blob: 0ff110106ebe5fb25eb2514fa50ef83d071e1c0b [file] [log] [blame]
//! Module for inferring the variance of type and lifetime parameters. See the [rustc dev guide]
//! chapter for more info.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/variance.html
//!
//! The implementation here differs from rustc. Rustc does a crate wide fixpoint resolution
//! as the algorithm for determining variance is a fixpoint computation with potential cycles that
//! need to be resolved. rust-analyzer does not want a crate-wide analysis though as that would hurt
//! incrementality too much and as such our query is based on a per item basis.
//!
//! This does unfortunately run into the issue that we can run into query cycles which salsa
//! currently does not allow to be resolved via a fixpoint computation. This will likely be resolved
//! by the next salsa version. If not, we will likely have to adapt and go with the rustc approach
//! while installing firewall per item queries to prevent invalidation issues.
use crate::db::HirDatabase;
use crate::generics::{Generics, generics};
use crate::next_solver::DbInterner;
use crate::next_solver::mapping::{ChalkToNextSolver, NextSolverToChalk};
use crate::{
AliasTy, Const, ConstScalar, DynTyExt, GenericArg, GenericArgData, Interner, Lifetime,
LifetimeData, Ty, TyKind,
};
use chalk_ir::Mutability;
use hir_def::signatures::StructFlags;
use hir_def::{AdtId, GenericDefId, GenericParamId, VariantId};
use std::fmt;
use std::ops::Not;
use stdx::never;
use triomphe::Arc;
pub(crate) fn variances_of(db: &dyn HirDatabase, def: GenericDefId) -> Option<Arc<[Variance]>> {
tracing::debug!("variances_of(def={:?})", def);
match def {
GenericDefId::FunctionId(_) => (),
GenericDefId::AdtId(adt) => {
if let AdtId::StructId(id) = adt {
let flags = &db.struct_signature(id).flags;
if flags.contains(StructFlags::IS_UNSAFE_CELL) {
return Some(Arc::from_iter(vec![Variance::Invariant; 1]));
} else if flags.contains(StructFlags::IS_PHANTOM_DATA) {
return Some(Arc::from_iter(vec![Variance::Covariant; 1]));
}
}
}
_ => return None,
}
let generics = generics(db, def);
let count = generics.len();
if count == 0 {
return None;
}
let mut variances =
Context { generics, variances: vec![Variance::Bivariant; count], db }.solve();
// FIXME(next-solver): This is *not* the correct behavior. I don't know if it has an actual effect,
// since bivariance is prohibited in Rust, but rustc definitely does not fallback bivariance.
// So why do we do this? Because, with the new solver, the effects of bivariance are catastrophic:
// it leads to not relating types properly, and to very, very hard to debug bugs (speaking from experience).
// Furthermore, our variance infra is known to not handle cycles properly. Therefore, at least until we fix
// cycles, and perhaps forever at least for out tests, not allowing bivariance makes sense.
// Why specifically invariance? I don't have a strong reason, mainly that invariance is a stronger relationship
// (therefore, less room for mistakes) and that IMO incorrect covariance can be more problematic that incorrect
// bivariance, at least while we don't handle lifetimes anyway.
for variance in &mut variances {
if *variance == Variance::Bivariant {
*variance = Variance::Invariant;
}
}
variances.is_empty().not().then(|| Arc::from_iter(variances))
}
// pub(crate) fn variances_of_cycle_fn(
// _db: &dyn HirDatabase,
// _result: &Option<Arc<[Variance]>>,
// _count: u32,
// _def: GenericDefId,
// ) -> salsa::CycleRecoveryAction<Option<Arc<[Variance]>>> {
// salsa::CycleRecoveryAction::Iterate
// }
pub(crate) fn variances_of_cycle_initial(
db: &dyn HirDatabase,
def: GenericDefId,
) -> Option<Arc<[Variance]>> {
let generics = generics(db, def);
let count = generics.len();
if count == 0 {
return None;
}
// FIXME(next-solver): Returns `Invariance` and not `Bivariance` here, see the comment in the main query.
