| //! Type inference, i.e. the process of walking through the code and determining |
| //! the type of each expression and pattern. |
| //! |
| //! For type inference, compare the implementations in rustc (the various |
| //! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and |
| //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for |
| //! inference here is the `infer` function, which infers the types of all |
| //! expressions in a given function. |
| //! |
| //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' |
| //! which represent currently unknown types; as we walk through the expressions, |
| //! we might determine that certain variables need to be equal to each other, or |
| //! to certain types. To record this, we use the union-find implementation from |
| //! the `ena` crate, which is extracted from rustc. |
| |
| mod autoderef; |
| pub(crate) mod cast; |
| pub(crate) mod closure; |
| mod coerce; |
| pub(crate) mod diagnostics; |
| mod expr; |
| mod fallback; |
| mod mutability; |
| mod pat; |
| mod path; |
| pub(crate) mod unify; |
| |
| use std::{cell::OnceCell, convert::identity, iter, ops::Index}; |
| |
| use base_db::Crate; |
| use either::Either; |
| use hir_def::{ |
| AdtId, AssocItemId, ConstId, DefWithBodyId, FieldId, FunctionId, GenericDefId, GenericParamId, |
| ImplId, ItemContainerId, LocalFieldId, Lookup, TraitId, TupleFieldId, TupleId, TypeAliasId, |
| VariantId, |
| expr_store::{Body, ExpressionStore, HygieneId, path::Path}, |
| hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, LabelId, PatId}, |
| lang_item::{LangItem, LangItemTarget, lang_item}, |
| layout::Integer, |
| resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs}, |
| signatures::{ConstSignature, StaticSignature}, |
| type_ref::{ConstRef, LifetimeRefId, TypeRefId}, |
| }; |
| use hir_expand::{mod_path::ModPath, name::Name}; |
| use indexmap::IndexSet; |
| use intern::sym; |
| use la_arena::{ArenaMap, Entry}; |
| use rustc_ast_ir::Mutability; |
| use rustc_hash::{FxHashMap, FxHashSet}; |
| use rustc_type_ir::{ |
| AliasTyKind, Flags, TypeFlags, TypeFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitor, |
| inherent::{AdtDef, IntoKind, Region as _, SliceLike, Ty as _}, |
| }; |
| use stdx::never; |
| use triomphe::Arc; |
| |
| use crate::{ |
| ImplTraitId, IncorrectGenericsLenKind, Interner, PathLoweringDiagnostic, TargetFeatures, |
| TraitEnvironment, |
| db::{HirDatabase, InternedClosureId, InternedOpaqueTyId}, |
| generics::Generics, |
| infer::{ |
| coerce::{CoerceMany, DynamicCoerceMany}, |
| diagnostics::{Diagnostics, InferenceTyLoweringContext as TyLoweringContext}, |
| expr::ExprIsRead, |
| unify::InferenceTable, |
| }, |
| lower::diagnostics::TyLoweringDiagnostic, |
| lower_nextsolver::{ImplTraitIdx, ImplTraitLoweringMode, LifetimeElisionKind}, |
| mir::MirSpan, |
| next_solver::{ |
| AliasTy, Const, DbInterner, ErrorGuaranteed, GenericArg, GenericArgs, Region, Ty, TyKind, |
| Tys, |
| abi::Safety, |
| fold::fold_tys, |
| infer::{ |
| DefineOpaqueTypes, |
| traits::{Obligation, ObligationCause}, |
| }, |
| mapping::{ChalkToNextSolver, NextSolverToChalk}, |
| }, |
| traits::FnTrait, |
| utils::TargetFeatureIsSafeInTarget, |
| }; |
| |
| // This lint has a false positive here. See the link below for details. |
| // |
| // https://github.com/rust-lang/rust/issues/57411 |
| #[allow(unreachable_pub)] |
| pub use coerce::could_coerce; |
| #[allow(unreachable_pub)] |
| pub use unify::{could_unify, could_unify_deeply}; |
| |
| use cast::{CastCheck, CastError}; |
| pub(crate) use closure::analysis::{CaptureKind, CapturedItem, CapturedItemWithoutTy}; |
| |
| /// The entry point of type inference. |
| pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult<'_>> { |
| let _p = tracing::info_span!("infer_query").entered(); |
| let resolver = def.resolver(db); |
| let body = db.body(def); |
| let mut ctx = InferenceContext::new(db, def, &body, resolver); |
| |
| match def { |
| DefWithBodyId::FunctionId(f) => { |
| ctx.collect_fn(f); |
| } |
| DefWithBodyId::ConstId(c) => ctx.collect_const(c, &db.const_signature(c)), |
| DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_signature(s)), |
| DefWithBodyId::VariantId(v) => { |
| ctx.return_ty = match db.enum_signature(v.lookup(db).parent).variant_body_type() { |
| hir_def::layout::IntegerType::Pointer(signed) => match signed { |
| true => ctx.types.isize, |
| false => ctx.types.usize, |
| }, |
| hir_def::layout::IntegerType::Fixed(size, signed) => match signed { |
| true => match size { |
| Integer::I8 => ctx.types.i8, |
| Integer::I16 => ctx.types.i16, |
| Integer::I32 => ctx.types.i32, |
| Integer::I64 => ctx.types.i64, |
| Integer::I128 => ctx.types.i128, |
| }, |
| false => match size { |
| Integer::I8 => ctx.types.u8, |
| Integer::I16 => ctx.types.u16, |
| Integer::I32 => ctx.types.u32, |
| Integer::I64 => ctx.types.u64, |
| Integer::I128 => ctx.types.u128, |
| }, |
| }, |
| }; |
| } |
| } |
| |
| ctx.infer_body(); |
| |
| ctx.infer_mut_body(); |
| |
| ctx.type_inference_fallback(); |
| |
| // Comment from rustc: |
| // Even though coercion casts provide type hints, we check casts after fallback for |
| // backwards compatibility. This makes fallback a stronger type hint than a cast coercion. |
| let cast_checks = std::mem::take(&mut ctx.deferred_cast_checks); |
| for mut cast in cast_checks.into_iter() { |
| if let Err(diag) = cast.check(&mut ctx) { |
| ctx.diagnostics.push(diag); |
| } |
| } |
| |
| ctx.table.select_obligations_where_possible(); |
| |
| ctx.infer_closures(); |
| |
| Arc::new(ctx.resolve_all()) |
| } |
| |
| pub(crate) fn infer_cycle_result( |
| db: &dyn HirDatabase, |
| _: DefWithBodyId, |
| ) -> Arc<InferenceResult<'_>> { |
| Arc::new(InferenceResult { |
| has_errors: true, |
| ..InferenceResult::new(Ty::new_error(DbInterner::new_with(db, None, None), ErrorGuaranteed)) |
| }) |
| } |
| |
| /// Fully normalize all the types found within `ty` in context of `owner` body definition. |
| /// |
| /// This is appropriate to use only after type-check: it assumes |
| /// that normalization will succeed, for example. |
| #[tracing::instrument(level = "debug", skip(db))] |
| pub(crate) fn normalize( |
| db: &dyn HirDatabase, |
| trait_env: Arc<TraitEnvironment<'_>>, |
| ty: crate::Ty, |
| ) -> crate::Ty { |
| // FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only |
| // works for the type case, so we check array unconditionally. Remove the array part |
| // when the bug in chalk becomes fixed. |
| if !ty.data(Interner).flags.intersects(crate::TypeFlags::HAS_PROJECTION) |
| && !matches!(ty.kind(Interner), crate::TyKind::Array(..)) |
| { |
| return ty; |
| } |
| let mut table = unify::InferenceTable::new(db, trait_env); |
| |
| let ty_with_vars = table.normalize_associated_types_in(ty.to_nextsolver(table.interner())); |
| table.select_obligations_where_possible(); |
| table.resolve_completely(ty_with_vars).to_chalk(table.interner()) |
| } |
| |
| /// Binding modes inferred for patterns. |
| /// <https://doc.rust-lang.org/reference/patterns.html#binding-modes> |
| #[derive(Copy, Clone, Debug, Eq, PartialEq, Default)] |
| pub enum BindingMode { |
| #[default] |
| Move, |
| Ref(Mutability), |
| } |
| |
| impl BindingMode { |
| fn convert(annotation: BindingAnnotation) -> BindingMode { |
| match annotation { |
| BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, |
| BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not), |
| BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), |
| } |
| } |
| } |
| |
| #[derive(Debug, PartialEq, Eq, Clone, Copy)] |
| pub enum InferenceTyDiagnosticSource { |
| /// Diagnostics that come from types in the body. |
| Body, |
| /// Diagnostics that come from types in fn parameters/return type, or static & const types. |
| Signature, |
| } |
| |
| #[derive(Debug, PartialEq, Eq, Clone)] |
| pub enum InferenceDiagnostic<'db> { |
| NoSuchField { |
| field: ExprOrPatId, |
| private: Option<LocalFieldId>, |
| variant: VariantId, |
| }, |
| PrivateField { |
| expr: ExprId, |
| field: FieldId, |
| }, |
| PrivateAssocItem { |
| id: ExprOrPatId, |
| item: AssocItemId, |
| }, |
| UnresolvedField { |
| expr: ExprId, |
| receiver: Ty<'db>, |
| name: Name, |
| method_with_same_name_exists: bool, |
| }, |
| UnresolvedMethodCall { |
| expr: ExprId, |
| receiver: Ty<'db>, |
| name: Name, |
| /// Contains the type the field resolves to |
| field_with_same_name: Option<Ty<'db>>, |
| assoc_func_with_same_name: Option<FunctionId>, |
| }, |
| UnresolvedAssocItem { |
| id: ExprOrPatId, |
| }, |
| UnresolvedIdent { |
| id: ExprOrPatId, |
| }, |
| // FIXME: This should be emitted in body lowering |
| BreakOutsideOfLoop { |
| expr: ExprId, |
| is_break: bool, |
| bad_value_break: bool, |
| }, |
| MismatchedArgCount { |
| call_expr: ExprId, |
| expected: usize, |
| found: usize, |
| }, |
| MismatchedTupleStructPatArgCount { |
| pat: ExprOrPatId, |
| expected: usize, |
| found: usize, |
| }, |
| ExpectedFunction { |
| call_expr: ExprId, |
| found: Ty<'db>, |
| }, |
| TypedHole { |
| expr: ExprId, |
| expected: Ty<'db>, |
| }, |
| CastToUnsized { |
| expr: ExprId, |
| cast_ty: Ty<'db>, |
| }, |
| InvalidCast { |
| expr: ExprId, |
| error: CastError, |
| expr_ty: Ty<'db>, |
