blob: 1204fb06d2fe2943d08b3e9f915f6e48ed8b4c57 [file] [log] [blame]
//! Unification and canonicalization logic.
use std::fmt;
use chalk_ir::{
CanonicalVarKind, FloatTy, IntTy, TyVariableKind, cast::Cast, fold::TypeFoldable,
interner::HasInterner,
};
use either::Either;
use hir_def::{AdtId, lang_item::LangItem};
use hir_expand::name::Name;
use intern::sym;
use rustc_hash::{FxHashMap, FxHashSet};
use rustc_type_ir::{
FloatVid, IntVid, TyVid, TypeVisitableExt, UpcastFrom,
inherent::{IntoKind, Span, Term as _, Ty as _},
relate::{Relate, solver_relating::RelateExt},
solve::{Certainty, GoalSource},
};
use smallvec::SmallVec;
use triomphe::Arc;
use super::{InferResult, InferenceContext, TypeError};
use crate::{
AliasTy, BoundVar, Canonical, Const, ConstValue, DebruijnIndex, GenericArg, GenericArgData,
InferenceVar, Interner, Lifetime, OpaqueTyId, ProjectionTy, Scalar, Substitution,
TraitEnvironment, Ty, TyExt, TyKind, VariableKind,
consteval::unknown_const,
db::HirDatabase,
fold_generic_args, fold_tys_and_consts,
next_solver::{
self, ClauseKind, DbInterner, ErrorGuaranteed, ParamEnv, Predicate, PredicateKind,
SolverDefIds, Term, TraitRef,
fulfill::FulfillmentCtxt,
infer::{
DbInternerInferExt, InferCtxt, InferOk,
snapshot::CombinedSnapshot,
traits::{Obligation, ObligationCause},
},
inspect::{InspectConfig, InspectGoal, ProofTreeVisitor},
mapping::{ChalkToNextSolver, NextSolverToChalk},
},
traits::{
FnTrait, NextTraitSolveResult, next_trait_solve_canonical_in_ctxt, next_trait_solve_in_ctxt,
},
};
impl<'db> InferenceContext<'db> {
pub(super) fn canonicalize<T>(&mut self, t: T) -> rustc_type_ir::Canonical<DbInterner<'db>, T>
where
T: rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
self.table.canonicalize(t)
}
}
struct NestedObligationsForSelfTy<'a, 'db> {
ctx: &'a InferenceTable<'db>,
self_ty: TyVid,
root_cause: &'a ObligationCause,
obligations_for_self_ty: &'a mut SmallVec<[Obligation<'db, Predicate<'db>>; 4]>,
}
impl<'a, 'db> ProofTreeVisitor<'db> for NestedObligationsForSelfTy<'a, 'db> {
type Result = ();
fn config(&self) -> InspectConfig {
// Using an intentionally low depth to minimize the chance of future
// breaking changes in case we adapt the approach later on. This also
// avoids any hangs for exponentially growing proof trees.
InspectConfig { max_depth: 5 }
}
fn visit_goal(&mut self, inspect_goal: &InspectGoal<'_, 'db>) {
// No need to walk into goal subtrees that certainly hold, since they
// wouldn't then be stalled on an infer var.
if inspect_goal.result() == Ok(Certainty::Yes) {
return;
}
let db = self.ctx.interner;
let goal = inspect_goal.goal();
if self.ctx.predicate_has_self_ty(goal.predicate, self.self_ty)
// We do not push the instantiated forms of goals as it would cause any
// aliases referencing bound vars to go from having escaping bound vars to
// being able to be normalized to an inference variable.
//
// This is mostly just a hack as arbitrary nested goals could still contain
// such aliases while having a different `GoalSource`. Closure signature inference
// however can't really handle *every* higher ranked `Fn` goal also being present
// in the form of `?c: Fn<(<?x as Trait<'!a>>::Assoc)`.
//
// This also just better matches the behaviour of the old solver where we do not
// encounter instantiated forms of goals, only nested goals that referred to bound
// vars from instantiated goals.
&& !matches!(inspect_goal.source(), GoalSource::InstantiateHigherRanked)
{
self.obligations_for_self_ty.push(Obligation::new(
db,
self.root_cause.clone(),
goal.param_env,
goal.predicate,
));
}
// If there's a unique way to prove a given goal, recurse into
// that candidate. This means that for `impl<F: FnOnce(u32)> Trait<F> for () {}`
// and a `(): Trait<?0>` goal we recurse into the impl and look at
// the nested `?0: FnOnce(u32)` goal.
if let Some(candidate) = inspect_goal.unique_applicable_candidate() {
candidate.visit_nested_no_probe(self)
}
}
}
/// Check if types unify.
///
/// Note that we consider placeholder types to unify with everything.
/// This means that there may be some unresolved goals that actually set bounds for the placeholder
/// type for the types to unify. For example `Option<T>` and `Option<U>` unify although there is
/// unresolved goal `T = U`.
pub fn could_unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment<'_>>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
unify(db, env, tys).is_some()
}
/// Check if types unify eagerly making sure there are no unresolved goals.