Some(Arc::from(vec![Variance::Invariant; count]))
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
impl fmt::Display for Variance {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Variance::Covariant => write!(f, "covariant"),
Variance::Invariant => write!(f, "invariant"),
Variance::Contravariant => write!(f, "contravariant"),
Variance::Bivariant => write!(f, "bivariant"),
}
}
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
/// ```ignore (illustrative)
/// *mut Vec<i32>
/// ```
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
/// ```ignore (illustrative)
/// fn(*const Vec<i32>, *mut Vec<i32)
/// ```
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
fn xform(self, v: Variance) -> Variance {
match (self, v) {
// Figure 1, column 1.
(Variance::Covariant, Variance::Covariant) => Variance::Covariant,
(Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
(Variance::Covariant, Variance::Invariant) => Variance::Invariant,
(Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 2.
(Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
(Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
(Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
(Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 3.
(Variance::Invariant, _) => Variance::Invariant,
// Figure 1, column 4.
(Variance::Bivariant, _) => Variance::Bivariant,
}
}
fn glb(self, v: Variance) -> Variance {
// Greatest lower bound of the variance lattice as
// defined in The Paper:
//
// *
// - +
// o
match (self, v) {
(Variance::Invariant, _) | (_, Variance::Invariant) => Variance::Invariant,
(Variance::Covariant, Variance::Contravariant) => Variance::Invariant,
(Variance::Contravariant, Variance::Covariant) => Variance::Invariant,
(Variance::Covariant, Variance::Covariant) => Variance::Covariant,
(Variance::Contravariant, Variance::Contravariant) => Variance::Contravariant,
(x, Variance::Bivariant) | (Variance::Bivariant, x) => x,
}
}
pub fn invariant(self) -> Self {
self.xform(Variance::Invariant)
}
pub fn covariant(self) -> Self {
self.xform(Variance::Covariant)
}
pub fn contravariant(self) -> Self {
self.xform(Variance::Contravariant)
}
}
struct Context<'db> {
db: &'db dyn HirDatabase,
generics: Generics,
variances: Vec<Variance>,
}
impl Context<'_> {
fn solve(mut self) -> Vec<Variance> {
tracing::debug!("solve(generics={:?})", self.generics);
match self.generics.def() {
GenericDefId::AdtId(adt) => {
let db = self.db;
let mut add_constraints_from_variant = |variant| {
let subst = self.generics.placeholder_subst(db);
for (_, field) in db.field_types(variant).iter() {
self.add_constraints_from_ty(
&field.clone().substitute(Interner, &subst),
Variance::Covariant,
);
}
};
match adt {
AdtId::StructId(s) => add_constraints_from_variant(VariantId::StructId(s)),
AdtId::UnionId(u) => add_constraints_from_variant(VariantId::UnionId(u)),
AdtId::EnumId(e) => {
e.enum_variants(db).variants.iter().for_each(|&(variant, _, _)| {
add_constraints_from_variant(VariantId::EnumVariantId(variant))
});
}
}
}
GenericDefId::FunctionId(f) => {
let subst = self.generics.placeholder_subst(self.db);
let interner = DbInterner::new_with(self.db, None, None);
let args: crate::next_solver::GenericArgs<'_> = subst.to_nextsolver(interner);
let sig = self
.db
.callable_item_signature(f.into())
.instantiate(interner, args)
.skip_binder()
.to_chalk(interner);
self.add_constraints_from_sig(sig.params_and_return.iter(), Variance::Covariant);
}
_ => {}
}
let mut variances = self.variances;
// Const parameters are always invariant.
// Make all const parameters invariant.
for (idx, param) in self.generics.iter_id().enumerate() {
if let GenericParamId::ConstParamId(_) = param {
variances[idx] = Variance::Invariant;
}
}
// Functions are permitted to have unused generic parameters: make those invariant.
