declaration)
};
let old = self.types.insert(key, id.as_type_id_unchecked());
debug_assert_eq!(old, None);
}
}
/// Ensure that every item (other than the root module) is in a module's
/// children list. This is to make sure that every allowlisted item get's
/// codegen'd, even if its parent is not allowlisted. See issue #769 for
/// details.
fn add_item_to_module(&mut self, item: &Item) {
assert!(item.id() != self.root_module);
assert!(self.resolve_item_fallible(item.id()).is_none());
if let Some(ref mut parent) = self.items[item.parent_id().0] {
if let Some(module) = parent.as_module_mut() {
debug!(
"add_item_to_module: adding {:?} as child of parent module {:?}",
item.id(),
item.parent_id()
);
module.children_mut().insert(item.id());
return;
}
}
debug!(
"add_item_to_module: adding {:?} as child of current module {:?}",
item.id(),
self.current_module
);
self.items[(self.current_module.0).0]
.as_mut()
.expect("Should always have an item for self.current_module")
.as_module_mut()
.expect("self.current_module should always be a module")
.children_mut()
.insert(item.id());
}
/// Add a new named template type parameter to this context's item set.
pub fn add_type_param(&mut self, item: Item, definition: clang::Cursor) {
debug!(
"BindgenContext::add_type_param: item = {:?}; definition = {:?}",
item, definition
);
assert!(
item.expect_type().is_type_param(),
"Should directly be a named type, not a resolved reference or anything"
);
assert_eq!(
definition.kind(),
clang_sys::CXCursor_TemplateTypeParameter
);
self.add_item_to_module(&item);
let id = item.id();
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(
old_item.is_none(),
"should not have already associated an item with the given id"
);
let old_named_ty = self
.type_params
.insert(definition, id.as_type_id_unchecked());
assert!(
old_named_ty.is_none(),
"should not have already associated a named type with this id"
);
}
/// Get the named type defined at the given cursor location, if we've
/// already added one.
pub fn get_type_param(&self, definition: &clang::Cursor) -> Option<TypeId> {
assert_eq!(
definition.kind(),
clang_sys::CXCursor_TemplateTypeParameter
);
self.type_params.get(definition).cloned()
}
// TODO: Move all this syntax crap to other part of the code.
/// Mangles a name so it doesn't conflict with any keyword.
#[rustfmt::skip]
pub fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> {
if name.contains('@') ||
name.contains('?') ||
name.contains('$') ||
matches!(
name,
"abstract" | "alignof" | "as" | "async" | "become" |
"box" | "break" | "const" | "continue" | "crate" | "do" |
"dyn" | "else" | "enum" | "extern" | "false" | "final" |
"fn" | "for" | "if" | "impl" | "in" | "let" | "loop" |
"macro" | "match" | "mod" | "move" | "mut" | "offsetof" |
"override" | "priv" | "proc" | "pub" | "pure" | "ref" |
"return" | "Self" | "self" | "sizeof" | "static" |
"struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" |
"unsafe" | "unsized" | "use" | "virtual" | "where" |
"while" | "yield" | "str" | "bool" | "f32" | "f64" |
"usize" | "isize" | "u128" | "i128" | "u64" | "i64" |
"u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_"
)
{
let mut s = name.to_owned();
s = s.replace("@", "_");
s = s.replace("?", "_");
s = s.replace("$", "_");
s.push('_');
return Cow::Owned(s);
}
Cow::Borrowed(name)
}
/// Returns a mangled name as a rust identifier.
pub fn rust_ident<S>(&self, name: S) -> Ident
where
S: AsRef<str>,
{
self.rust_ident_raw(self.rust_mangle(name.as_ref()))
}
/// Returns a mangled name as a rust identifier.
pub fn rust_ident_raw<T>(&self, name: T) -> Ident
where
T: AsRef<str>,
{
Ident::new(name.as_ref(), Span::call_site())
}
/// Iterate over all items that have been defined.
pub fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> {
self.items.iter().enumerate().filter_map(|(index, item)| {
let item = item.as_ref()?;
Some((ItemId(index), item))
})
}
/// Have we collected all unresolved type references yet?
pub fn collected_typerefs(&self) -> bool {
self.collected_typerefs
}
/// Gather all the unresolved type references.
fn collect_typerefs(
&mut self,
) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> {
debug_assert!(!self.collected_typerefs);
self.collected_typerefs = true;
let mut typerefs = vec![];
for (id, item) in self.items() {
let kind = item.kind();
let ty = match kind.as_type() {
Some(ty) => ty,
None => continue,
};
if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) =
*ty.kind()
{
typerefs.push((id, *ty, loc, parent_id));
};
}
typerefs
}
/// Collect all of our unresolved type references and resolve them.
fn resolve_typerefs(&mut self) {
let _t = self.timer("resolve_typerefs");
let typerefs = self.collect_typerefs();
for (id, ty, loc, parent_id) in typerefs {
let _resolved =
{
let resolved = Item::from_ty(&ty, loc, parent_id, self)
.unwrap_or_else(|_| {
warn!("Could not resolve type reference, falling back \
to opaque blob");
Item::new_opaque_type(self.next_item_id(), &ty, self)
});
let item = self.items[id.0].as_mut().unwrap();
*item.kind_mut().as_type_mut().unwrap().kind_mut() =
TypeKind::ResolvedTypeRef(resolved);
resolved
};
// Something in the STL is trolling me. I don't need this assertion
// right now, but worth investigating properly once this lands.
//
// debug_assert!(self.items.get(&resolved).is_some(), "How?");
//
// if let Some(parent_id) = parent_id {
// assert_eq!(self.items[&resolved].parent_id(), parent_id);
// }
}
}
/// Temporarily loan `Item` with the given `ItemId`. This provides means to
/// mutably borrow `Item` while having a reference to `BindgenContext`.
///
/// `Item` with the given `ItemId` is removed from the context, given
/// closure is executed and then `Item` is placed back.