| cast_ty: Ty<'db>, |
| }, |
| TyDiagnostic { |
| source: InferenceTyDiagnosticSource, |
| diag: TyLoweringDiagnostic, |
| }, |
| PathDiagnostic { |
| node: ExprOrPatId, |
| diag: PathLoweringDiagnostic, |
| }, |
| MethodCallIncorrectGenericsLen { |
| expr: ExprId, |
| provided_count: u32, |
| expected_count: u32, |
| kind: IncorrectGenericsLenKind, |
| def: GenericDefId, |
| }, |
| MethodCallIncorrectGenericsOrder { |
| expr: ExprId, |
| param_id: GenericParamId, |
| arg_idx: u32, |
| /// Whether the `GenericArgs` contains a `Self` arg. |
| has_self_arg: bool, |
| }, |
| } |
| |
| /// A mismatch between an expected and an inferred type. |
| #[derive(Clone, PartialEq, Eq, Debug, Hash)] |
| pub struct TypeMismatch<'db> { |
| pub expected: Ty<'db>, |
| pub actual: Ty<'db>, |
| } |
| |
| /// Represents coercing a value to a different type of value. |
| /// |
| /// We transform values by following a number of `Adjust` steps in order. |
| /// See the documentation on variants of `Adjust` for more details. |
| /// |
| /// Here are some common scenarios: |
| /// |
| /// 1. The simplest cases are where a pointer is not adjusted fat vs thin. |
| /// Here the pointer will be dereferenced N times (where a dereference can |
| /// happen to raw or borrowed pointers or any smart pointer which implements |
| /// Deref, including Box<_>). The types of dereferences is given by |
| /// `autoderefs`. It can then be auto-referenced zero or one times, indicated |
| /// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is |
| /// `false`. |
| /// |
| /// 2. A thin-to-fat coercion involves unsizing the underlying data. We start |
| /// with a thin pointer, deref a number of times, unsize the underlying data, |
| /// then autoref. The 'unsize' phase may change a fixed length array to a |
| /// dynamically sized one, a concrete object to a trait object, or statically |
| /// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is |
| /// represented by: |
| /// |
| /// ```ignore |
| /// Deref(None) -> [i32; 4], |
| /// Borrow(AutoBorrow::Ref) -> &[i32; 4], |
| /// Unsize -> &[i32], |
| /// ``` |
| /// |
| /// Note that for a struct, the 'deep' unsizing of the struct is not recorded. |
| /// E.g., `struct Foo<T> { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]> |
| /// The autoderef and -ref are the same as in the above example, but the type |
| /// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about |
| /// the underlying conversions from `[i32; 4]` to `[i32]`. |
| /// |
| /// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In |
| /// that case, we have the pointer we need coming in, so there are no |
| /// autoderefs, and no autoref. Instead we just do the `Unsize` transformation. |
| /// At some point, of course, `Box` should move out of the compiler, in which |
| /// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> -> |
| /// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`. |
| #[derive(Clone, Debug, PartialEq, Eq, Hash)] |
| pub struct Adjustment<'db> { |
| pub kind: Adjust<'db>, |
| pub target: Ty<'db>, |
| } |
| |
| impl<'db> Adjustment<'db> { |
| pub fn borrow(interner: DbInterner<'db>, m: Mutability, ty: Ty<'db>, lt: Region<'db>) -> Self { |
| let ty = Ty::new_ref(interner, lt, ty, m); |
| Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(lt, m)), target: ty } |
| } |
| } |
| |
| /// At least for initial deployment, we want to limit two-phase borrows to |
| /// only a few specific cases. Right now, those are mostly "things that desugar" |
| /// into method calls: |
| /// - using `x.some_method()` syntax, where some_method takes `&mut self`, |
| /// - using `Foo::some_method(&mut x, ...)` syntax, |
| /// - binary assignment operators (`+=`, `-=`, `*=`, etc.). |
| /// |
| /// Anything else should be rejected until generalized two-phase borrow support |
| /// is implemented. Right now, dataflow can't handle the general case where there |
| /// is more than one use of a mutable borrow, and we don't want to accept too much |
| /// new code via two-phase borrows, so we try to limit where we create two-phase |
| /// capable mutable borrows. |
| /// See #49434 for tracking. |
| #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] |
| pub(crate) enum AllowTwoPhase { |
| // FIXME: We should use this when appropriate. |
| Yes, |
| No, |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Hash)] |
| pub enum Adjust<'db> { |
| /// Go from ! to any type. |
| NeverToAny, |
| /// Dereference once, producing a place. |
| Deref(Option<OverloadedDeref>), |
| /// Take the address and produce either a `&` or `*` pointer. |
| Borrow(AutoBorrow<'db>), |
| Pointer(PointerCast), |
| } |
| |
| /// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)` |
| /// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`. |
| /// The target type is `U` in both cases, with the region and mutability |
| /// being those shared by both the receiver and the returned reference. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub struct OverloadedDeref(pub Option<Mutability>); |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Hash)] |
| pub enum AutoBorrow<'db> { |
| /// Converts from T to &T. |
| Ref(Region<'db>, Mutability), |
| /// Converts from T to *T. |
| RawPtr(Mutability), |
| } |
| |
| impl<'db> AutoBorrow<'db> { |
| fn mutability(&self) -> Mutability { |
| let (AutoBorrow::Ref(_, m) | AutoBorrow::RawPtr(m)) = self; |
| *m |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub enum PointerCast { |
| /// Go from a fn-item type to a fn-pointer type. |
| ReifyFnPointer, |
| |
| /// Go from a safe fn pointer to an unsafe fn pointer. |
| UnsafeFnPointer, |
| |
| /// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer. |
| /// It cannot convert a closure that requires unsafe. |
| ClosureFnPointer(Safety), |
| |
| /// Go from a mut raw pointer to a const raw pointer. |
| MutToConstPointer, |
| |
| #[allow(dead_code)] |
| /// Go from `*const [T; N]` to `*const T` |
| ArrayToPointer, |
| |
| /// Unsize a pointer/reference value, e.g., `&[T; n]` to |
| /// `&[T]`. Note that the source could be a thin or fat pointer. |
| /// This will do things like convert thin pointers to fat |
| /// pointers, or convert structs containing thin pointers to |
| /// structs containing fat pointers, or convert between fat |
| /// pointers. We don't store the details of how the transform is |
| /// done (in fact, we don't know that, because it might depend on |
| /// the precise type parameters). We just store the target |
| /// type. Codegen backends and miri figure out what has to be done |
| /// based on the precise source/target type at hand. |
| Unsize, |
| } |
| |
| /// The result of type inference: A mapping from expressions and patterns to types. |
| /// |
| /// When you add a field that stores types (including `Substitution` and the like), don't forget |
| /// `resolve_completely()`'ing them in `InferenceContext::resolve_all()`. Inference variables must |
| /// not appear in the final inference result. |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| pub struct InferenceResult<'db> { |
| /// For each method call expr, records the function it resolves to. |
| method_resolutions: FxHashMap<ExprId, (FunctionId, GenericArgs<'db>)>, |
| /// For each field access expr, records the field it resolves to. |
| field_resolutions: FxHashMap<ExprId, Either<FieldId, TupleFieldId>>, |
| /// For each struct literal or pattern, records the variant it resolves to. |
| variant_resolutions: FxHashMap<ExprOrPatId, VariantId>, |
| /// For each associated item record what it resolves to |
| assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, GenericArgs<'db>)>, |
| /// Whenever a tuple field expression access a tuple field, we allocate a tuple id in |
| /// [`InferenceContext`] and store the tuples substitution there. This map is the reverse of |
| /// that which allows us to resolve a [`TupleFieldId`]s type. |
| tuple_field_access_types: FxHashMap<TupleId, Tys<'db>>, |
| /// During inference this field is empty and [`InferenceContext::diagnostics`] is filled instead. |
| diagnostics: Vec<InferenceDiagnostic<'db>>, |
| pub(crate) type_of_expr: ArenaMap<ExprId, Ty<'db>>, |
| /// For each pattern record the type it resolves to. |
| /// |
| /// **Note**: When a pattern type is resolved it may still contain |
| /// unresolved or missing subpatterns or subpatterns of mismatched types. |
| pub(crate) type_of_pat: ArenaMap<PatId, Ty<'db>>, |
| pub(crate) type_of_binding: ArenaMap<BindingId, Ty<'db>>, |
| pub(crate) type_of_rpit: ArenaMap<ImplTraitIdx<'db>, Ty<'db>>, |
| type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch<'db>>, |
| /// Whether there are any type-mismatching errors in the result. |
| // FIXME: This isn't as useful as initially thought due to us falling back placeholders to |
| // `TyKind::Error`. |
| // Which will then mark this field. |
| pub(crate) has_errors: bool, |
| /// Interned `Error` type to return references to. |
| // FIXME: Remove this. |
| error_ty: Ty<'db>, |
| /// Stores the types which were implicitly dereferenced in pattern binding modes. |
| pub(crate) pat_adjustments: FxHashMap<PatId, Vec<Ty<'db>>>, |
| /// Stores the binding mode (`ref` in `let ref x = 2`) of bindings. |