if let GenericDefId::FunctionId(_) = self.generics.def() {
variances
.iter_mut()
.filter(|&&mut v| v == Variance::Bivariant)
.for_each(|v| *v = Variance::Invariant);
}
variances
}
/// Adds constraints appropriate for an instance of `ty` appearing
/// in a context with the generics defined in `generics` and
/// ambient variance `variance`
fn add_constraints_from_ty(&mut self, ty: &Ty, variance: Variance) {
tracing::debug!("add_constraints_from_ty(ty={:?}, variance={:?})", ty, variance);
match ty.kind(Interner) {
TyKind::Scalar(_) | TyKind::Never | TyKind::Str | TyKind::Foreign(..) => {
// leaf type -- noop
}
TyKind::FnDef(..) | TyKind::Coroutine(..) | TyKind::Closure(..) => {
never!("Unexpected unnameable type in variance computation: {:?}", ty);
}
TyKind::Ref(mutbl, lifetime, ty) => {
self.add_constraints_from_region(lifetime, variance);
self.add_constraints_from_mt(ty, *mutbl, variance);
}
TyKind::Array(typ, len) => {
self.add_constraints_from_const(len, variance);
self.add_constraints_from_ty(typ, variance);
}
TyKind::Slice(typ) => {
self.add_constraints_from_ty(typ, variance);
}
TyKind::Raw(mutbl, ty) => {
self.add_constraints_from_mt(ty, *mutbl, variance);
}
TyKind::Tuple(_, subtys) => {
for subty in subtys.type_parameters(Interner) {
self.add_constraints_from_ty(&subty, variance);
}
}
TyKind::Adt(def, args) => {
self.add_constraints_from_args(def.0.into(), args.as_slice(Interner), variance);
}
TyKind::Alias(AliasTy::Opaque(opaque)) => {
self.add_constraints_from_invariant_args(
opaque.substitution.as_slice(Interner),
variance,
);
}
TyKind::Alias(AliasTy::Projection(proj)) => {
self.add_constraints_from_invariant_args(
proj.substitution.as_slice(Interner),
variance,
);
}
// FIXME: check this
TyKind::AssociatedType(_, subst) => {
self.add_constraints_from_invariant_args(subst.as_slice(Interner), variance);
}
// FIXME: check this
TyKind::OpaqueType(_, subst) => {
self.add_constraints_from_invariant_args(subst.as_slice(Interner), variance);
}
TyKind::Dyn(it) => {
// The type `dyn Trait<T> +'a` is covariant w/r/t `'a`:
self.add_constraints_from_region(&it.lifetime, variance);
if let Some(trait_ref) = it.principal() {
// Trait are always invariant so we can take advantage of that.
self.add_constraints_from_invariant_args(
trait_ref
.map(|it| it.map(|it| it.substitution.clone()))
.substitute(
Interner,
&[GenericArg::new(
Interner,
chalk_ir::GenericArgData::Ty(TyKind::Error.intern(Interner)),
)],
)
.skip_binders()
.as_slice(Interner),
variance,
);
}
// FIXME
// for projection in data.projection_bounds() {
// match projection.skip_binder().term.unpack() {
// TyKind::TermKind::Ty(ty) => {
// self.add_constraints_from_ty( ty, self.invariant);
// }
// TyKind::TermKind::Const(c) => {
// self.add_constraints_from_const( c, self.invariant)
// }
// }
// }
}
// Chalk has no params, so use placeholders for now?
TyKind::Placeholder(index) => {
let idx = crate::from_placeholder_idx(self.db, *index).0;
let index = self.generics.type_or_const_param_idx(idx).unwrap();
self.constrain(index, variance);
}
TyKind::Function(f) => {
self.add_constraints_from_sig(
f.substitution.0.iter(Interner).filter_map(move |p| p.ty(Interner)),
variance,
);
}
TyKind::Error => {
// we encounter this when walking the trait references for object
// types, where we use Error as the Self type
}
TyKind::CoroutineWitness(..) | TyKind::BoundVar(..) | TyKind::InferenceVar(..) => {
never!("unexpected type encountered in variance inference: {:?}", ty)
}
}
}
fn add_constraints_from_invariant_args(&mut self, args: &[GenericArg], variance: Variance) {
let variance_i = variance.invariant();
for k in args {
match k.data(Interner) {
GenericArgData::Lifetime(lt) => self.add_constraints_from_region(lt, variance_i),
GenericArgData::Ty(ty) => self.add_constraints_from_ty(ty, variance_i),
GenericArgData::Const(val) => self.add_constraints_from_const(val, variance_i),
}
}
}
/// Adds constraints appropriate for a nominal type (enum, struct,
/// object, etc) appearing in a context with ambient variance `variance`
fn add_constraints_from_args(
&mut self,
def_id: GenericDefId,
args: &[GenericArg],
variance: Variance,
) {
// We don't record `inferred_starts` entries for empty generics.