///
/// # Panics
///
/// Panics if attempt to resolve given `ItemId` inside the given
/// closure is made.
fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T
where
F: (FnOnce(&BindgenContext, &mut Item) -> T),
{
let mut item = self.items[id.0].take().unwrap();
let result = f(self, &mut item);
let existing = mem::replace(&mut self.items[id.0], Some(item));
assert!(existing.is_none());
result
}
/// Compute the bitfield allocation units for all `TypeKind::Comp` items we
/// parsed.
fn compute_bitfield_units(&mut self) {
let _t = self.timer("compute_bitfield_units");
assert!(self.collected_typerefs());
let need_bitfield_allocation =
mem::take(&mut self.need_bitfield_allocation);
for id in need_bitfield_allocation {
self.with_loaned_item(id, |ctx, item| {
let ty = item.kind_mut().as_type_mut().unwrap();
let layout = ty.layout(ctx);
ty.as_comp_mut()
.unwrap()
.compute_bitfield_units(ctx, layout.as_ref());
});
}
}
/// Assign a new generated name for each anonymous field.
fn deanonymize_fields(&mut self) {
let _t = self.timer("deanonymize_fields");
let comp_item_ids: Vec<ItemId> = self
.items()
.filter_map(|(id, item)| {
if item.kind().as_type()?.is_comp() {
return Some(id);
}
None
})
.collect();
for id in comp_item_ids {
self.with_loaned_item(id, |ctx, item| {
item.kind_mut()
.as_type_mut()
.unwrap()
.as_comp_mut()
.unwrap()
.deanonymize_fields(ctx);
});
}
}
/// Iterate over all items and replace any item that has been named in a
/// `replaces="SomeType"` annotation with the replacement type.
fn process_replacements(&mut self) {
let _t = self.timer("process_replacements");
if self.replacements.is_empty() {
debug!("No replacements to process");
return;
}
// FIXME: This is linear, but the replaces="xxx" annotation was already
// there, and for better or worse it's useful, sigh...
//
// We leverage the ResolvedTypeRef thing, though, which is cool :P.
let mut replacements = vec![];
for (id, item) in self.items() {
if item.annotations().use_instead_of().is_some() {
continue;
}
// Calls to `canonical_name` are expensive, so eagerly filter out
// items that cannot be replaced.
let ty = match item.kind().as_type() {
Some(ty) => ty,
None => continue,
};
match *ty.kind() {
TypeKind::Comp(..) |
TypeKind::TemplateAlias(..) |
TypeKind::Enum(..) |
TypeKind::Alias(..) => {}
_ => continue,
}
let path = item.path_for_allowlisting(self);
let replacement = self.replacements.get(&path[1..]);
if let Some(replacement) = replacement {
if *replacement != id {
// We set this just after parsing the annotation. It's
// very unlikely, but this can happen.
if self.resolve_item_fallible(*replacement).is_some() {
replacements.push((
id.expect_type_id(self),
replacement.expect_type_id(self),
));
}
}
}
}
for (id, replacement_id) in replacements {
debug!("Replacing {:?} with {:?}", id, replacement_id);
let new_parent = {
let item_id: ItemId = id.into();
let item = self.items[item_id.0].as_mut().unwrap();
*item.kind_mut().as_type_mut().unwrap().kind_mut() =
TypeKind::ResolvedTypeRef(replacement_id);
item.parent_id()
};
// Relocate the replacement item from where it was declared, to
// where the thing it is replacing was declared.
//
// First, we'll make sure that its parent id is correct.
let old_parent = self.resolve_item(replacement_id).parent_id();
if new_parent == old_parent {
// Same parent and therefore also same containing
// module. Nothing to do here.
continue;
}
let replacement_item_id: ItemId = replacement_id.into();
self.items[replacement_item_id.0]
.as_mut()
.unwrap()
.set_parent_for_replacement(new_parent);
// Second, make sure that it is in the correct module's children
// set.
let old_module = {
let immut_self = &*self;
old_parent
.ancestors(immut_self)
.chain(Some(immut_self.root_module.into()))
.find(|id| {
let item = immut_self.resolve_item(*id);
item.as_module().map_or(false, |m| {
m.children().contains(&replacement_id.into())
})
})
};
let old_module = old_module
.expect("Every replacement item should be in a module");
let new_module = {
let immut_self = &*self;
new_parent
.ancestors(immut_self)
.find(|id| immut_self.resolve_item(*id).is_module())
};
let new_module =
new_module.unwrap_or_else(|| self.root_module.into());
if new_module == old_module {
// Already in the correct module.
continue;
}
self.items[old_module.0]
.as_mut()
.unwrap()
.as_module_mut()
.unwrap()
.children_mut()
.remove(&replacement_id.into());
self.items[new_module.0]
.as_mut()
.unwrap()
.as_module_mut()
.unwrap()
.children_mut()
.insert(replacement_id.into());
}
}
/// Enter the code generation phase, invoke the given callback `cb`, and
/// leave the code generation phase.
pub(crate) fn gen<F, Out>(mut self, cb: F) -> (Out, BindgenOptions)
where
F: FnOnce(&Self) -> Out,
{
self.in_codegen = true;
self.resolve_typerefs();
self.compute_bitfield_units();
self.process_replacements();
self.deanonymize_fields();
self.assert_no_dangling_references();
// Compute the allowlisted set after processing replacements and
// resolving type refs, as those are the final mutations of the IR
// graph, and their completion means that the IR graph is now frozen.
self.compute_allowlisted_and_codegen_items();
// Make sure to do this after processing replacements, since that messes
// with the parentage and module children, and we want to assert that it
// messes with them correctly.
self.assert_every_item_in_a_module();
self.compute_has_vtable();
self.compute_sizedness();
self.compute_has_destructor();
self.find_used_template_parameters();
self.compute_cannot_derive_debug();
self.compute_cannot_derive_default();
self.compute_cannot_derive_copy();
self.compute_has_type_param_in_array();
self.compute_has_float();
self.compute_cannot_derive_hash();
self.compute_cannot_derive_partialord_partialeq_or_eq();
let ret = cb(&self);
(ret, self.options)
}
/// When the `testing_only_extra_assertions` feature is enabled, this
/// function walks the IR graph and asserts that we do not have any edges
/// referencing an ItemId for which we do not have an associated IR item.
fn assert_no_dangling_references(&self) {
if cfg!(feature = "testing_only_extra_assertions") {
for _ in self.assert_no_dangling_item_traversal() {
// The iterator's next method does the asserting for us.