| /// |
| /// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an |
| /// or pattern can have multiple binding modes. For example: |
| /// ``` |
| /// fn foo(mut slice: &[u32]) -> usize { |
| /// slice = match slice { |
| /// [0, rest @ ..] | rest => rest, |
| /// }; |
| /// 0 |
| /// } |
| /// ``` |
| /// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`. |
| pub(crate) binding_modes: ArenaMap<PatId, BindingMode>, |
| pub(crate) expr_adjustments: FxHashMap<ExprId, Box<[Adjustment<'db>]>>, |
| pub(crate) closure_info: FxHashMap<InternedClosureId, (Vec<CapturedItem<'db>>, FnTrait)>, |
| // FIXME: remove this field |
| pub mutated_bindings_in_closure: FxHashSet<BindingId>, |
| pub(crate) coercion_casts: FxHashSet<ExprId>, |
| } |
| |
| impl<'db> InferenceResult<'db> { |
| fn new(error_ty: Ty<'db>) -> Self { |
| Self { |
| method_resolutions: Default::default(), |
| field_resolutions: Default::default(), |
| variant_resolutions: Default::default(), |
| assoc_resolutions: Default::default(), |
| tuple_field_access_types: Default::default(), |
| diagnostics: Default::default(), |
| type_of_expr: Default::default(), |
| type_of_pat: Default::default(), |
| type_of_binding: Default::default(), |
| type_of_rpit: Default::default(), |
| type_mismatches: Default::default(), |
| has_errors: Default::default(), |
| error_ty, |
| pat_adjustments: Default::default(), |
| binding_modes: Default::default(), |
| expr_adjustments: Default::default(), |
| closure_info: Default::default(), |
| mutated_bindings_in_closure: Default::default(), |
| coercion_casts: Default::default(), |
| } |
| } |
| |
| pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, GenericArgs<'db>)> { |
| self.method_resolutions.get(&expr).copied() |
| } |
| pub fn field_resolution(&self, expr: ExprId) -> Option<Either<FieldId, TupleFieldId>> { |
| self.field_resolutions.get(&expr).copied() |
| } |
| pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> { |
| self.variant_resolutions.get(&id.into()).copied() |
| } |
| pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> { |
| self.variant_resolutions.get(&id.into()).copied() |
| } |
| pub fn variant_resolution_for_expr_or_pat(&self, id: ExprOrPatId) -> Option<VariantId> { |
| match id { |
| ExprOrPatId::ExprId(id) => self.variant_resolution_for_expr(id), |
| ExprOrPatId::PatId(id) => self.variant_resolution_for_pat(id), |
| } |
| } |
| pub fn assoc_resolutions_for_expr( |
| &self, |
| id: ExprId, |
| ) -> Option<(AssocItemId, GenericArgs<'db>)> { |
| self.assoc_resolutions.get(&id.into()).copied() |
| } |
| pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, GenericArgs<'db>)> { |
| self.assoc_resolutions.get(&id.into()).copied() |
| } |
| pub fn assoc_resolutions_for_expr_or_pat( |
| &self, |
| id: ExprOrPatId, |
| ) -> Option<(AssocItemId, GenericArgs<'db>)> { |
| match id { |
| ExprOrPatId::ExprId(id) => self.assoc_resolutions_for_expr(id), |
| ExprOrPatId::PatId(id) => self.assoc_resolutions_for_pat(id), |
| } |
| } |
| pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch<'db>> { |
| self.type_mismatches.get(&expr.into()) |
| } |
| pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch<'db>> { |
| self.type_mismatches.get(&pat.into()) |
| } |
| pub fn type_mismatches(&self) -> impl Iterator<Item = (ExprOrPatId, &TypeMismatch<'db>)> { |
| self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch)) |
| } |
| pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch<'db>)> { |
| self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat { |
| ExprOrPatId::ExprId(expr) => Some((expr, mismatch)), |
| _ => None, |
| }) |
| } |
| pub fn closure_info(&self, closure: InternedClosureId) -> &(Vec<CapturedItem<'db>>, FnTrait) { |
| self.closure_info.get(&closure).unwrap() |
| } |
| pub fn type_of_expr_or_pat(&self, id: ExprOrPatId) -> Option<Ty<'db>> { |
| match id { |
| ExprOrPatId::ExprId(id) => self.type_of_expr.get(id).copied(), |
| ExprOrPatId::PatId(id) => self.type_of_pat.get(id).copied(), |
| } |
| } |
| pub fn type_of_expr_with_adjust(&self, id: ExprId) -> Option<Ty<'db>> { |
| match self.expr_adjustments.get(&id).and_then(|adjustments| { |
| adjustments |
| .iter() |
| .filter(|adj| { |
| // https://github.com/rust-lang/rust/blob/67819923ac8ea353aaa775303f4c3aacbf41d010/compiler/rustc_mir_build/src/thir/cx/expr.rs#L140 |
| !matches!( |
| adj, |
| Adjustment { |
| kind: Adjust::NeverToAny, |
| target, |
| } if target.is_never() |
| ) |
| }) |
| .next_back() |
| }) { |
| Some(adjustment) => Some(adjustment.target), |
| None => self.type_of_expr.get(id).copied(), |
| } |
| } |
| pub fn type_of_pat_with_adjust(&self, id: PatId) -> Option<Ty<'db>> { |
| match self.pat_adjustments.get(&id).and_then(|adjustments| adjustments.last()) { |
| Some(adjusted) => Some(*adjusted), |
| None => self.type_of_pat.get(id).copied(), |
| } |
| } |
| pub fn is_erroneous(&self) -> bool { |
| self.has_errors && self.type_of_expr.iter().count() == 0 |
| } |
| |
| pub fn diagnostics(&self) -> &[InferenceDiagnostic<'db>] { |
| &self.diagnostics |
| } |
| |
| pub fn tuple_field_access_type(&self, id: TupleId) -> Tys<'db> { |
| self.tuple_field_access_types[&id] |
| } |
| |
| pub fn pat_adjustment(&self, id: PatId) -> Option<&[Ty<'db>]> { |
| self.pat_adjustments.get(&id).map(|it| &**it) |
| } |
| |
| pub fn expr_adjustment(&self, id: ExprId) -> Option<&[Adjustment<'db>]> { |
| self.expr_adjustments.get(&id).map(|it| &**it) |
| } |
| |
| pub fn binding_mode(&self, id: PatId) -> Option<BindingMode> { |
| self.binding_modes.get(id).copied() |
| } |
| |
| // This method is consumed by external tools to run rust-analyzer as a library. Don't remove, please. |
| pub fn expression_types(&self) -> impl Iterator<Item = (ExprId, Ty<'db>)> { |
| self.type_of_expr.iter().map(|(k, v)| (k, *v)) |
| } |
| |
| // This method is consumed by external tools to run rust-analyzer as a library. Don't remove, please. |
| pub fn pattern_types(&self) -> impl Iterator<Item = (PatId, Ty<'db>)> { |
| self.type_of_pat.iter().map(|(k, v)| (k, *v)) |
| } |
| |
| // This method is consumed by external tools to run rust-analyzer as a library. Don't remove, please. |
| pub fn binding_types(&self) -> impl Iterator<Item = (BindingId, Ty<'db>)> { |
| self.type_of_binding.iter().map(|(k, v)| (k, *v)) |
| } |
| |
| // This method is consumed by external tools to run rust-analyzer as a library. Don't remove, please. |
| pub fn return_position_impl_trait_types( |
| &self, |
| ) -> impl Iterator<Item = (ImplTraitIdx<'db>, Ty<'db>)> { |
| self.type_of_rpit.iter().map(|(k, v)| (k, *v)) |
| } |
| } |
| |
| impl<'db> Index<ExprId> for InferenceResult<'db> { |
| type Output = Ty<'db>; |
| |
| fn index(&self, expr: ExprId) -> &Ty<'db> { |
| self.type_of_expr.get(expr).unwrap_or(&self.error_ty) |
| } |
| } |
| |
| impl<'db> Index<PatId> for InferenceResult<'db> { |
| type Output = Ty<'db>; |
| |
| fn index(&self, pat: PatId) -> &Ty<'db> { |
| self.type_of_pat.get(pat).unwrap_or(&self.error_ty) |
| } |
| } |
| |
| impl<'db> Index<ExprOrPatId> for InferenceResult<'db> { |
| type Output = Ty<'db>; |
| |
| fn index(&self, id: ExprOrPatId) -> &Ty<'db> { |
| match id { |
| ExprOrPatId::ExprId(id) => &self[id], |
| ExprOrPatId::PatId(id) => &self[id], |
| } |
| } |
| } |
| |
| impl<'db> Index<BindingId> for InferenceResult<'db> { |
| type Output = Ty<'db>; |
| |
| fn index(&self, b: BindingId) -> &Ty<'db> { |
| self.type_of_binding.get(b).unwrap_or(&self.error_ty) |
| } |
| } |
| |
| #[derive(Debug, Clone)] |
| struct InternedStandardTypes<'db> { |
| unit: Ty<'db>, |
| never: Ty<'db>, |
| char: Ty<'db>, |
| bool: Ty<'db>, |
| i8: Ty<'db>, |
| i16: Ty<'db>, |
| i32: Ty<'db>, |
| i64: Ty<'db>, |
| i128: Ty<'db>, |
| isize: Ty<'db>, |
| u8: Ty<'db>, |
| u16: Ty<'db>, |
| u32: Ty<'db>, |
| u64: Ty<'db>, |
| u128: Ty<'db>, |
| usize: Ty<'db>, |
| f16: Ty<'db>, |
| f32: Ty<'db>, |
| f64: Ty<'db>, |
| f128: Ty<'db>, |
| static_str_ref: Ty<'db>, |
| error: Ty<'db>, |
| |
| re_static: Region<'db>, |
| re_error: Region<'db>, |
| |
| empty_args: GenericArgs<'db>, |
| empty_tys: Tys<'db>, |
| } |
| |
| impl<'db> InternedStandardTypes<'db> { |
| fn new(interner: DbInterner<'db>) -> Self { |
| let str = Ty::new(interner, rustc_type_ir::TyKind::Str); |
| let re_static = Region::new_static(interner); |
| Self { |
| unit: Ty::new_unit(interner), |
| never: Ty::new(interner, TyKind::Never), |
| char: Ty::new(interner, TyKind::Char), |
| bool: Ty::new(interner, TyKind::Bool), |
| i8: Ty::new_int(interner, rustc_type_ir::IntTy::I8), |
| i16: Ty::new_int(interner, rustc_type_ir::IntTy::I16), |
| i32: Ty::new_int(interner, rustc_type_ir::IntTy::I32), |
| i64: Ty::new_int(interner, rustc_type_ir::IntTy::I64), |
| i128: Ty::new_int(interner, rustc_type_ir::IntTy::I128), |
| isize: Ty::new_int(interner, rustc_type_ir::IntTy::Isize), |
| u8: Ty::new_uint(interner, rustc_type_ir::UintTy::U8), |
| u16: Ty::new_uint(interner, rustc_type_ir::UintTy::U16), |
| u32: Ty::new_uint(interner, rustc_type_ir::UintTy::U32), |
| u64: Ty::new_uint(interner, rustc_type_ir::UintTy::U64), |
| u128: Ty::new_uint(interner, rustc_type_ir::UintTy::U128), |
| usize: Ty::new_uint(interner, rustc_type_ir::UintTy::Usize), |
| f16: Ty::new_float(interner, rustc_type_ir::FloatTy::F16), |