if args.is_empty() {
return;
}
let Some(variances) = self.db.variances_of(def_id) else {
return;
};
for (i, k) in args.iter().enumerate() {
match k.data(Interner) {
GenericArgData::Lifetime(lt) => {
self.add_constraints_from_region(lt, variance.xform(variances[i]))
}
GenericArgData::Ty(ty) => {
self.add_constraints_from_ty(ty, variance.xform(variances[i]))
}
GenericArgData::Const(val) => self.add_constraints_from_const(val, variance),
}
}
}
/// Adds constraints appropriate for a const expression `val`
/// in a context with ambient variance `variance`
fn add_constraints_from_const(&mut self, c: &Const, variance: Variance) {
match &c.data(Interner).value {
chalk_ir::ConstValue::Concrete(c) => {
if let ConstScalar::UnevaluatedConst(_, subst) = &c.interned {
self.add_constraints_from_invariant_args(subst.as_slice(Interner), variance);
}
}
_ => {}
}
}
/// Adds constraints appropriate for a function with signature
/// `sig` appearing in a context with ambient variance `variance`
fn add_constraints_from_sig<'a>(
&mut self,
mut sig_tys: impl DoubleEndedIterator<Item = &'a Ty>,
variance: Variance,
) {
let contra = variance.contravariant();
let Some(output) = sig_tys.next_back() else {
return never!("function signature has no return type");
};
self.add_constraints_from_ty(output, variance);
for input in sig_tys {
self.add_constraints_from_ty(input, contra);
}
}
/// Adds constraints appropriate for a region appearing in a
/// context with ambient variance `variance`
fn add_constraints_from_region(&mut self, region: &Lifetime, variance: Variance) {
tracing::debug!(
"add_constraints_from_region(region={:?}, variance={:?})",
region,
variance
);
match region.data(Interner) {
LifetimeData::Placeholder(index) => {
let idx = crate::lt_from_placeholder_idx(self.db, *index).0;
let inferred = self.generics.lifetime_idx(idx).unwrap();
self.constrain(inferred, variance);
}
LifetimeData::Static => {}
LifetimeData::BoundVar(..) => {
// Either a higher-ranked region inside of a type or a
// late-bound function parameter.
//
// We do not compute constraints for either of these.
}
LifetimeData::Error => {}
LifetimeData::Phantom(..) | LifetimeData::InferenceVar(..) | LifetimeData::Erased => {
// We don't expect to see anything but 'static or bound
// regions when visiting member types or method types.
never!(
"unexpected region encountered in variance \
inference: {:?}",
region
);
}
}
}
/// Adds constraints appropriate for a mutability-type pair
/// appearing in a context with ambient variance `variance`
fn add_constraints_from_mt(&mut self, ty: &Ty, mt: Mutability, variance: Variance) {
self.add_constraints_from_ty(
ty,
match mt {
Mutability::Mut => variance.invariant(),
Mutability::Not => variance,
},
);
}
fn constrain(&mut self, index: usize, variance: Variance) {
tracing::debug!(
"constrain(index={:?}, variance={:?}, to={:?})",
index,
self.variances[index],
variance
);
self.variances[index] = self.variances[index].glb(variance);
}
}
#[cfg(test)]
mod tests {
use expect_test::{Expect, expect};
use hir_def::{
AdtId, GenericDefId, ModuleDefId, hir::generics::GenericParamDataRef, src::HasSource,
};
use itertools::Itertools;
use stdx::format_to;
use syntax::{AstNode, ast::HasName};
use test_fixture::WithFixture;
use hir_def::Lookup;
use crate::{db::HirDatabase, test_db::TestDB, variance::generics};