}
}
}
fn assert_no_dangling_item_traversal(
&self,
) -> traversal::AssertNoDanglingItemsTraversal {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
let roots = self.items().map(|(id, _)| id);
traversal::AssertNoDanglingItemsTraversal::new(
self,
roots,
traversal::all_edges,
)
}
/// When the `testing_only_extra_assertions` feature is enabled, walk over
/// every item and ensure that it is in the children set of one of its
/// module ancestors.
fn assert_every_item_in_a_module(&self) {
if cfg!(feature = "testing_only_extra_assertions") {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
for (id, _item) in self.items() {
if id == self.root_module {
continue;
}
assert!(
{
let id = id
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self)
.id();
id.ancestors(self)
.chain(Some(self.root_module.into()))
.any(|ancestor| {
debug!(
"Checking if {:?} is a child of {:?}",
id, ancestor
);
self.resolve_item(ancestor)
.as_module()
.map_or(false, |m| {
m.children().contains(&id)
})
})
},
"{:?} should be in some ancestor module's children set",
id
);
}
}
}
/// Compute for every type whether it is sized or not, and whether it is
/// sized or not as a base class.
fn compute_sizedness(&mut self) {
let _t = self.timer("compute_sizedness");
assert!(self.sizedness.is_none());
self.sizedness = Some(analyze::<SizednessAnalysis>(self));
}
/// Look up whether the type with the given id is sized or not.
pub fn lookup_sizedness(&self, id: TypeId) -> SizednessResult {
assert!(
self.in_codegen_phase(),
"We only compute sizedness after we've entered codegen"
);
self.sizedness
.as_ref()
.unwrap()
.get(&id)
.cloned()
.unwrap_or(SizednessResult::ZeroSized)
}
/// Compute whether the type has vtable.
fn compute_has_vtable(&mut self) {
let _t = self.timer("compute_has_vtable");
assert!(self.have_vtable.is_none());
self.have_vtable = Some(analyze::<HasVtableAnalysis>(self));
}
/// Look up whether the item with `id` has vtable or not.
pub fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult {
assert!(
self.in_codegen_phase(),
"We only compute vtables when we enter codegen"
);
// Look up the computed value for whether the item with `id` has a
// vtable or not.
self.have_vtable
.as_ref()
.unwrap()
.get(&id.into())
.cloned()
.unwrap_or(HasVtableResult::No)
}
/// Compute whether the type has a destructor.
fn compute_has_destructor(&mut self) {
let _t = self.timer("compute_has_destructor");
assert!(self.have_destructor.is_none());
self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self));
}
/// Look up whether the item with `id` has a destructor.
pub fn lookup_has_destructor(&self, id: TypeId) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute destructors when we enter codegen"
);
self.have_destructor.as_ref().unwrap().contains(&id.into())
}
fn find_used_template_parameters(&mut self) {
let _t = self.timer("find_used_template_parameters");
if self.options.allowlist_recursively {
let used_params = analyze::<UsedTemplateParameters>(self);
self.used_template_parameters = Some(used_params);
} else {
// If you aren't recursively allowlisting, then we can't really make
// any sense of template parameter usage, and you're on your own.
let mut used_params = HashMap::default();
for &id in self.allowlisted_items() {
used_params.entry(id).or_insert_with(|| {
id.self_template_params(self)
.into_iter()
.map(|p| p.into())
.collect()
});
}
self.used_template_parameters = Some(used_params);
}
}
/// Return `true` if `item` uses the given `template_param`, `false`
/// otherwise.
///
/// This method may only be called during the codegen phase, because the
/// template usage information is only computed as we enter the codegen
/// phase.
///
/// If the item is blocklisted, then we say that it always uses the template
/// parameter. This is a little subtle. The template parameter usage
/// analysis only considers allowlisted items, and if any blocklisted item
/// shows up in the generated bindings, it is the user's responsibility to
/// manually provide a definition for them. To give them the most
/// flexibility when doing that, we assume that they use every template
/// parameter and always pass template arguments through in instantiations.
pub fn uses_template_parameter(
&self,
item: ItemId,
template_param: TypeId,
) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute template parameter usage as we enter codegen"
);
if self.resolve_item(item).is_blocklisted(self) {
return true;
}
let template_param = template_param
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self)
.id();
self.used_template_parameters
.as_ref()
.expect("should have found template parameter usage if we're in codegen")
.get(&item)
.map_or(false, |items_used_params| items_used_params.contains(&template_param))
}
/// Return `true` if `item` uses any unbound, generic template parameters,
/// `false` otherwise.
///
/// Has the same restrictions that `uses_template_parameter` has.
pub fn uses_any_template_parameters(&self, item: ItemId) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute template parameter usage as we enter codegen"
);
self.used_template_parameters
.as_ref()
.expect(
"should have template parameter usage info in codegen phase",
)
.get(&item)
.map_or(false, |used| !used.is_empty())
}
// This deserves a comment. Builtin types don't get a valid declaration, so
// we can't add it to the cursor->type map.
//
// That being said, they're not generated anyway, and are few, so the
// duplication and special-casing is fine.
//
// If at some point we care about the memory here, probably a map TypeKind
// -> builtin type ItemId would be the best to improve that.
fn add_builtin_item(&mut self, item: Item) {
debug!("add_builtin_item: item = {:?}", item);
debug_assert!(item.kind().is_type());
self.add_item_to_module(&item);
let id = item.id();
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(old_item.is_none(), "Inserted type twice?");
}
fn build_root_module(id: ItemId) -> Item {
let module = Module::new(Some("root".into()), ModuleKind::Normal);
Item::new(id, None, None, id, ItemKind::Module(module))
}
/// Get the root module.
pub fn root_module(&self) -> ModuleId {
self.root_module
}
/// Resolve a type with the given id.
///
/// Panics if there is no item for the given `TypeId` or if the resolved
/// item is not a `Type`.
pub fn resolve_type(&self, type_id: TypeId) -> &Type {
self.resolve_item(type_id).kind().expect_type()
}
/// Resolve a function with the given id.
///
/// Panics if there is no item for the given `FunctionId` or if the resolved
/// item is not a `Function`.
pub fn resolve_func(&self, func_id: FunctionId) -> &Function {
self.resolve_item(func_id).kind().expect_function()
}
/// Resolve the given `ItemId` as a type, or `None` if there is no item with
/// the given id.
///
/// Panics if the id resolves to an item that is not a type.
pub fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> {
self.resolve_item_fallible(type_id)
.map(|t| t.kind().expect_type())
}
/// Resolve the given `ItemId` into an `Item`, or `None` if no such item
/// exists.
pub fn resolve_item_fallible<Id: Into<ItemId>>(
&self,
id: Id,
) -> Option<&Item> {
self.items.get(id.into().0)?.as_ref()
}
/// Resolve the given `ItemId` into an `Item`.
///
/// Panics if the given id does not resolve to any item.
pub fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item {
let item_id = item_id.into();
match self.resolve_item_fallible(item_id) {
Some(item) => item,
None => panic!("Not an item: {:?}", item_id),
}
}
/// Get the current module.
pub fn current_module(&self) -> ModuleId {
self.current_module
}
/// Add a semantic parent for a given type definition.
///
/// We do this from the type declaration, in order to be able to find the
/// correct type definition afterwards.