| f32: Ty::new_float(interner, rustc_type_ir::FloatTy::F32), |
| f64: Ty::new_float(interner, rustc_type_ir::FloatTy::F64), |
| f128: Ty::new_float(interner, rustc_type_ir::FloatTy::F128), |
| static_str_ref: Ty::new_ref(interner, re_static, str, Mutability::Not), |
| error: Ty::new_error(interner, ErrorGuaranteed), |
| |
| re_static, |
| re_error: Region::error(interner), |
| |
| empty_args: GenericArgs::new_from_iter(interner, []), |
| empty_tys: Tys::new_from_iter(interner, []), |
| } |
| } |
| } |
| |
| /// The inference context contains all information needed during type inference. |
| #[derive(Clone, Debug)] |
| pub(crate) struct InferenceContext<'body, 'db> { |
| pub(crate) db: &'db dyn HirDatabase, |
| pub(crate) owner: DefWithBodyId, |
| pub(crate) body: &'body Body, |
| /// Generally you should not resolve things via this resolver. Instead create a TyLoweringContext |
| /// and resolve the path via its methods. This will ensure proper error reporting. |
| pub(crate) resolver: Resolver<'db>, |
| target_features: OnceCell<(TargetFeatures, TargetFeatureIsSafeInTarget)>, |
| generic_def: GenericDefId, |
| generics: OnceCell<Generics>, |
| table: unify::InferenceTable<'db>, |
| /// The traits in scope, disregarding block modules. This is used for caching purposes. |
| traits_in_scope: FxHashSet<TraitId>, |
| pub(crate) result: InferenceResult<'db>, |
| tuple_field_accesses_rev: |
| IndexSet<Tys<'db>, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>, |
| /// The return type of the function being inferred, the closure or async block if we're |
| /// currently within one. |
| /// |
| /// We might consider using a nested inference context for checking |
| /// closures so we can swap all shared things out at once. |
| return_ty: Ty<'db>, |
| /// If `Some`, this stores coercion information for returned |
| /// expressions. If `None`, this is in a context where return is |
| /// inappropriate, such as a const expression. |
| return_coercion: Option<DynamicCoerceMany<'db>>, |
| /// The resume type and the yield type, respectively, of the coroutine being inferred. |
| resume_yield_tys: Option<(Ty<'db>, Ty<'db>)>, |
| diverges: Diverges, |
| breakables: Vec<BreakableContext<'db>>, |
| types: InternedStandardTypes<'db>, |
| |
| /// Whether we are inside the pattern of a destructuring assignment. |
| inside_assignment: bool, |
| |
| deferred_cast_checks: Vec<CastCheck<'db>>, |
| |
| // fields related to closure capture |
| current_captures: Vec<CapturedItemWithoutTy<'db>>, |
| /// A stack that has an entry for each projection in the current capture. |
| /// |
| /// For example, in `a.b.c`, we capture the spans of `a`, `a.b`, and `a.b.c`. |
| /// We do that because sometimes we truncate projections (when a closure captures |
| /// both `a.b` and `a.b.c`), and we want to provide accurate spans in this case. |
| current_capture_span_stack: Vec<MirSpan>, |
| current_closure: Option<InternedClosureId>, |
| /// Stores the list of closure ids that need to be analyzed before this closure. See the |
| /// comment on `InferenceContext::sort_closures` |
| closure_dependencies: FxHashMap<InternedClosureId, Vec<InternedClosureId>>, |
| deferred_closures: FxHashMap<InternedClosureId, Vec<(Ty<'db>, Ty<'db>, Vec<Ty<'db>>, ExprId)>>, |
| |
| diagnostics: Diagnostics<'db>, |
| } |
| |
| #[derive(Clone, Debug)] |
| struct BreakableContext<'db> { |
| /// Whether this context contains at least one break expression. |
| may_break: bool, |
| /// The coercion target of the context. |
| coerce: Option<DynamicCoerceMany<'db>>, |
| /// The optional label of the context. |
| label: Option<LabelId>, |
| kind: BreakableKind, |
| } |
| |
| #[derive(Clone, Debug)] |
| enum BreakableKind { |
| Block, |
| Loop, |
| /// A border is something like an async block, closure etc. Anything that prevents |
| /// breaking/continuing through |
| Border, |
| } |
| |
| fn find_breakable<'a, 'db>( |
| ctxs: &'a mut [BreakableContext<'db>], |
| label: Option<LabelId>, |
| ) -> Option<&'a mut BreakableContext<'db>> { |
| let mut ctxs = ctxs |
| .iter_mut() |
| .rev() |
| .take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop)); |
| match label { |
| Some(_) => ctxs.find(|ctx| ctx.label == label), |
| None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)), |
| } |
| } |
| |
| fn find_continuable<'a, 'db>( |
| ctxs: &'a mut [BreakableContext<'db>], |
| label: Option<LabelId>, |
| ) -> Option<&'a mut BreakableContext<'db>> { |
| match label { |
| Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)), |
| None => find_breakable(ctxs, label), |
| } |
| } |
| |
| enum ImplTraitReplacingMode<'db> { |
| ReturnPosition(FxHashSet<Ty<'db>>), |
| TypeAlias, |
| } |
| |
| impl<'body, 'db> InferenceContext<'body, 'db> { |
| fn new( |
| db: &'db dyn HirDatabase, |
| owner: DefWithBodyId, |
| body: &'body Body, |
| resolver: Resolver<'db>, |
| ) -> Self { |
| let trait_env = db.trait_environment_for_body(owner); |
| let table = unify::InferenceTable::new(db, trait_env); |
| let types = InternedStandardTypes::new(table.interner()); |
| InferenceContext { |
| result: InferenceResult::new(types.error), |
| return_ty: types.error, // set in collect_* calls |
| types, |
| target_features: OnceCell::new(), |
| generics: OnceCell::new(), |
| table, |
| tuple_field_accesses_rev: Default::default(), |
| resume_yield_tys: None, |
| return_coercion: None, |
| db, |
| owner, |
| generic_def: match owner { |
| DefWithBodyId::FunctionId(it) => it.into(), |
| DefWithBodyId::StaticId(it) => it.into(), |
| DefWithBodyId::ConstId(it) => it.into(), |
| DefWithBodyId::VariantId(it) => it.lookup(db).parent.into(), |
| }, |
| body, |
| traits_in_scope: resolver.traits_in_scope(db), |
| resolver, |
| diverges: Diverges::Maybe, |
| breakables: Vec::new(), |
| deferred_cast_checks: Vec::new(), |
| current_captures: Vec::new(), |
| current_capture_span_stack: Vec::new(), |
| current_closure: None, |
| deferred_closures: FxHashMap::default(), |
| closure_dependencies: FxHashMap::default(), |
| inside_assignment: false, |
| diagnostics: Diagnostics::default(), |
| } |
| } |
| |
| pub(crate) fn generics(&self) -> &Generics { |
| self.generics.get_or_init(|| crate::generics::generics(self.db, self.generic_def)) |
| } |
| |
| #[inline] |
| fn krate(&self) -> Crate { |
| self.resolver.krate() |
| } |
| |
| fn target_features<'a>( |
| db: &dyn HirDatabase, |
| target_features: &'a OnceCell<(TargetFeatures, TargetFeatureIsSafeInTarget)>, |
| owner: DefWithBodyId, |
| krate: Crate, |
| ) -> (&'a TargetFeatures, TargetFeatureIsSafeInTarget) { |
| let (target_features, target_feature_is_safe) = target_features.get_or_init(|| { |
| let target_features = match owner { |
| DefWithBodyId::FunctionId(id) => TargetFeatures::from_attrs(&db.attrs(id.into())), |
| _ => TargetFeatures::default(), |
| }; |
| let target_feature_is_safe = match &krate.workspace_data(db).target { |
| Ok(target) => crate::utils::target_feature_is_safe_in_target(target), |
| Err(_) => TargetFeatureIsSafeInTarget::No, |
| }; |
| (target_features, target_feature_is_safe) |
| }); |
| (target_features, *target_feature_is_safe) |
| } |
| |
| #[inline] |
| pub(crate) fn set_tainted_by_errors(&mut self) { |
| self.result.has_errors = true; |
| } |
| |
| /// Clones `self` and calls `resolve_all()` on it. |
| // FIXME: Remove this. |
| pub(crate) fn fixme_resolve_all_clone(&self) -> InferenceResult<'db> { |
| let mut ctx = self.clone(); |
| |
| ctx.type_inference_fallback(); |
| |
| // Comment from rustc: |
| // Even though coercion casts provide type hints, we check casts after fallback for |
| // backwards compatibility. This makes fallback a stronger type hint than a cast coercion. |
| let cast_checks = std::mem::take(&mut ctx.deferred_cast_checks); |
| for mut cast in cast_checks.into_iter() { |
| if let Err(diag) = cast.check(&mut ctx) { |
| ctx.diagnostics.push(diag); |
| } |
| } |
| |
| ctx.table.select_obligations_where_possible(); |
| |
| ctx.resolve_all() |
| } |
| |
| // FIXME: This function should be private in module. It is currently only used in the consteval, since we need |
| // `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you |
| // used this function for another workaround, mention it here. If you really need this function and believe that |
| // there is no problem in it being `pub(crate)`, remove this comment. |
| pub(crate) fn resolve_all(self) -> InferenceResult<'db> { |
| let InferenceContext { |
| mut table, mut result, tuple_field_accesses_rev, diagnostics, .. |
| } = self; |
| let mut diagnostics = diagnostics.finish(); |
| // Destructure every single field so whenever new fields are added to `InferenceResult` we |
| // don't forget to handle them here. |
| let InferenceResult { |
| method_resolutions, |
| field_resolutions: _, |
| variant_resolutions: _, |
| assoc_resolutions, |
| type_of_expr, |
| type_of_pat, |
| type_of_binding, |
| type_of_rpit, |
| type_mismatches, |
| has_errors, |
| error_ty: _, |
| pat_adjustments, |
| binding_modes: _, |
| expr_adjustments, |
| // Types in `closure_info` have already been `resolve_completely()`'d during |
| // `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need |
| // to resolve them here. |