#[test]
fn phantom_data() {
check(
r#"
//- minicore: phantom_data
struct Covariant<A> {
t: core::marker::PhantomData<A>
}
"#,
expect![[r#"
Covariant[A: covariant]
"#]],
);
}
#[test]
fn rustc_test_variance_types() {
check(
r#"
//- minicore: cell
use core::cell::UnsafeCell;
struct InvariantMut<'a,A:'a,B:'a> { //~ ERROR ['a: +, A: o, B: o]
t: &'a mut (A,B)
}
struct InvariantCell<A> { //~ ERROR [A: o]
t: UnsafeCell<A>
}
struct InvariantIndirect<A> { //~ ERROR [A: o]
t: InvariantCell<A>
}
struct Covariant<A> { //~ ERROR [A: +]
t: A, u: fn() -> A
}
struct Contravariant<A> { //~ ERROR [A: -]
t: fn(A)
}
enum Enum<A,B,C> { //~ ERROR [A: +, B: -, C: o]
Foo(Covariant<A>),
Bar(Contravariant<B>),`
Zed(Covariant<C>,Contravariant<C>)
}
"#,
expect![[r#"
InvariantMut['a: covariant, A: invariant, B: invariant]
InvariantCell[A: invariant]
InvariantIndirect[A: invariant]
Covariant[A: covariant]
Contravariant[A: contravariant]
Enum[A: covariant, B: contravariant, C: invariant]
"#]],
);
}
#[test]
fn type_resolve_error_two_structs_deep() {
check(
r#"
struct Hello<'a> {
missing: Missing<'a>,
}
struct Other<'a> {
hello: Hello<'a>,
}
"#,
expect![[r#"
Hello['a: invariant]
Other['a: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_associated_consts() {
// FIXME: Should be invariant
check(
r#"
trait Trait {
const Const: usize;
}
struct Foo<T: Trait> { //~ ERROR [T: o]
field: [u8; <T as Trait>::Const]
}
"#,
expect![[r#"
Foo[T: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_associated_types() {
check(
r#"
trait Trait<'a> {
type Type;
fn method(&'a self) { }
}
struct Foo<'a, T : Trait<'a>> { //~ ERROR ['a: +, T: +]
field: (T, &'a ())
}
struct Bar<'a, T : Trait<'a>> { //~ ERROR ['a: o, T: o]
field: <T as Trait<'a>>::Type
}
"#,
expect![[r#"
method[Self: contravariant, 'a: contravariant]
Foo['a: covariant, T: covariant]
Bar['a: invariant, T: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_associated_types2() {
// FIXME: RPITs have variance, but we can't treat them as their own thing right now
check(
r#"
trait Foo {
type Bar;
}
fn make() -> *const dyn Foo<Bar = &'static u32> {}
"#,
expect![""],
);
}
#[test]
fn rustc_test_variance_trait_bounds() {
check(
r#"
trait Getter<T> {
fn get(&self) -> T;
}
trait Setter<T> {
fn get(&self, _: T);
}
struct TestStruct<U,T:Setter<U>> { //~ ERROR [U: +, T: +]
t: T, u: U
}
enum TestEnum<U,T:Setter<U>> { //~ ERROR [U: *, T: +]
//~^ ERROR: `U` is never used
Foo(T)
}
struct TestContraStruct<U,T:Setter<U>> { //~ ERROR [U: *, T: +]
//~^ ERROR: `U` is never used
t: T
}
struct TestBox<U,T:Getter<U>+Setter<U>> { //~ ERROR [U: *, T: +]
//~^ ERROR: `U` is never used
t: T
}
"#,
expect![[r#"
get[Self: contravariant, T: covariant]
get[Self: contravariant, T: contravariant]
TestStruct[U: covariant, T: covariant]
TestEnum[U: invariant, T: covariant]
TestContraStruct[U: invariant, T: covariant]
TestBox[U: invariant, T: covariant]
"#]],
);
}
#[test]
fn rustc_test_variance_trait_matching() {
check(
r#"
trait Get<T> {
fn get(&self) -> T;
}
struct Cloner<T:Clone> {
t: T
}
impl<T:Clone> Get<T> for Cloner<T> {
fn get(&self) -> T {}
}
fn get<'a, G>(get: &G) -> i32
where G : Get<&'a i32>
{}
fn pick<'b, G>(get: &'b G, if_odd: &'b i32) -> i32
where G : Get<&'b i32>
{}
"#,
expect![[r#"
get[Self: contravariant, T: covariant]