///
/// TODO(emilio): We could consider doing this only when
/// declaration.lexical_parent() != definition.lexical_parent(), but it's
/// not sure it's worth it.
pub fn add_semantic_parent(
&mut self,
definition: clang::Cursor,
parent_id: ItemId,
) {
self.semantic_parents.insert(definition, parent_id);
}
/// Returns a known semantic parent for a given definition.
pub fn known_semantic_parent(
&self,
definition: clang::Cursor,
) -> Option<ItemId> {
self.semantic_parents.get(&definition).cloned()
}
/// Given a cursor pointing to the location of a template instantiation,
/// return a tuple of the form `(declaration_cursor, declaration_id,
/// num_expected_template_args)`.
///
/// Note that `declaration_id` is not guaranteed to be in the context's item
/// set! It is possible that it is a partial type that we are still in the
/// middle of parsing.
fn get_declaration_info_for_template_instantiation(
&self,
instantiation: &Cursor,
) -> Option<(Cursor, ItemId, usize)> {
instantiation
.cur_type()
.canonical_declaration(Some(instantiation))
.and_then(|canon_decl| {
self.get_resolved_type(&canon_decl).and_then(
|template_decl_id| {
let num_params =
template_decl_id.num_self_template_params(self);
if num_params == 0 {
None
} else {
Some((
*canon_decl.cursor(),
template_decl_id.into(),
num_params,
))
}
},
)
})
.or_else(|| {
// If we haven't already parsed the declaration of
// the template being instantiated, then it *must*
// be on the stack of types we are currently
// parsing. If it wasn't then clang would have
// already errored out before we started
// constructing our IR because you can't instantiate
// a template until it is fully defined.
instantiation
.referenced()
.and_then(|referenced| {
self.currently_parsed_types()
.iter()
.find(|partial_ty| *partial_ty.decl() == referenced)
.cloned()
})
.and_then(|template_decl| {
let num_template_params =
template_decl.num_self_template_params(self);
if num_template_params == 0 {
None
} else {
Some((
*template_decl.decl(),
template_decl.id(),
num_template_params,
))
}
})
})
}
/// Parse a template instantiation, eg `Foo<int>`.
///
/// This is surprisingly difficult to do with libclang, due to the fact that
/// it doesn't provide explicit template argument information, except for
/// function template declarations(!?!??!).
///
/// The only way to do this is manually inspecting the AST and looking for
/// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for
/// more complex cases, see the comment on the assertion below.
///
/// To add insult to injury, the AST itself has structure that doesn't make
/// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might
/// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely
/// flat: `(Foo Bar int)`.
///
/// To see an example of what this method handles:
///
/// ```c++
/// template<typename T>
/// class Incomplete {
/// T p;
/// };
///
/// template<typename U>
/// class Foo {
/// Incomplete<U> bar;
/// };
/// ```
///
/// Finally, template instantiations are always children of the current
/// module. They use their template's definition for their name, so the
/// parent is only useful for ensuring that their layout tests get
/// codegen'd.
fn instantiate_template(
&mut self,
with_id: ItemId,
template: TypeId,
ty: &clang::Type,
location: clang::Cursor,
) -> Option<TypeId> {
let num_expected_args =
self.resolve_type(template).num_self_template_params(self);
if num_expected_args == 0 {
warn!(
"Tried to instantiate a template for which we could not \
determine any template parameters"
);
return None;
}
let mut args = vec![];
let mut found_const_arg = false;
let mut children = location.collect_children();
if children.iter().all(|c| !c.has_children()) {
// This is insanity... If clang isn't giving us a properly nested
// AST for which template arguments belong to which template we are
// instantiating, we'll need to construct it ourselves. However,
// there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef`
// representing a reference to the outermost template declaration
// that we need to filter out of the children. We need to do this
// filtering because we already know which template declaration is
// being specialized via the `location`'s type, and if we do not
// filter it out, we'll add an extra layer of template instantiation
// on accident.
let idx = children
.iter()
.position(|c| c.kind() == clang_sys::CXCursor_TemplateRef);
if let Some(idx) = idx {
if children
.iter()
.take(idx)
.all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef)
{
children = children.into_iter().skip(idx + 1).collect();
}
}
}
for child in children.iter().rev() {
match child.kind() {
clang_sys::CXCursor_TypeRef |
clang_sys::CXCursor_TypedefDecl |
clang_sys::CXCursor_TypeAliasDecl => {
// The `with_id` id will potentially end up unused if we give up
// on this type (for example, because it has const value
// template args), so if we pass `with_id` as the parent, it is
// potentially a dangling reference. Instead, use the canonical
// template declaration as the parent. It is already parsed and
// has a known-resolvable `ItemId`.
let ty = Item::from_ty_or_ref(
child.cur_type(),
*child,
Some(template.into()),
self,
);
args.push(ty);
}
clang_sys::CXCursor_TemplateRef => {
let (
template_decl_cursor,
template_decl_id,
num_expected_template_args,
) = self.get_declaration_info_for_template_instantiation(
child,
)?;
if num_expected_template_args == 0 ||
child.has_at_least_num_children(
num_expected_template_args,
)
{
// Do a happy little parse. See comment in the TypeRef
// match arm about parent IDs.
let ty = Item::from_ty_or_ref(
child.cur_type(),
*child,
Some(template.into()),
self,
);
args.push(ty);
} else {
// This is the case mentioned in the doc comment where
// clang gives us a flattened AST and we have to
// reconstruct which template arguments go to which
// instantiation :(
let args_len = args.len();
if args_len < num_expected_template_args {
warn!(
"Found a template instantiation without \
enough template arguments"
);
return None;
}
let mut sub_args: Vec<_> = args
.drain(args_len - num_expected_template_args..)
.collect();
sub_args.reverse();
let sub_name = Some(template_decl_cursor.spelling());
let sub_inst = TemplateInstantiation::new(
// This isn't guaranteed to be a type that we've
// already finished parsing yet.
template_decl_id.as_type_id_unchecked(),
sub_args,
);
let sub_kind =
TypeKind::TemplateInstantiation(sub_inst);
let sub_ty = Type::new(
sub_name,
template_decl_cursor
.cur_type()
.fallible_layout(self)
.ok(),
sub_kind,
false,
);
let sub_id = self.next_item_id();
let sub_item = Item::new(
sub_id,
None,
None,
self.current_module.into(),
ItemKind::Type(sub_ty),
);
// Bypass all the validations in add_item explicitly.
debug!(
"instantiate_template: inserting nested \
instantiation item: {:?}",
sub_item
);
self.add_item_to_module(&sub_item);
debug_assert_eq!(sub_id, sub_item.id());
self.items[sub_id.0] = Some(sub_item);
args.push(sub_id.as_type_id_unchecked());
}
}
_ => {
warn!(
"Found template arg cursor we can't handle: {:?}",
child
);
found_const_arg = true;
}
}
}
if found_const_arg {
// This is a dependently typed template instantiation. That is, an
// instantiation of a template with one or more const values as
// template arguments, rather than only types as template
// arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`.