| closure_info: _, |
| mutated_bindings_in_closure: _, |
| tuple_field_access_types: _, |
| coercion_casts: _, |
| diagnostics: _, |
| } = &mut result; |
| |
| for ty in type_of_expr.values_mut() { |
| *ty = table.resolve_completely(*ty); |
| *has_errors = *has_errors || ty.references_non_lt_error(); |
| } |
| type_of_expr.shrink_to_fit(); |
| for ty in type_of_pat.values_mut() { |
| *ty = table.resolve_completely(*ty); |
| *has_errors = *has_errors || ty.references_non_lt_error(); |
| } |
| type_of_pat.shrink_to_fit(); |
| for ty in type_of_binding.values_mut() { |
| *ty = table.resolve_completely(*ty); |
| *has_errors = *has_errors || ty.references_non_lt_error(); |
| } |
| type_of_binding.shrink_to_fit(); |
| for ty in type_of_rpit.values_mut() { |
| *ty = table.resolve_completely(*ty); |
| *has_errors = *has_errors || ty.references_non_lt_error(); |
| } |
| type_of_rpit.shrink_to_fit(); |
| |
| *has_errors |= !type_mismatches.is_empty(); |
| |
| for mismatch in (*type_mismatches).values_mut() { |
| mismatch.expected = table.resolve_completely(mismatch.expected); |
| mismatch.actual = table.resolve_completely(mismatch.actual); |
| } |
| type_mismatches.shrink_to_fit(); |
| diagnostics.retain_mut(|diagnostic| { |
| use InferenceDiagnostic::*; |
| match diagnostic { |
| ExpectedFunction { found: ty, .. } |
| | UnresolvedField { receiver: ty, .. } |
| | UnresolvedMethodCall { receiver: ty, .. } => { |
| *ty = table.resolve_completely(*ty); |
| // FIXME: Remove this when we are on par with rustc in terms of inference |
| if ty.references_non_lt_error() { |
| return false; |
| } |
| |
| if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic |
| && let Some(ty) = field_with_same_name |
| { |
| *ty = table.resolve_completely(*ty); |
| if ty.references_non_lt_error() { |
| *field_with_same_name = None; |
| } |
| } |
| } |
| TypedHole { expected: ty, .. } => { |
| *ty = table.resolve_completely(*ty); |
| } |
| _ => (), |
| } |
| true |
| }); |
| diagnostics.shrink_to_fit(); |
| for (_, subst) in method_resolutions.values_mut() { |
| *subst = table.resolve_completely(*subst); |
| *has_errors = *has_errors || subst.types().any(|ty| ty.references_non_lt_error()); |
| } |
| method_resolutions.shrink_to_fit(); |
| for (_, subst) in assoc_resolutions.values_mut() { |
| *subst = table.resolve_completely(*subst); |
| *has_errors = *has_errors || subst.types().any(|ty| ty.references_non_lt_error()); |
| } |
| assoc_resolutions.shrink_to_fit(); |
| for adjustment in expr_adjustments.values_mut().flatten() { |
| adjustment.target = table.resolve_completely(adjustment.target); |
| *has_errors = *has_errors || adjustment.target.references_non_lt_error(); |
| } |
| expr_adjustments.shrink_to_fit(); |
| for adjustment in pat_adjustments.values_mut().flatten() { |
| *adjustment = table.resolve_completely(*adjustment); |
| *has_errors = *has_errors || adjustment.references_non_lt_error(); |
| } |
| pat_adjustments.shrink_to_fit(); |
| result.tuple_field_access_types = tuple_field_accesses_rev |
| .into_iter() |
| .enumerate() |
| .map(|(idx, subst)| (TupleId(idx as u32), table.resolve_completely(subst))) |
| .inspect(|(_, subst)| { |
| *has_errors = *has_errors || subst.iter().any(|ty| ty.references_non_lt_error()); |
| }) |
| .collect(); |
| result.tuple_field_access_types.shrink_to_fit(); |
| |
| result.diagnostics = diagnostics; |
| |
| result |
| } |
| |
| fn collect_const(&mut self, id: ConstId, data: &ConstSignature) { |
| let return_ty = self.make_ty( |
| data.type_ref, |
| &data.store, |
| InferenceTyDiagnosticSource::Signature, |
| LifetimeElisionKind::for_const(self.interner(), id.loc(self.db).container), |
| ); |
| |
| // Constants might be defining usage sites of TAITs. |
| self.make_tait_coercion_table(iter::once(return_ty)); |
| |
| self.return_ty = return_ty; |
| } |
| |
| fn collect_static(&mut self, data: &StaticSignature) { |
| let return_ty = self.make_ty( |
| data.type_ref, |
| &data.store, |
| InferenceTyDiagnosticSource::Signature, |
| LifetimeElisionKind::Elided(self.types.re_static), |
| ); |
| |
| // Statics might be defining usage sites of TAITs. |
| self.make_tait_coercion_table(iter::once(return_ty)); |
| |
| self.return_ty = return_ty; |
| } |
| |
| fn collect_fn(&mut self, func: FunctionId) { |
| let data = self.db.function_signature(func); |
| let mut param_tys = self.with_ty_lowering( |
| &data.store, |
| InferenceTyDiagnosticSource::Signature, |
| LifetimeElisionKind::for_fn_params(&data), |
| |ctx| data.params.iter().map(|&type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>(), |
| ); |
| |
| // Check if function contains a va_list, if it does then we append it to the parameter types |
| // that are collected from the function data |
| if data.is_varargs() { |
| let va_list_ty = match self.resolve_va_list() { |
| Some(va_list) => Ty::new_adt( |
| self.interner(), |
| va_list, |
| GenericArgs::for_item_with_defaults( |
| self.interner(), |
| va_list.into(), |
| |_, _, id, _| self.table.next_var_for_param(id), |
| ), |
| ), |
| None => self.err_ty(), |
| }; |
| |
| param_tys.push(va_list_ty); |
| } |
| let mut param_tys = param_tys.into_iter().chain(iter::repeat(self.table.next_ty_var())); |
| if let Some(self_param) = self.body.self_param |
| && let Some(ty) = param_tys.next() |
| { |
| let ty = self.process_user_written_ty(ty); |
| self.write_binding_ty(self_param, ty); |
| } |
| let mut tait_candidates = FxHashSet::default(); |
| for (ty, pat) in param_tys.zip(&*self.body.params) { |
| let ty = self.process_user_written_ty(ty); |
| |
| self.infer_top_pat(*pat, ty, None); |
| if ty.flags().intersects(TypeFlags::HAS_TY_OPAQUE.union(TypeFlags::HAS_TY_INFER)) { |
| tait_candidates.insert(ty); |
| } |
| } |
| let return_ty = match data.ret_type { |
| Some(return_ty) => { |
| let return_ty = self.with_ty_lowering( |
| &data.store, |
| InferenceTyDiagnosticSource::Signature, |
| LifetimeElisionKind::for_fn_ret(self.interner()), |
| |ctx| { |
| ctx.impl_trait_mode(ImplTraitLoweringMode::Opaque); |
| ctx.lower_ty(return_ty) |
| }, |
| ); |
| let return_ty = self.insert_type_vars(return_ty); |
| if let Some(rpits) = self.db.return_type_impl_traits_ns(func) { |
| let mut mode = ImplTraitReplacingMode::ReturnPosition(FxHashSet::default()); |
| let result = self.insert_inference_vars_for_impl_trait(return_ty, &mut mode); |
| if let ImplTraitReplacingMode::ReturnPosition(taits) = mode { |
| tait_candidates.extend(taits); |
| } |
| let rpits = (*rpits).as_ref().skip_binder(); |
| for (id, _) in rpits.impl_traits.iter() { |
| if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) { |
| never!("Missed RPIT in `insert_inference_vars_for_rpit`"); |
| e.insert(self.types.error); |
| } |
| } |
| result |
| } else { |
| return_ty |
| } |
| } |
| None => self.types.unit, |
| }; |
| |
| self.return_ty = self.process_user_written_ty(return_ty); |
| self.return_coercion = Some(CoerceMany::new(self.return_ty)); |
| |
| // Functions might be defining usage sites of TAITs. |
| // To define an TAITs, that TAIT must appear in the function's signatures. |
| // So, it suffices to check for params and return types. |
| fold_tys(self.interner(), self.return_ty, |ty| { |
| match ty.kind() { |
| TyKind::Alias(AliasTyKind::Opaque, _) | TyKind::Infer(..) => { |
| tait_candidates.insert(self.return_ty); |
| } |
| _ => {} |
| } |
| ty |
| }); |
| |
| self.make_tait_coercion_table(tait_candidates.iter().copied()); |
| } |
| |
| #[inline] |
| pub(crate) fn interner(&self) -> DbInterner<'db> { |
| self.table.interner() |
| } |
| |
| fn insert_inference_vars_for_impl_trait<T>( |
| &mut self, |
| t: T, |
| mode: &mut ImplTraitReplacingMode<'db>, |
| ) -> T |
| where |
| T: TypeFoldable<DbInterner<'db>>, |
| { |
| fold_tys(self.interner(), t, |ty| { |
| let ty = self.table.try_structurally_resolve_type(ty); |
| let opaque_ty_id = match ty.kind() { |
| TyKind::Alias(AliasTyKind::Opaque, alias_ty) => alias_ty.def_id.expect_opaque_ty(), |
| _ => return ty, |
| }; |
| let (impl_traits, idx) = match self.db.lookup_intern_impl_trait_id(opaque_ty_id) { |
| // We don't replace opaque types from other kind with inference vars |
| // because `insert_inference_vars_for_impl_traits` for each kinds |
| // and unreplaced opaque types of other kind are resolved while |
| // inferencing because of `tait_coercion_table`. |
| ImplTraitId::ReturnTypeImplTrait(def, idx) => { |
| if matches!(mode, ImplTraitReplacingMode::TypeAlias) { |
| // RPITs don't have `tait_coercion_table`, so use inserted inference |
| // vars for them. |
| if let Some(ty) = |
| self.result.type_of_rpit.get(idx.to_nextsolver(self.interner())) |
| { |
| return *ty; |
| } |
| return ty; |
| } |
| (self.db.return_type_impl_traits_ns(def), idx) |
| } |
| ImplTraitId::TypeAliasImplTrait(def, idx) => { |
| if let ImplTraitReplacingMode::ReturnPosition(taits) = mode { |
| // Gather TAITs while replacing RPITs because TAITs inside RPITs |
| // may not visited while replacing TAITs |
| taits.insert(ty); |
| return ty; |
| } |
| (self.db.type_alias_impl_traits_ns(def), idx) |
| } |
| _ => unreachable!(), |
| }; |
| let Some(impl_traits) = impl_traits else { |
| return ty; |
| }; |
| let bounds = (*impl_traits).as_ref().map_bound(|its| { |