Cloner[T: covariant]
get[T: invariant]
get['a: invariant, G: contravariant]
pick['b: contravariant, G: contravariant]
"#]],
);
}
#[test]
fn rustc_test_variance_trait_object_bound() {
check(
r#"
enum Option<T> {
Some(T),
None
}
trait T { fn foo(&self); }
struct TOption<'a> { //~ ERROR ['a: +]
v: Option<*const (dyn T + 'a)>,
}
"#,
expect![[r#"
Option[T: covariant]
foo[Self: contravariant]
TOption['a: covariant]
"#]],
);
}
#[test]
fn rustc_test_variance_types_bounds() {
check(
r#"
//- minicore: send
struct TestImm<A, B> { //~ ERROR [A: +, B: +]
x: A,
y: B,
}
struct TestMut<A, B:'static> { //~ ERROR [A: +, B: o]
x: A,
y: &'static mut B,
}
struct TestIndirect<A:'static, B:'static> { //~ ERROR [A: +, B: o]
m: TestMut<A, B>
}
struct TestIndirect2<A:'static, B:'static> { //~ ERROR [A: o, B: o]
n: TestMut<A, B>,
m: TestMut<B, A>
}
trait Getter<A> {
fn get(&self) -> A;
}
trait Setter<A> {
fn set(&mut self, a: A);
}
struct TestObject<A, R> { //~ ERROR [A: o, R: o]
n: *const (dyn Setter<A> + Send),
m: *const (dyn Getter<R> + Send),
}
"#,
expect![[r#"
TestImm[A: covariant, B: covariant]
TestMut[A: covariant, B: invariant]
TestIndirect[A: covariant, B: invariant]
TestIndirect2[A: invariant, B: invariant]
get[Self: contravariant, A: covariant]
set[Self: invariant, A: contravariant]
TestObject[A: invariant, R: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_unused_region_param() {
check(
r#"
struct SomeStruct<'a> { x: u32 } //~ ERROR parameter `'a` is never used
enum SomeEnum<'a> { Nothing } //~ ERROR parameter `'a` is never used
trait SomeTrait<'a> { fn foo(&self); } // OK on traits.
"#,
expect![[r#"
SomeStruct['a: invariant]
SomeEnum['a: invariant]
foo[Self: contravariant, 'a: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_unused_type_param() {
check(
r#"
//- minicore: sized
struct SomeStruct<A> { x: u32 }
enum SomeEnum<A> { Nothing }
enum ListCell<T> {
Cons(*const ListCell<T>),
Nil
}
struct SelfTyAlias<T>(*const Self);
struct WithBounds<T: Sized> {}
struct WithWhereBounds<T> where T: Sized {}
struct WithOutlivesBounds<T: 'static> {}
struct DoubleNothing<T> {
s: SomeStruct<T>,
}
"#,
expect![[r#"
SomeStruct[A: invariant]
SomeEnum[A: invariant]
ListCell[T: invariant]
SelfTyAlias[T: invariant]
WithBounds[T: invariant]
WithWhereBounds[T: invariant]
WithOutlivesBounds[T: invariant]
DoubleNothing[T: invariant]
"#]],
);
}
#[test]
fn rustc_test_variance_use_contravariant_struct1() {
check(
r#"
struct SomeStruct<T>(fn(T));
fn foo<'min,'max>(v: SomeStruct<&'max ()>)
-> SomeStruct<&'min ()>
where 'max : 'min
{}
"#,
expect![[r#"
SomeStruct[T: contravariant]
foo['min: contravariant, 'max: covariant]
"#]],
);
}
#[test]
fn rustc_test_variance_use_contravariant_struct2() {
check(
r#"
struct SomeStruct<T>(fn(T));
fn bar<'min,'max>(v: SomeStruct<&'min ()>)
-> SomeStruct<&'max ()>
where 'max : 'min
{}
"#,
expect![[r#"
SomeStruct[T: contravariant]
bar['min: covariant, 'max: contravariant]
"#]],
);
}
#[test]
fn rustc_test_variance_use_covariant_struct1() {
check(
r#"
struct SomeStruct<T>(T);
fn foo<'min,'max>(v: SomeStruct<&'min ()>)
-> SomeStruct<&'max ()>
where 'max : 'min
{}
"#,
expect![[r#"
SomeStruct[T: covariant]
foo['min: contravariant, 'max: covariant]
"#]],
);
}
#[test]
fn rustc_test_variance_use_covariant_struct2() {
check(
r#"
struct SomeStruct<T>(T);