// We can't handle these instantiations, so just punt in this
// situation...
warn!(
"Found template instantiated with a const value; \
bindgen can't handle this kind of template instantiation!"
);
return None;
}
if args.len() != num_expected_args {
warn!(
"Found a template with an unexpected number of template \
arguments"
);
return None;
}
args.reverse();
let type_kind = TypeKind::TemplateInstantiation(
TemplateInstantiation::new(template, args),
);
let name = ty.spelling();
let name = if name.is_empty() { None } else { Some(name) };
let ty = Type::new(
name,
ty.fallible_layout(self).ok(),
type_kind,
ty.is_const(),
);
let item = Item::new(
with_id,
None,
None,
self.current_module.into(),
ItemKind::Type(ty),
);
// Bypass all the validations in add_item explicitly.
debug!("instantiate_template: inserting item: {:?}", item);
self.add_item_to_module(&item);
debug_assert_eq!(with_id, item.id());
self.items[with_id.0] = Some(item);
Some(with_id.as_type_id_unchecked())
}
/// If we have already resolved the type for the given type declaration,
/// return its `ItemId`. Otherwise, return `None`.
pub fn get_resolved_type(
&self,
decl: &clang::CanonicalTypeDeclaration,
) -> Option<TypeId> {
self.types
.get(&TypeKey::Declaration(*decl.cursor()))
.or_else(|| {
decl.cursor()
.usr()
.and_then(|usr| self.types.get(&TypeKey::Usr(usr)))
})
.cloned()
}
/// Looks up for an already resolved type, either because it's builtin, or
/// because we already have it in the map.
pub fn builtin_or_resolved_ty(
&mut self,
with_id: ItemId,
parent_id: Option<ItemId>,
ty: &clang::Type,
location: Option<clang::Cursor>,
) -> Option<TypeId> {
use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef};
debug!(
"builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}",
ty, location, with_id, parent_id
);
if let Some(decl) = ty.canonical_declaration(location.as_ref()) {
if let Some(id) = self.get_resolved_type(&decl) {
debug!(
"Already resolved ty {:?}, {:?}, {:?} {:?}",
id, decl, ty, location
);
// If the declaration already exists, then either:
//
// * the declaration is a template declaration of some sort,
// and we are looking at an instantiation or specialization
// of it, or
// * we have already parsed and resolved this type, and
// there's nothing left to do.
if let Some(location) = location {
if decl.cursor().is_template_like() &&
*ty != decl.cursor().cur_type()
{
// For specialized type aliases, there's no way to get the
// template parameters as of this writing (for a struct
// specialization we wouldn't be in this branch anyway).
//
// Explicitly return `None` if there aren't any
// unspecialized parameters (contains any `TypeRef`) so we
// resolve the canonical type if there is one and it's
// exposed.
//
// This is _tricky_, I know :(
if decl.cursor().kind() ==
CXCursor_TypeAliasTemplateDecl &&
!location.contains_cursor(CXCursor_TypeRef) &&
ty.canonical_type().is_valid_and_exposed()
{
return None;
}
return self
.instantiate_template(with_id, id, ty, location)
.or(Some(id));
}
}
return Some(self.build_ty_wrapper(with_id, id, parent_id, ty));
}
}
debug!("Not resolved, maybe builtin?");
self.build_builtin_ty(ty)
}
/// Make a new item that is a resolved type reference to the `wrapped_id`.
///
/// This is unfortunately a lot of bloat, but is needed to properly track
/// constness et al.
///
/// We should probably make the constness tracking separate, so it doesn't
/// bloat that much, but hey, we already bloat the heck out of builtin
/// types.
pub fn build_ty_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
) -> TypeId {
self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const())
}
/// A wrapper over a type that adds a const qualifier explicitly.
///
/// Needed to handle const methods in C++, wrapping the type .
pub fn build_const_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
) -> TypeId {
self.build_wrapper(
with_id, wrapped_id, parent_id, ty, /* is_const = */ true,
)
}
fn build_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
is_const: bool,
) -> TypeId {
let spelling = ty.spelling();
let layout = ty.fallible_layout(self).ok();
let type_kind = TypeKind::ResolvedTypeRef(wrapped_id);
let ty = Type::new(Some(spelling), layout, type_kind, is_const);
let item = Item::new(
with_id,
None,
None,
parent_id.unwrap_or_else(|| self.current_module.into()),
ItemKind::Type(ty),
);
self.add_builtin_item(item);
with_id.as_type_id_unchecked()
}
/// Returns the next item id to be used for an item.
pub fn next_item_id(&mut self) -> ItemId {
let ret = ItemId(self.items.len());
self.items.push(None);
ret
}
fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> {
use clang_sys::*;
let type_kind = match ty.kind() {
CXType_NullPtr => TypeKind::NullPtr,
CXType_Void => TypeKind::Void,
CXType_Bool => TypeKind::Int(IntKind::Bool),
CXType_Int => TypeKind::Int(IntKind::Int),
CXType_UInt => TypeKind::Int(IntKind::UInt),
CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }),
CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }),
CXType_SChar => TypeKind::Int(IntKind::SChar),
CXType_UChar => TypeKind::Int(IntKind::UChar),
CXType_Short => TypeKind::Int(IntKind::Short),
CXType_UShort => TypeKind::Int(IntKind::UShort),
CXType_WChar => TypeKind::Int(IntKind::WChar),
CXType_Char16 => TypeKind::Int(IntKind::U16),
CXType_Char32 => TypeKind::Int(IntKind::U32),
CXType_Long => TypeKind::Int(IntKind::Long),
CXType_ULong => TypeKind::Int(IntKind::ULong),
CXType_LongLong => TypeKind::Int(IntKind::LongLong),
CXType_ULongLong => TypeKind::Int(IntKind::ULongLong),
CXType_Int128 => TypeKind::Int(IntKind::I128),
CXType_UInt128 => TypeKind::Int(IntKind::U128),
CXType_Float => TypeKind::Float(FloatKind::Float),
CXType_Double => TypeKind::Float(FloatKind::Double),
CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble),
CXType_Float128 => TypeKind::Float(FloatKind::Float128),
CXType_Complex => {
let float_type =
ty.elem_type().expect("Not able to resolve complex type?");
let float_kind = match float_type.kind() {
CXType_Float => FloatKind::Float,
CXType_Double => FloatKind::Double,
CXType_LongDouble => FloatKind::LongDouble,
CXType_Float128 => FloatKind::Float128,
_ => panic!(
"Non floating-type complex? {:?}, {:?}",
ty, float_type,
),
};
TypeKind::Complex(float_kind)
}
_ => return None,
};
let spelling = ty.spelling();
let is_const = ty.is_const();
let layout = ty.fallible_layout(self).ok();
let ty = Type::new(Some(spelling), layout, type_kind, is_const);
let id = self.next_item_id();
let item = Item::new(
id,
None,
None,
self.root_module.into(),
ItemKind::Type(ty),
);
self.add_builtin_item(item);
Some(id.as_type_id_unchecked())
}
/// Get the current Clang translation unit that is being processed.