| its.impl_traits[idx.to_nextsolver(self.interner())].predicates.as_slice() |
| }); |
| let var = match self.result.type_of_rpit.entry(idx.to_nextsolver(self.interner())) { |
| Entry::Occupied(entry) => return *entry.get(), |
| Entry::Vacant(entry) => *entry.insert(self.table.next_ty_var()), |
| }; |
| for clause in bounds.iter_identity_copied() { |
| let clause = self.insert_inference_vars_for_impl_trait(clause, mode); |
| self.table.register_predicate(Obligation::new( |
| self.interner(), |
| ObligationCause::new(), |
| self.table.trait_env.env, |
| clause, |
| )); |
| } |
| var |
| }) |
| } |
| |
| /// The coercion of a non-inference var into an opaque type should fail, |
| /// but not in the defining sites of the TAITs. |
| /// In such cases, we insert an proxy inference var for each TAIT, |
| /// and coerce into it instead of TAIT itself. |
| /// |
| /// The inference var stretagy is effective because; |
| /// |
| /// - It can still unify types that coerced into TAITs |
| /// - We are pushing `impl Trait` bounds into it |
| /// |
| /// This function inserts a map that maps the opaque type to that proxy inference var. |
| fn make_tait_coercion_table(&mut self, tait_candidates: impl Iterator<Item = Ty<'db>>) { |
| struct TypeAliasImplTraitCollector<'a, 'db> { |
| db: &'a dyn HirDatabase, |
| table: &'a mut InferenceTable<'db>, |
| assocs: FxHashMap<InternedOpaqueTyId, (ImplId, Ty<'db>)>, |
| non_assocs: FxHashMap<InternedOpaqueTyId, Ty<'db>>, |
| } |
| |
| impl<'db> TypeVisitor<DbInterner<'db>> for TypeAliasImplTraitCollector<'_, 'db> { |
| type Result = (); |
| |
| fn visit_ty(&mut self, ty: Ty<'db>) { |
| let ty = self.table.try_structurally_resolve_type(ty); |
| |
| if let TyKind::Alias(AliasTyKind::Opaque, alias_ty) = ty.kind() |
| && let id = alias_ty.def_id.expect_opaque_ty() |
| && let ImplTraitId::TypeAliasImplTrait(alias_id, _) = |
| self.db.lookup_intern_impl_trait_id(id) |
| { |
| let loc = self.db.lookup_intern_type_alias(alias_id); |
| match loc.container { |
| ItemContainerId::ImplId(impl_id) => { |
| self.assocs.insert(id, (impl_id, ty)); |
| } |
| ItemContainerId::ModuleId(..) | ItemContainerId::ExternBlockId(..) => { |
| self.non_assocs.insert(id, ty); |
| } |
| _ => {} |
| } |
| } |
| |
| ty.super_visit_with(self) |
| } |
| } |
| |
| let mut collector = TypeAliasImplTraitCollector { |
| db: self.db, |
| table: &mut self.table, |
| assocs: FxHashMap::default(), |
| non_assocs: FxHashMap::default(), |
| }; |
| for ty in tait_candidates { |
| ty.visit_with(&mut collector); |
| } |
| |
| // Non-assoc TAITs can be define-used everywhere as long as they are |
| // in function signatures or const types, etc |
| let mut taits = collector.non_assocs; |
| |
| // assoc TAITs(ATPITs) can be only define-used inside their impl block. |
| // They cannot be define-used in inner items like in the following; |
| // |
| // ``` |
| // impl Trait for Struct { |
| // type Assoc = impl Default; |
| // |
| // fn assoc_fn() -> Self::Assoc { |
| // let foo: Self::Assoc = true; // Allowed here |
| // |
| // fn inner() -> Self::Assoc { |
| // false // Not allowed here |
| // } |
| // |
| // foo |
| // } |
| // } |
| // ``` |
| let impl_id = match self.owner { |
| DefWithBodyId::FunctionId(it) => { |
| let loc = self.db.lookup_intern_function(it); |
| if let ItemContainerId::ImplId(impl_id) = loc.container { |
| Some(impl_id) |
| } else { |
| None |
| } |
| } |
| DefWithBodyId::ConstId(it) => { |
| let loc = self.db.lookup_intern_const(it); |
| if let ItemContainerId::ImplId(impl_id) = loc.container { |
| Some(impl_id) |
| } else { |
| None |
| } |
| } |
| _ => None, |
| }; |
| |
| if let Some(impl_id) = impl_id { |
| taits.extend(collector.assocs.into_iter().filter_map(|(id, (impl_, ty))| { |
| if impl_ == impl_id { Some((id, ty)) } else { None } |
| })); |
| } |
| |
| let tait_coercion_table: FxHashMap<_, _> = taits |
| .into_iter() |
| .filter_map(|(id, ty)| { |
| if let ImplTraitId::TypeAliasImplTrait(..) = self.db.lookup_intern_impl_trait_id(id) |
| { |
| let ty = self.insert_inference_vars_for_impl_trait( |
| ty, |
| &mut ImplTraitReplacingMode::TypeAlias, |
| ); |
| Some((id, ty)) |
| } else { |
| None |
| } |
| }) |
| .collect(); |
| |
| if !tait_coercion_table.is_empty() { |
| self.table.tait_coercion_table = Some(tait_coercion_table); |
| } |
| } |
| |
| fn infer_body(&mut self) { |
| match self.return_coercion { |
| Some(_) => self.infer_return(self.body.body_expr), |
| None => { |
| _ = self.infer_expr_coerce( |
| self.body.body_expr, |
| &Expectation::has_type(self.return_ty), |
| ExprIsRead::Yes, |
| ) |
| } |
| } |
| } |
| |
| fn write_expr_ty(&mut self, expr: ExprId, ty: Ty<'db>) { |
| self.result.type_of_expr.insert(expr, ty); |
| } |
| |
| fn write_expr_adj(&mut self, expr: ExprId, adjustments: Box<[Adjustment<'db>]>) { |
| if adjustments.is_empty() { |
| return; |
| } |
| match self.result.expr_adjustments.entry(expr) { |
| std::collections::hash_map::Entry::Occupied(mut entry) => { |
| match (&mut entry.get_mut()[..], &adjustments[..]) { |
| ( |
| [Adjustment { kind: Adjust::NeverToAny, target }], |
| [.., Adjustment { target: new_target, .. }], |
| ) => { |
| // NeverToAny coercion can target any type, so instead of adding a new |
| // adjustment on top we can change the target. |
| *target = *new_target; |
| } |
| _ => { |
| *entry.get_mut() = adjustments; |
| } |
| } |
| } |
| std::collections::hash_map::Entry::Vacant(entry) => { |
| entry.insert(adjustments); |
| } |
| } |
| } |
| |
| fn write_pat_adj(&mut self, pat: PatId, adjustments: Box<[Ty<'db>]>) { |
| if adjustments.is_empty() { |
| return; |
| } |
| self.result.pat_adjustments.entry(pat).or_default().extend(adjustments); |
| } |
| |
| fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: GenericArgs<'db>) { |
| self.result.method_resolutions.insert(expr, (func, subst)); |
| } |
| |
| fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) { |
| self.result.variant_resolutions.insert(id, variant); |
| } |
| |
| fn write_assoc_resolution( |
| &mut self, |
| id: ExprOrPatId, |
| item: AssocItemId, |
| subs: GenericArgs<'db>, |
| ) { |
| self.result.assoc_resolutions.insert(id, (item, subs)); |
| } |
| |
| fn write_pat_ty(&mut self, pat: PatId, ty: Ty<'db>) { |
| self.result.type_of_pat.insert(pat, ty); |
| } |
| |
| fn write_binding_ty(&mut self, id: BindingId, ty: Ty<'db>) { |
| self.result.type_of_binding.insert(id, ty); |
| } |
| |
| fn push_diagnostic(&self, diagnostic: InferenceDiagnostic<'db>) { |
| self.diagnostics.push(diagnostic); |
| } |
| |
| fn with_ty_lowering<R>( |
| &mut self, |
| store: &ExpressionStore, |
| types_source: InferenceTyDiagnosticSource, |
| lifetime_elision: LifetimeElisionKind<'db>, |
| f: impl FnOnce(&mut TyLoweringContext<'db, '_>) -> R, |
| ) -> R { |
| let mut ctx = TyLoweringContext::new( |
| self.db, |
| &self.resolver, |
| store, |
| &self.diagnostics, |
| types_source, |
| self.generic_def, |
| lifetime_elision, |
| ); |
| f(&mut ctx) |
| } |
| |
| fn with_body_ty_lowering<R>( |
| &mut self, |
| f: impl FnOnce(&mut TyLoweringContext<'db, '_>) -> R, |
| ) -> R { |
| self.with_ty_lowering( |
| self.body, |
| InferenceTyDiagnosticSource::Body, |
| LifetimeElisionKind::Infer, |
| f, |
| ) |
| } |
| |
| fn make_ty( |
| &mut self, |
| type_ref: TypeRefId, |
| store: &ExpressionStore, |
| type_source: InferenceTyDiagnosticSource, |
| lifetime_elision: LifetimeElisionKind<'db>, |
| ) -> Ty<'db> { |
| let ty = self |
| .with_ty_lowering(store, type_source, lifetime_elision, |ctx| ctx.lower_ty(type_ref)); |
| self.process_user_written_ty(ty) |
| } |
| |
| fn make_body_ty(&mut self, type_ref: TypeRefId) -> Ty<'db> { |
| self.make_ty( |
| type_ref, |
| self.body, |
| InferenceTyDiagnosticSource::Body, |
| LifetimeElisionKind::Infer, |
| ) |
| } |
| |
| fn make_body_const(&mut self, const_ref: ConstRef, ty: Ty<'db>) -> Const<'db> { |
| let const_ = self.with_ty_lowering( |
| self.body, |
| InferenceTyDiagnosticSource::Body, |
| LifetimeElisionKind::Infer, |
| |ctx| ctx.lower_const(const_ref, ty), |
| ); |
| self.insert_type_vars(const_) |
| } |
| |
| fn make_path_as_body_const(&mut self, path: &Path, ty: Ty<'db>) -> Const<'db> { |
| let const_ = self.with_ty_lowering( |
| self.body, |
| InferenceTyDiagnosticSource::Body, |
| LifetimeElisionKind::Infer, |
| |ctx| ctx.lower_path_as_const(path, ty), |
| ); |
| self.insert_type_vars(const_) |
| } |
| |
| fn err_ty(&self) -> Ty<'db> { |
| self.types.error |
| } |
| |
| fn make_body_lifetime(&mut self, lifetime_ref: LifetimeRefId) -> Region<'db> { |
| let lt = self.with_ty_lowering( |
| self.body, |
| InferenceTyDiagnosticSource::Body, |
| LifetimeElisionKind::Infer, |
| |ctx| ctx.lower_lifetime(lifetime_ref), |
| ); |
| self.insert_type_vars(lt) |
| } |
| |
| /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it. |
| fn insert_type_vars_shallow(&mut self, ty: Ty<'db>) -> Ty<'db> { |
| self.table.insert_type_vars_shallow(ty) |
| } |
| |
| fn insert_type_vars<T>(&mut self, ty: T) -> T |
| where |
| T: TypeFoldable<DbInterner<'db>>, |
| { |
| self.table.insert_type_vars(ty) |
| } |
| |
| fn unify(&mut self, ty1: Ty<'db>, ty2: Ty<'db>) -> bool { |
| self.table.unify(ty1, ty2) |
| } |
| |