fn foo<'min,'max>(v: SomeStruct<&'max ()>)
-> SomeStruct<&'min ()>
where 'max : 'min
{}
"#,
expect![[r#"
SomeStruct[T: covariant]
foo['min: covariant, 'max: contravariant]
"#]],
);
}
#[test]
fn rustc_test_variance_use_invariant_struct1() {
check(
r#"
struct SomeStruct<T>(*mut T);
fn foo<'min,'max>(v: SomeStruct<&'max ()>)
-> SomeStruct<&'min ()>
where 'max : 'min
{}
fn bar<'min,'max>(v: SomeStruct<&'min ()>)
-> SomeStruct<&'max ()>
where 'max : 'min
{}
"#,
expect![[r#"
SomeStruct[T: invariant]
foo['min: invariant, 'max: invariant]
bar['min: invariant, 'max: invariant]
"#]],
);
}
#[test]
fn invalid_arg_counts() {
check(
r#"
struct S<T>(T);
struct S2<T>(S<>);
struct S3<T>(S<T, T>);
"#,
expect![[r#"
S[T: covariant]
S2[T: invariant]
S3[T: covariant]
"#]],
);
}
#[test]
fn prove_fixedpoint() {
check(
r#"
struct FixedPoint<T, U, V>(&'static FixedPoint<(), T, U>, V);
"#,
expect![[r#"
FixedPoint[T: invariant, U: invariant, V: invariant]
"#]],
);
}
#[track_caller]
fn check(#[rust_analyzer::rust_fixture] ra_fixture: &str, expected: Expect) {
// use tracing_subscriber::{layer::SubscriberExt, Layer};
// let my_layer = tracing_subscriber::fmt::layer();
// let _g = tracing::subscriber::set_default(tracing_subscriber::registry().with(
// my_layer.with_filter(tracing_subscriber::filter::filter_fn(|metadata| {
// metadata.target().starts_with("hir_ty::variance")
// })),
// ));
let (db, file_id) = TestDB::with_single_file(ra_fixture);
crate::attach_db(&db, || {
let mut defs: Vec<GenericDefId> = Vec::new();
let module = db.module_for_file_opt(file_id.file_id(&db)).unwrap();
let def_map = module.def_map(&db);
crate::tests::visit_module(&db, def_map, module.local_id, &mut |it| {
defs.push(match it {
ModuleDefId::FunctionId(it) => it.into(),
ModuleDefId::AdtId(it) => it.into(),
ModuleDefId::ConstId(it) => it.into(),
ModuleDefId::TraitId(it) => it.into(),
ModuleDefId::TypeAliasId(it) => it.into(),
_ => return,
})
});
let defs = defs
.into_iter()
.filter_map(|def| {
Some((
def,
match def {
GenericDefId::FunctionId(it) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::AdtId(AdtId::EnumId(it)) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::AdtId(AdtId::StructId(it)) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::AdtId(AdtId::UnionId(it)) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::TraitId(it) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::TypeAliasId(it) => {
let loc = it.lookup(&db);
loc.source(&db).value.name().unwrap()
}
GenericDefId::ImplId(_) => return None,
GenericDefId::ConstId(_) => return None,
GenericDefId::StaticId(_) => return None,
},
))
})
.sorted_by_key(|(_, n)| n.syntax().text_range().start());
let mut res = String::new();
for (def, name) in defs {
let Some(variances) = db.variances_of(def) else {
continue;
};
format_to!(
res,
"{name}[{}]\n",
generics(&db, def)
.iter()
.map(|(_, param)| match param {
GenericParamDataRef::TypeParamData(type_param_data) => {
type_param_data.name.as_ref().unwrap()
}
GenericParamDataRef::ConstParamData(const_param_data) =>
&const_param_data.name,
GenericParamDataRef::LifetimeParamData(lifetime_param_data) => {
&lifetime_param_data.name
}
})
.zip_eq(&*variances)
.format_with(", ", |(name, var), f| f(&format_args!(
"{}: {var}",
name.as_str()
)))
);
}
expected.assert_eq(&res);
})
}
}