pub fn translation_unit(&self) -> &clang::TranslationUnit {
&self.translation_unit
}
/// Have we parsed the macro named `macro_name` already?
pub fn parsed_macro(&self, macro_name: &[u8]) -> bool {
self.parsed_macros.contains_key(macro_name)
}
/// Get the currently parsed macros.
pub fn parsed_macros(
&self,
) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> {
debug_assert!(!self.in_codegen_phase());
&self.parsed_macros
}
/// Mark the macro named `macro_name` as parsed.
pub fn note_parsed_macro(
&mut self,
id: Vec<u8>,
value: cexpr::expr::EvalResult,
) {
self.parsed_macros.insert(id, value);
}
/// Are we in the codegen phase?
pub fn in_codegen_phase(&self) -> bool {
self.in_codegen
}
/// Mark the type with the given `name` as replaced by the type with id
/// `potential_ty`.
///
/// Replacement types are declared using the `replaces="xxx"` annotation,
/// and implies that the original type is hidden.
pub fn replace(&mut self, name: &[String], potential_ty: ItemId) {
match self.replacements.entry(name.into()) {
Entry::Vacant(entry) => {
debug!(
"Defining replacement for {:?} as {:?}",
name, potential_ty
);
entry.insert(potential_ty);
}
Entry::Occupied(occupied) => {
warn!(
"Replacement for {:?} already defined as {:?}; \
ignoring duplicate replacement definition as {:?}",
name,
occupied.get(),
potential_ty
);
}
}
}
/// Has the item with the given `name` and `id` been replaced by another
/// type?
pub fn is_replaced_type<Id: Into<ItemId>>(
&self,
path: &[String],
id: Id,
) -> bool {
let id = id.into();
matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id)
}
/// Is the type with the given `name` marked as opaque?
pub fn opaque_by_name(&self, path: &[String]) -> bool {
debug_assert!(
self.in_codegen_phase(),
"You're not supposed to call this yet"
);
self.options.opaque_types.matches(&path[1..].join("::"))
}
/// Get the options used to configure this bindgen context.
pub(crate) fn options(&self) -> &BindgenOptions {
&self.options
}
/// Tokenizes a namespace cursor in order to get the name and kind of the
/// namespace.
fn tokenize_namespace(
&self,
cursor: &clang::Cursor,
) -> (Option<String>, ModuleKind) {
assert_eq!(
cursor.kind(),
::clang_sys::CXCursor_Namespace,
"Be a nice person"
);
let mut module_name = None;
let spelling = cursor.spelling();
if !spelling.is_empty() {
module_name = Some(spelling)
}
let mut kind = ModuleKind::Normal;
let mut found_namespace_keyword = false;
for token in cursor.tokens().iter() {
match token.spelling() {
b"inline" => {
assert!(!found_namespace_keyword);
assert!(kind != ModuleKind::Inline);
kind = ModuleKind::Inline;
}
// The double colon allows us to handle nested namespaces like
// namespace foo::bar { }
//
// libclang still gives us two namespace cursors, which is cool,
// but the tokenization of the second begins with the double
// colon. That's ok, so we only need to handle the weird
// tokenization here.
//
// Fortunately enough, inline nested namespace specifiers aren't
// a thing, and are invalid C++ :)
b"namespace" | b"::" => {
found_namespace_keyword = true;
}
b"{" => {
assert!(found_namespace_keyword);
break;
}
name if found_namespace_keyword => {
if module_name.is_none() {
module_name =
Some(String::from_utf8_lossy(name).into_owned());
}
break;
}
spelling if !found_namespace_keyword => {
// This is _likely_, but not certainly, a macro that's been placed just before
// the namespace keyword. Unfortunately, clang tokens don't let us easily see
// through the ifdef tokens, so we don't know what this token should really be.
// Instead of panicking though, we warn the user that we assumed the token was
// blank, and then move on.
//
// See also https://github.com/rust-lang/rust-bindgen/issues/1676.
warn!(
"Ignored unknown namespace prefix '{}' at {:?} in {:?}",
String::from_utf8_lossy(spelling),
token,
cursor
);
}
spelling => {
panic!(
"Unknown token '{}' while processing namespace at {:?} in {:?}",
String::from_utf8_lossy(spelling),
token,
cursor
);
}
}
}
(module_name, kind)
}
/// Given a CXCursor_Namespace cursor, return the item id of the
/// corresponding module, or create one on the fly.
pub fn module(&mut self, cursor: clang::Cursor) -> ModuleId {
use clang_sys::*;
assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person");
let cursor = cursor.canonical();
if let Some(id) = self.modules.get(&cursor) {
return *id;
}
let (module_name, kind) = self.tokenize_namespace(&cursor);
let module_id = self.next_item_id();
let module = Module::new(module_name, kind);
let module = Item::new(
module_id,
None,
None,
self.current_module.into(),
ItemKind::Module(module),
);
let module_id = module.id().as_module_id_unchecked();
self.modules.insert(cursor, module_id);
self.add_item(module, None, None);
module_id
}
/// Start traversing the module with the given `module_id`, invoke the
/// callback `cb`, and then return to traversing the original module.
pub fn with_module<F>(&mut self, module_id: ModuleId, cb: F)
where
F: FnOnce(&mut Self),
{
debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat");
let previous_id = self.current_module;
self.current_module = module_id;
cb(self);
self.current_module = previous_id;
}
/// Iterate over all (explicitly or transitively) allowlisted items.
///
/// If no items are explicitly allowlisted, then all items are considered
/// allowlisted.
pub fn allowlisted_items(&self) -> &ItemSet {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
self.allowlisted.as_ref().unwrap()
}
/// Check whether a particular blocklisted type implements a trait or not.