| /// Attempts to returns the deeply last field of nested structures, but |
| /// does not apply any normalization in its search. Returns the same type |
| /// if input `ty` is not a structure at all. |
| fn struct_tail_without_normalization(&mut self, ty: Ty<'db>) -> Ty<'db> { |
| self.struct_tail_with_normalize(ty, identity) |
| } |
| |
| /// Returns the deeply last field of nested structures, or the same type if |
| /// not a structure at all. Corresponds to the only possible unsized field, |
| /// and its type can be used to determine unsizing strategy. |
| /// |
| /// This is parameterized over the normalization strategy (i.e. how to |
| /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity |
| /// function to indicate no normalization should take place. |
| fn struct_tail_with_normalize( |
| &mut self, |
| mut ty: Ty<'db>, |
| mut normalize: impl FnMut(Ty<'db>) -> Ty<'db>, |
| ) -> Ty<'db> { |
| // FIXME: fetch the limit properly |
| let recursion_limit = 10; |
| for iteration in 0.. { |
| if iteration > recursion_limit { |
| return self.err_ty(); |
| } |
| match ty.kind() { |
| TyKind::Adt(adt_def, substs) => match adt_def.def_id().0 { |
| AdtId::StructId(struct_id) => { |
| match self.db.field_types_ns(struct_id.into()).values().next_back().copied() |
| { |
| Some(field) => { |
| ty = field.instantiate(self.interner(), substs); |
| } |
| None => break, |
| } |
| } |
| _ => break, |
| }, |
| TyKind::Tuple(substs) => match substs.as_slice().split_last() { |
| Some((last_ty, _)) => ty = *last_ty, |
| None => break, |
| }, |
| TyKind::Alias(..) => { |
| let normalized = normalize(ty); |
| if ty == normalized { |
| return ty; |
| } else { |
| ty = normalized; |
| } |
| } |
| _ => break, |
| } |
| } |
| ty |
| } |
| |
| /// Whenever you lower a user-written type, you should call this. |
| fn process_user_written_ty<T>(&mut self, ty: T) -> T |
| where |
| T: TypeFoldable<DbInterner<'db>>, |
| { |
| self.table.process_user_written_ty(ty) |
| } |
| |
| /// The difference of this method from `process_user_written_ty()` is that this method doesn't register a well-formed obligation, |
| /// while `process_user_written_ty()` should (but doesn't currently). |
| fn process_remote_user_written_ty<T>(&mut self, ty: T) -> T |
| where |
| T: TypeFoldable<DbInterner<'db>>, |
| { |
| self.table.process_remote_user_written_ty(ty) |
| } |
| |
| fn shallow_resolve(&self, ty: Ty<'db>) -> Ty<'db> { |
| self.table.shallow_resolve(ty) |
| } |
| |
| fn resolve_associated_type( |
| &mut self, |
| inner_ty: Ty<'db>, |
| assoc_ty: Option<TypeAliasId>, |
| ) -> Ty<'db> { |
| self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[]) |
| } |
| |
| fn demand_eqtype(&mut self, expected: Ty<'db>, actual: Ty<'db>) { |
| let result = self |
| .table |
| .infer_ctxt |
| .at(&ObligationCause::new(), self.table.trait_env.env) |
| .eq(DefineOpaqueTypes::Yes, expected, actual) |
| .map(|infer_ok| self.table.register_infer_ok(infer_ok)); |
| if let Err(_err) = result { |
| // FIXME: Emit diagnostic. |
| } |
| } |
| |
| fn resolve_associated_type_with_params( |
| &mut self, |
| inner_ty: Ty<'db>, |
| assoc_ty: Option<TypeAliasId>, |
| // FIXME(GATs): these are args for the trait ref, args for assoc type itself should be |
| // handled when we support them. |
| params: &[GenericArg<'db>], |
| ) -> Ty<'db> { |
| match assoc_ty { |
| Some(res_assoc_ty) => { |
| let alias = Ty::new_alias( |
| self.interner(), |
| AliasTyKind::Projection, |
| AliasTy::new( |
| self.interner(), |
| res_assoc_ty.into(), |
| iter::once(inner_ty.into()).chain(params.iter().copied()), |
| ), |
| ); |
| self.table.try_structurally_resolve_type(alias) |
| } |
| None => self.err_ty(), |
| } |
| } |
| |
| fn resolve_variant( |
| &mut self, |
| node: ExprOrPatId, |
| path: Option<&Path>, |
| value_ns: bool, |
| ) -> (Ty<'db>, Option<VariantId>) { |
| let path = match path { |
| Some(path) => path, |
| None => return (self.err_ty(), None), |
| }; |
| let mut ctx = TyLoweringContext::new( |
| self.db, |
| &self.resolver, |
| &self.body.store, |
| &self.diagnostics, |
| InferenceTyDiagnosticSource::Body, |
| self.generic_def, |
| LifetimeElisionKind::Infer, |
| ); |
| let mut path_ctx = ctx.at_path(path, node); |
| let interner = DbInterner::conjure(); |
| let (resolution, unresolved) = if value_ns { |
| let Some(res) = path_ctx.resolve_path_in_value_ns(HygieneId::ROOT) else { |
| return (self.err_ty(), None); |
| }; |
| match res { |
| ResolveValueResult::ValueNs(value, _) => match value { |
| ValueNs::EnumVariantId(var) => { |
| let args = path_ctx.substs_from_path(var.into(), true, false); |
| drop(ctx); |
| let ty = self |
| .db |
| .ty(var.lookup(self.db).parent.into()) |
| .instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| return (ty, Some(var.into())); |
| } |
| ValueNs::StructId(strukt) => { |
| let args = path_ctx.substs_from_path(strukt.into(), true, false); |
| drop(ctx); |
| let ty = self.db.ty(strukt.into()).instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| return (ty, Some(strukt.into())); |
| } |
| ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None), |
| _ => { |
| drop(ctx); |
| return (self.err_ty(), None); |
| } |
| }, |
| ResolveValueResult::Partial(typens, unresolved, _) => (typens, Some(unresolved)), |
| } |
| } else { |
| match path_ctx.resolve_path_in_type_ns() { |
| Some((it, idx)) => (it, idx), |
| None => return (self.err_ty(), None), |
| } |
| }; |
| return match resolution { |
| TypeNs::AdtId(AdtId::StructId(strukt)) => { |
| let args = path_ctx.substs_from_path(strukt.into(), true, false); |
| drop(ctx); |
| let ty = self.db.ty(strukt.into()).instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| forbid_unresolved_segments(self, (ty, Some(strukt.into())), unresolved) |
| } |
| TypeNs::AdtId(AdtId::UnionId(u)) => { |
| let args = path_ctx.substs_from_path(u.into(), true, false); |
| drop(ctx); |
| let ty = self.db.ty(u.into()).instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| forbid_unresolved_segments(self, (ty, Some(u.into())), unresolved) |
| } |
| TypeNs::EnumVariantId(var) => { |
| let args = path_ctx.substs_from_path(var.into(), true, false); |
| drop(ctx); |
| let ty = self.db.ty(var.lookup(self.db).parent.into()).instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| forbid_unresolved_segments(self, (ty, Some(var.into())), unresolved) |
| } |
| TypeNs::SelfType(impl_id) => { |
| let mut ty = self.db.impl_self_ty(impl_id).instantiate_identity(); |
| |
| let Some(remaining_idx) = unresolved else { |
| drop(ctx); |
| let Some(mod_path) = path.mod_path() else { |
| never!("resolver should always resolve lang item paths"); |
| return (self.err_ty(), None); |
| }; |
| return self.resolve_variant_on_alias(ty, None, mod_path); |
| }; |
| |
| let mut remaining_segments = path.segments().skip(remaining_idx); |
| |
| if remaining_segments.len() >= 2 { |
| path_ctx.ignore_last_segment(); |
| } |
| |
| // We need to try resolving unresolved segments one by one because each may resolve |
| // to a projection, which `TyLoweringContext` cannot handle on its own. |
| let mut tried_resolving_once = false; |
| while let Some(current_segment) = remaining_segments.first() { |
| // If we can resolve to an enum variant, it takes priority over associated type |
| // of the same name. |
| if let TyKind::Adt(adt_def, _) = ty.kind() |
| && let AdtId::EnumId(id) = adt_def.def_id().0 |
| { |
| let enum_data = id.enum_variants(self.db); |
| if let Some(variant) = enum_data.variant(current_segment.name) { |
| return if remaining_segments.len() == 1 { |
| (ty, Some(variant.into())) |
| } else { |
| // We still have unresolved paths, but enum variants never have |
| // associated types! |
| // FIXME: Report an error. |
| (self.err_ty(), None) |
| }; |
| } |
| } |
| |
| if tried_resolving_once { |
| // FIXME: with `inherent_associated_types` this is allowed, but our `lower_partly_resolved_path()` |
| // will need to be updated to err at the correct segment. |
| break; |
| } |
| |
| // `lower_partly_resolved_path()` returns `None` as type namespace unless |
| // `remaining_segments` is empty, which is never the case here. We don't know |
| // which namespace the new `ty` is in until normalized anyway. |
| (ty, _) = path_ctx.lower_partly_resolved_path(resolution, true); |
| tried_resolving_once = true; |
| |
| ty = self.table.insert_type_vars(ty); |
| ty = self.table.normalize_associated_types_in(ty); |
| ty = self.table.structurally_resolve_type(ty); |
| if ty.is_ty_error() { |
| return (self.err_ty(), None); |
| } |
| |
| remaining_segments = remaining_segments.skip(1); |
| } |
| drop(ctx); |
| |
| let variant = ty.as_adt().and_then(|(id, _)| match id { |
| AdtId::StructId(s) => Some(VariantId::StructId(s)), |
| AdtId::UnionId(u) => Some(VariantId::UnionId(u)), |
| AdtId::EnumId(_) => { |
| // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` |
| None |
| } |
| }); |
| (ty, variant) |
| } |
| TypeNs::TypeAliasId(it) => { |
| let Some(mod_path) = path.mod_path() else { |
| never!("resolver should always resolve lang item paths"); |
| return (self.err_ty(), None); |
| }; |
| let args = path_ctx.substs_from_path_segment(it.into(), true, None, false); |
| drop(ctx); |
| let interner = DbInterner::conjure(); |