/// Results may be cached.
pub fn blocklisted_type_implements_trait(
&self,
item: &Item,
derive_trait: DeriveTrait,
) -> CanDerive {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
let cb = match self.options.parse_callbacks {
Some(ref cb) => cb,
None => return CanDerive::No,
};
*self
.blocklisted_types_implement_traits
.borrow_mut()
.entry(derive_trait)
.or_default()
.entry(item.id())
.or_insert_with(|| {
item.expect_type()
.name()
.and_then(|name| {
cb.blocklisted_type_implements_trait(name, derive_trait)
})
.unwrap_or(CanDerive::No)
})
}
/// Get a reference to the set of items we should generate.
pub fn codegen_items(&self) -> &ItemSet {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
self.codegen_items.as_ref().unwrap()
}
/// Compute the allowlisted items set and populate `self.allowlisted`.
fn compute_allowlisted_and_codegen_items(&mut self) {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
assert!(self.allowlisted.is_none());
let _t = self.timer("compute_allowlisted_and_codegen_items");
let roots = {
let mut roots = self
.items()
// Only consider roots that are enabled for codegen.
.filter(|&(_, item)| item.is_enabled_for_codegen(self))
.filter(|&(_, item)| {
// If nothing is explicitly allowlisted, then everything is fair
// game.
if self.options().allowlisted_types.is_empty() &&
self.options().allowlisted_functions.is_empty() &&
self.options().allowlisted_vars.is_empty()
{
return true;
}
// If this is a type that explicitly replaces another, we assume
// you know what you're doing.
if item.annotations().use_instead_of().is_some() {
return true;
}
let name = item.path_for_allowlisting(self)[1..].join("::");
debug!("allowlisted_items: testing {:?}", name);
match *item.kind() {
ItemKind::Module(..) => true,
ItemKind::Function(_) => {
self.options().allowlisted_functions.matches(&name)
}
ItemKind::Var(_) => {
self.options().allowlisted_vars.matches(&name)
}
ItemKind::Type(ref ty) => {
if self.options().allowlisted_types.matches(&name) {
return true;
}
// Auto-allowlist types that don't need code
// generation if not allowlisting recursively, to
// make the #[derive] analysis not be lame.
if !self.options().allowlist_recursively {
match *ty.kind() {
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Array(..) |
TypeKind::Vector(..) |
TypeKind::Pointer(..) |
TypeKind::Reference(..) |
TypeKind::Function(..) |
TypeKind::ResolvedTypeRef(..) |
TypeKind::Opaque |
TypeKind::TypeParam => return true,
_ => {}
};
}
// Unnamed top-level enums are special and we
// allowlist them via the `allowlisted_vars` filter,
// since they're effectively top-level constants,
// and there's no way for them to be referenced
// consistently.
let parent = self.resolve_item(item.parent_id());
if !parent.is_module() {
return false;
}
let enum_ = match *ty.kind() {
TypeKind::Enum(ref e) => e,
_ => return false,
};
if ty.name().is_some() {
return false;
}
let mut prefix_path =
parent.path_for_allowlisting(self).clone();
enum_.variants().iter().any(|variant| {
prefix_path.push(
variant.name_for_allowlisting().into(),
);
let name = prefix_path[1..].join("::");
prefix_path.pop().unwrap();
self.options().allowlisted_vars.matches(&name)
})
}
}
})
.map(|(id, _)| id)
.collect::<Vec<_>>();
// The reversal preserves the expected ordering of traversal,
// resulting in more stable-ish bindgen-generated names for
// anonymous types (like unions).
roots.reverse();
roots
};
let allowlisted_items_predicate =
if self.options().allowlist_recursively {
traversal::all_edges
} else {
// Only follow InnerType edges from the allowlisted roots.
// Such inner types (e.g. anonymous structs/unions) are
// always emitted by codegen, and they need to be allowlisted
// to make sure they are processed by e.g. the derive analysis.
traversal::only_inner_type_edges
};
let allowlisted = AllowlistedItemsTraversal::new(
self,
roots.clone(),
allowlisted_items_predicate,
)
.collect::<ItemSet>();
let codegen_items = if self.options().allowlist_recursively {
AllowlistedItemsTraversal::new(
self,
roots,
traversal::codegen_edges,
)
.collect::<ItemSet>()
} else {
allowlisted.clone()
};
self.allowlisted = Some(allowlisted);
self.codegen_items = Some(codegen_items);
for item in self.options().allowlisted_functions.unmatched_items() {
warn!("unused option: --allowlist-function {}", item);
}
for item in self.options().allowlisted_vars.unmatched_items() {
warn!("unused option: --allowlist-var {}", item);
}
for item in self.options().allowlisted_types.unmatched_items() {
warn!("unused option: --allowlist-type {}", item);
}
}
/// Convenient method for getting the prefix to use for most traits in
/// codegen depending on the `use_core` option.
pub fn trait_prefix(&self) -> Ident {
if self.options().use_core {
self.rust_ident_raw("core")
} else {
self.rust_ident_raw("std")
}
}
/// Call if a bindgen complex is generated
pub fn generated_bindgen_complex(&self) {
self.generated_bindgen_complex.set(true)
}
/// Whether we need to generate the bindgen complex type
pub fn need_bindgen_complex_type(&self) -> bool {
self.generated_bindgen_complex.get()
}
/// Compute whether we can derive debug.
fn compute_cannot_derive_debug(&mut self) {
let _t = self.timer("compute_cannot_derive_debug");
assert!(self.cannot_derive_debug.is_none());
if self.options.derive_debug {
self.cannot_derive_debug =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Debug,
))));
}
}
/// Look up whether the item with `id` can
/// derive debug or not.
pub fn lookup_can_derive_debug<Id: Into<ItemId>>(&self, id: Id) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive debug or not.
!self.cannot_derive_debug.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive default.
fn compute_cannot_derive_default(&mut self) {
let _t = self.timer("compute_cannot_derive_default");
assert!(self.cannot_derive_default.is_none());
if self.options.derive_default {
self.cannot_derive_default =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Default,
))));
}
}
/// Look up whether the item with `id` can
/// derive default or not.
pub fn lookup_can_derive_default<Id: Into<ItemId>>(&self, id: Id) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_default when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive default or not.
!self.cannot_derive_default.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive copy.
fn compute_cannot_derive_copy(&mut self) {
let _t = self.timer("compute_cannot_derive_copy");
assert!(self.cannot_derive_copy.is_none());
self.cannot_derive_copy =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Copy,
))));
}
/// Compute whether we can derive hash.
fn compute_cannot_derive_hash(&mut self) {
let _t = self.timer("compute_cannot_derive_hash");
assert!(self.cannot_derive_hash.is_none());
if self.options.derive_hash {
self.cannot_derive_hash =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Hash,
))));
}
}
/// Look up whether the item with `id` can
/// derive hash or not.
pub fn lookup_can_derive_hash<Id: Into<ItemId>>(&self, id: Id) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive hash or not.
!self.cannot_derive_hash.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive PartialOrd, PartialEq or Eq.
fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) {
let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq");
assert!(self.cannot_derive_partialeq_or_partialord.is_none());
if self.options.derive_partialord ||
self.options.derive_partialeq ||
self.options.derive_eq
{
self.cannot_derive_partialeq_or_partialord =
Some(analyze::<CannotDerive>((
self,
DeriveTrait::PartialEqOrPartialOrd,
)));
}
}
/// Look up whether the item with `id` can derive `Partial{Eq,Ord}`.
pub fn lookup_can_derive_partialeq_or_partialord<Id: Into<ItemId>>(
&self,
id: Id,
) -> CanDerive {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_partialeq_or_partialord when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive partialeq or not.
self.cannot_derive_partialeq_or_partialord
.as_ref()
.unwrap()
.get(&id)
.cloned()
.unwrap_or(CanDerive::Yes)
}
/// Look up whether the item with `id` can derive `Copy` or not.
pub fn lookup_can_derive_copy<Id: Into<ItemId>>(&self, id: Id) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive `Copy` or not.
let id = id.into();
!self.lookup_has_type_param_in_array(id) &&
!self.cannot_derive_copy.as_ref().unwrap().contains(&id)
}
/// Compute whether the type has type parameter in array.
fn compute_has_type_param_in_array(&mut self) {
let _t = self.timer("compute_has_type_param_in_array");
assert!(self.has_type_param_in_array.is_none());
self.has_type_param_in_array =
Some(analyze::<HasTypeParameterInArray>(self));
}
/// Look up whether the item with `id` has type parameter in array or not.
pub fn lookup_has_type_param_in_array<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute has array when we enter codegen"
);
// Look up the computed value for whether the item with `id` has
// type parameter in array or not.
self.has_type_param_in_array
.as_ref()
.unwrap()
.contains(&id.into())
}
/// Compute whether the type has float.
fn compute_has_float(&mut self) {
let _t = self.timer("compute_has_float");
assert!(self.has_float.is_none());
if self.options.derive_eq || self.options.derive_ord {
self.has_float = Some(analyze::<HasFloat>(self));
}
}
/// Look up whether the item with `id` has array or not.
pub fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute has float when we enter codegen"
);
// Look up the computed value for whether the item with `id` has
// float or not.
self.has_float.as_ref().unwrap().contains(&id.into())
}
/// Check if `--no-partialeq` flag is enabled for this item.
pub fn no_partialeq_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_partialeq_types.matches(&name)
}
/// Check if `--no-copy` flag is enabled for this item.
pub fn no_copy_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_copy_types.matches(&name)
}
/// Check if `--no-debug` flag is enabled for this item.
pub fn no_debug_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_debug_types.matches(&name)
}
/// Check if `--no-default` flag is enabled for this item.
pub fn no_default_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_default_types.matches(&name)
}
/// Check if `--no-hash` flag is enabled for this item.
pub fn no_hash_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_hash_types.matches(&name)
}
/// Check if `--must-use-type` flag is enabled for this item.
pub fn must_use_type_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().must_use_types.matches(&name)
}
}
/// A builder struct for configuring item resolution options.
#[derive(Debug, Copy, Clone)]
pub struct ItemResolver {
id: ItemId,
through_type_refs: bool,
through_type_aliases: bool,
}
impl ItemId {
/// Create an `ItemResolver` from this item id.
pub fn into_resolver(self) -> ItemResolver {
self.into()
}
}
impl<T> From<T> for ItemResolver
where
T: Into<ItemId>,
{
fn from(id: T) -> ItemResolver {
ItemResolver::new(id)
}
}
impl ItemResolver {
/// Construct a new `ItemResolver` from the given id.
pub fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver {
let id = id.into();
ItemResolver {
id,
through_type_refs: false,
through_type_aliases: false,
}
}
/// Keep resolving through `Type::TypeRef` items.
pub fn through_type_refs(mut self) -> ItemResolver {
self.through_type_refs = true;
self
}
/// Keep resolving through `Type::Alias` items.
pub fn through_type_aliases(mut self) -> ItemResolver {
self.through_type_aliases = true;
self
}
/// Finish configuring and perform the actual item resolution.
pub fn resolve(self, ctx: &BindgenContext) -> &Item {
assert!(ctx.collected_typerefs());
let mut id = self.id;
let mut seen_ids = HashSet::default();
loop {
let item = ctx.resolve_item(id);
// Detect cycles and bail out. These can happen in certain cases
// involving incomplete qualified dependent types (#2085).
if !seen_ids.insert(id) {
return item;
}
let ty_kind = item.as_type().map(|t| t.kind());
match ty_kind {
Some(&TypeKind::ResolvedTypeRef(next_id))
if self.through_type_refs =>
{
id = next_id.into();
}
// We intentionally ignore template aliases here, as they are
// more complicated, and don't represent a simple renaming of
// some type.
Some(&TypeKind::Alias(next_id))
if self.through_type_aliases =>
{
id = next_id.into();
}
_ => return item,
}
}
}
}
/// A type that we are in the middle of parsing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PartialType {
decl: Cursor,
// Just an ItemId, and not a TypeId, because we haven't finished this type
// yet, so there's still time for things to go wrong.
id: ItemId,
}
impl PartialType {
/// Construct a new `PartialType`.
pub fn new(decl: Cursor, id: ItemId) -> PartialType {
// assert!(decl == decl.canonical());
PartialType { decl, id }
}
/// The cursor pointing to this partial type's declaration location.
pub fn decl(&self) -> &Cursor {
&self.decl
}
/// The item ID allocated for this type. This is *NOT* a key for an entry in
/// the context's item set yet!
pub fn id(&self) -> ItemId {
self.id
}
}
impl TemplateParameters for PartialType {
fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> {
// Maybe at some point we will eagerly parse named types, but for now we
// don't and this information is unavailable.
vec![]
}
fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize {
// Wouldn't it be nice if libclang would reliably give us this
// information‽
match self.decl().kind() {
clang_sys::CXCursor_ClassTemplate |
clang_sys::CXCursor_FunctionTemplate |
clang_sys::CXCursor_TypeAliasTemplateDecl => {
let mut num_params = 0;
self.decl().visit(|c| {
match c.kind() {
clang_sys::CXCursor_TemplateTypeParameter |
clang_sys::CXCursor_TemplateTemplateParameter |
clang_sys::CXCursor_NonTypeTemplateParameter => {
num_params += 1;
}
_ => {}
};
clang_sys::CXChildVisit_Continue
});
num_params
}
_ => 0,
}
}
}