| let ty = self.db.ty(it.into()).instantiate(interner, args); |
| let ty = self.insert_type_vars(ty); |
| |
| self.resolve_variant_on_alias(ty, unresolved, mod_path) |
| } |
| TypeNs::AdtSelfType(_) => { |
| // FIXME this could happen in array size expressions, once we're checking them |
| (self.err_ty(), None) |
| } |
| TypeNs::GenericParam(_) => { |
| // FIXME potentially resolve assoc type |
| (self.err_ty(), None) |
| } |
| TypeNs::AdtId(AdtId::EnumId(_)) |
| | TypeNs::BuiltinType(_) |
| | TypeNs::TraitId(_) |
| | TypeNs::ModuleId(_) => { |
| // FIXME diagnostic |
| (self.err_ty(), None) |
| } |
| }; |
| |
| fn forbid_unresolved_segments<'db>( |
| ctx: &InferenceContext<'_, 'db>, |
| result: (Ty<'db>, Option<VariantId>), |
| unresolved: Option<usize>, |
| ) -> (Ty<'db>, Option<VariantId>) { |
| if unresolved.is_none() { |
| result |
| } else { |
| // FIXME diagnostic |
| (ctx.types.error, None) |
| } |
| } |
| } |
| |
| fn resolve_variant_on_alias( |
| &mut self, |
| ty: Ty<'db>, |
| unresolved: Option<usize>, |
| path: &ModPath, |
| ) -> (Ty<'db>, Option<VariantId>) { |
| let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0); |
| let ty = self.table.try_structurally_resolve_type(ty); |
| match remaining { |
| None => { |
| let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id { |
| AdtId::StructId(s) => Some(VariantId::StructId(s)), |
| AdtId::UnionId(u) => Some(VariantId::UnionId(u)), |
| AdtId::EnumId(_) => { |
| // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` |
| None |
| } |
| }); |
| (ty, variant) |
| } |
| Some(1) => { |
| let segment = path.segments().last().unwrap(); |
| // this could be an enum variant or associated type |
| if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() { |
| let enum_data = enum_id.enum_variants(self.db); |
| if let Some(variant) = enum_data.variant(segment) { |
| return (ty, Some(variant.into())); |
| } |
| } |
| // FIXME potentially resolve assoc type |
| (self.err_ty(), None) |
| } |
| Some(_) => { |
| // FIXME diagnostic |
| (self.err_ty(), None) |
| } |
| } |
| } |
| |
| fn resolve_lang_item(&self, item: LangItem) -> Option<LangItemTarget> { |
| let krate = self.resolver.krate(); |
| lang_item(self.db, krate, item) |
| } |
| |
| fn resolve_output_on(&self, trait_: TraitId) -> Option<TypeAliasId> { |
| trait_.trait_items(self.db).associated_type_by_name(&Name::new_symbol_root(sym::Output)) |
| } |
| |
| fn resolve_lang_trait(&self, lang: LangItem) -> Option<TraitId> { |
| self.resolve_lang_item(lang)?.as_trait() |
| } |
| |
| fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?) |
| } |
| |
| fn resolve_ops_not_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?) |
| } |
| |
| fn resolve_future_future_output(&self) -> Option<TypeAliasId> { |
| let ItemContainerId::TraitId(trait_) = self |
| .resolve_lang_item(LangItem::IntoFutureIntoFuture)? |
| .as_function()? |
| .lookup(self.db) |
| .container |
| else { |
| return None; |
| }; |
| self.resolve_output_on(trait_) |
| } |
| |
| fn resolve_boxed_box(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_full(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_inclusive(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_from(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_to(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_to_inclusive(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_ops_index_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?) |
| } |
| |
| fn resolve_va_list(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn get_traits_in_scope(&self) -> Either<FxHashSet<TraitId>, &FxHashSet<TraitId>> { |
| let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable(); |
| if b_traits.peek().is_some() { |
| Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect()) |
| } else { |
| Either::Right(&self.traits_in_scope) |
| } |
| } |
| } |
| |
| /// When inferring an expression, we propagate downward whatever type hint we |
| /// are able in the form of an `Expectation`. |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| pub(crate) enum Expectation<'db> { |
| None, |
| HasType(Ty<'db>), |
| Castable(Ty<'db>), |
| RValueLikeUnsized(Ty<'db>), |
| } |
| |
| impl<'db> Expectation<'db> { |
| /// The expectation that the type of the expression needs to equal the given |
| /// type. |
| fn has_type(ty: Ty<'db>) -> Self { |
| if ty.is_ty_error() { |
| // FIXME: get rid of this? |
| Expectation::None |
| } else { |
| Expectation::HasType(ty) |
| } |
| } |
| |
| /// The following explanation is copied straight from rustc: |
| /// Provides an expectation for an rvalue expression given an *optional* |
| /// hint, which is not required for type safety (the resulting type might |
| /// be checked higher up, as is the case with `&expr` and `box expr`), but |
| /// is useful in determining the concrete type. |
| /// |
| /// The primary use case is where the expected type is a fat pointer, |
| /// like `&[isize]`. For example, consider the following statement: |
| /// |
| /// let it: &[isize] = &[1, 2, 3]; |
| /// |
| /// In this case, the expected type for the `&[1, 2, 3]` expression is |
| /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the |
| /// expectation `ExpectHasType([isize])`, that would be too strong -- |
| /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`. |
| /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced |
| /// to the type `&[isize]`. Therefore, we propagate this more limited hint, |
| /// which still is useful, because it informs integer literals and the like. |
| /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169 |
| /// for examples of where this comes up,. |
| fn rvalue_hint(ctx: &mut InferenceContext<'_, 'db>, ty: Ty<'db>) -> Self { |
| match ctx.struct_tail_without_normalization(ty).kind() { |
| TyKind::Slice(_) | TyKind::Str | TyKind::Dynamic(..) => { |
| Expectation::RValueLikeUnsized(ty) |
| } |
| _ => Expectation::has_type(ty), |
| } |
| } |
| |
| /// This expresses no expectation on the type. |
| fn none() -> Self { |
| Expectation::None |
| } |
| |
| fn resolve(&self, table: &mut unify::InferenceTable<'db>) -> Expectation<'db> { |
| match self { |
| Expectation::None => Expectation::None, |
| Expectation::HasType(t) => Expectation::HasType(table.shallow_resolve(*t)), |
| Expectation::Castable(t) => Expectation::Castable(table.shallow_resolve(*t)), |
| Expectation::RValueLikeUnsized(t) => { |
| Expectation::RValueLikeUnsized(table.shallow_resolve(*t)) |
| } |
| } |
| } |
| |
| fn to_option(&self, table: &mut unify::InferenceTable<'db>) -> Option<Ty<'db>> { |
| match self.resolve(table) { |
| Expectation::None => None, |
| Expectation::HasType(t) |
| | Expectation::Castable(t) |
| | Expectation::RValueLikeUnsized(t) => Some(t), |
| } |
| } |
| |
| fn only_has_type(&self, table: &mut unify::InferenceTable<'db>) -> Option<Ty<'db>> { |
| match self { |
| Expectation::HasType(t) => Some(table.shallow_resolve(*t)), |
| Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => { |
| None |
| } |
| } |
| } |
| |
| fn coercion_target_type(&self, table: &mut unify::InferenceTable<'db>) -> Ty<'db> { |
| self.only_has_type(table).unwrap_or_else(|| table.next_ty_var()) |
| } |
| |
| /// Comment copied from rustc: |
| /// Disregard "castable to" expectations because they |
| /// can lead us astray. Consider for example `if cond |
| /// {22} else {c} as u8` -- if we propagate the |
| /// "castable to u8" constraint to 22, it will pick the |
| /// type 22u8, which is overly constrained (c might not |
| /// be a u8). In effect, the problem is that the |
| /// "castable to" expectation is not the tightest thing |
| /// we can say, so we want to drop it in this case. |
| /// The tightest thing we can say is "must unify with |
| /// else branch". Note that in the case of a "has type" |
| /// constraint, this limitation does not hold. |
| /// |
| /// If the expected type is just a type variable, then don't use |
| /// an expected type. Otherwise, we might write parts of the type |
| /// when checking the 'then' block which are incompatible with the |
| /// 'else' branch. |
| fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'db>) -> Expectation<'db> { |
| match *self { |
| Expectation::HasType(ety) => { |
| let ety = table.structurally_resolve_type(ety); |
| if ety.is_ty_var() { Expectation::None } else { Expectation::HasType(ety) } |
| } |
| Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety), |
| _ => Expectation::None, |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] |
| enum Diverges { |
| Maybe, |
| Always, |
| } |
| |
| impl Diverges { |
| fn is_always(self) -> bool { |
| self == Diverges::Always |
| } |
| } |
| |
| impl std::ops::BitAnd for Diverges { |
| type Output = Self; |
| fn bitand(self, other: Self) -> Self { |
| std::cmp::min(self, other) |
| } |
| } |
| |
| impl std::ops::BitOr for Diverges { |
| type Output = Self; |
| fn bitor(self, other: Self) -> Self { |
| std::cmp::max(self, other) |
| } |
| } |
| |
| impl std::ops::BitAndAssign for Diverges { |
| fn bitand_assign(&mut self, other: Self) { |
| *self = *self & other; |
| } |
| } |
| |
| impl std::ops::BitOrAssign for Diverges { |
| fn bitor_assign(&mut self, other: Self) { |
| *self = *self | other; |
| } |
| } |