///
/// This means that placeholder types are not considered to unify if there are any bounds set on
/// them. For example `Option<T>` and `Option<U>` do not unify as we cannot show that `T = U`
pub fn could_unify_deeply(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment<'_>>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
let ty1_with_vars = table.normalize_associated_types_in(ty1_with_vars);
let ty2_with_vars = table.normalize_associated_types_in(ty2_with_vars);
table.select_obligations_where_possible();
table.propagate_diverging_flag();
let ty1_with_vars = table.resolve_completely(ty1_with_vars);
let ty2_with_vars = table.resolve_completely(ty2_with_vars);
table.unify_deeply(&ty1_with_vars, &ty2_with_vars)
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment<'_>>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let find_var = |iv| {
vars.iter(Interner).position(|v| match v.data(Interner) {
GenericArgData::Ty(ty) => ty.inference_var(Interner),
GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
GenericArgData::Const(c) => c.inference_var(Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)),
};
Some(Substitution::from_iter(
Interner,
vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)),
))
}
fn make_substitutions(
tys: &chalk_ir::Canonical<(chalk_ir::Ty<Interner>, chalk_ir::Ty<Interner>)>,
table: &mut InferenceTable<'_>,
) -> chalk_ir::Substitution<Interner> {
Substitution::from_iter(
Interner,
tys.binders.iter(Interner).map(|it| match &it.kind {
chalk_ir::VariableKind::Ty(_) => table.new_type_var().cast(Interner),
// FIXME: maybe wrong?
chalk_ir::VariableKind::Lifetime => table.new_type_var().cast(Interner),
chalk_ir::VariableKind::Const(ty) => table.new_const_var(ty.clone()).cast(Interner),
}),
)
}
bitflags::bitflags! {
#[derive(Default, Clone, Copy)]
pub(crate) struct TypeVariableFlags: u8 {
const DIVERGING = 1 << 0;
const INTEGER = 1 << 1;
const FLOAT = 1 << 2;
}
}
#[derive(Clone)]
pub(crate) struct InferenceTable<'db> {
pub(crate) db: &'db dyn HirDatabase,
pub(crate) interner: DbInterner<'db>,
pub(crate) trait_env: Arc<TraitEnvironment<'db>>,
pub(crate) param_env: ParamEnv<'db>,
pub(crate) tait_coercion_table: Option<FxHashMap<OpaqueTyId, Ty>>,
pub(crate) infer_ctxt: InferCtxt<'db>,
diverging_tys: FxHashSet<Ty>,
pub(super) fulfillment_cx: FulfillmentCtxt<'db>,
}
pub(crate) struct InferenceTableSnapshot<'db> {
ctxt_snapshot: CombinedSnapshot,
obligations: FulfillmentCtxt<'db>,
diverging_tys: FxHashSet<Ty>,
}
impl<'db> InferenceTable<'db> {
pub(crate) fn new(db: &'db dyn HirDatabase, trait_env: Arc<TraitEnvironment<'db>>) -> Self {
let interner = DbInterner::new_with(db, Some(trait_env.krate), trait_env.block);
let infer_ctxt = interner.infer_ctxt().build(rustc_type_ir::TypingMode::Analysis {
defining_opaque_types_and_generators: SolverDefIds::new_from_iter(interner, []),
});
InferenceTable {
db,
interner,
param_env: trait_env.env.to_nextsolver(interner),
trait_env,
tait_coercion_table: None,
fulfillment_cx: FulfillmentCtxt::new(&infer_ctxt),
infer_ctxt,
diverging_tys: FxHashSet::default(),
}
}
pub(crate) fn type_var_is_sized(&self, self_ty: TyVid) -> bool {
let Some(sized_did) = LangItem::Sized.resolve_trait(self.db, self.trait_env.krate) else {
return true;
};
self.obligations_for_self_ty(self_ty).into_iter().any(|obligation| {
match obligation.predicate.kind().skip_binder() {
crate::next_solver::PredicateKind::Clause(
crate::next_solver::ClauseKind::Trait(data),
) => data.def_id().0 == sized_did,
_ => false,
}
})
}
pub(super) fn obligations_for_self_ty(
&self,
self_ty: TyVid,
) -> SmallVec<[Obligation<'db, Predicate<'db>>; 4]> {
let obligations = self.fulfillment_cx.pending_obligations();
let mut obligations_for_self_ty = SmallVec::new();
for obligation in obligations {
let mut visitor = NestedObligationsForSelfTy {
ctx: self,
self_ty,
obligations_for_self_ty: &mut obligations_for_self_ty,
root_cause: &obligation.cause,
};
let goal = obligation.as_goal();
self.infer_ctxt.visit_proof_tree(goal, &mut visitor);
}
obligations_for_self_ty.retain_mut(|obligation| {
obligation.predicate = self.infer_ctxt.resolve_vars_if_possible(obligation.predicate);
!obligation.predicate.has_placeholders()
});
obligations_for_self_ty
}
fn predicate_has_self_ty(&self, predicate: Predicate<'db>, expected_vid: TyVid) -> bool {
match predicate.kind().skip_binder() {
PredicateKind::Clause(ClauseKind::Trait(data)) => {
self.type_matches_expected_vid(expected_vid, data.self_ty())
}
PredicateKind::Clause(ClauseKind::Projection(data)) => {
self.type_matches_expected_vid(expected_vid, data.projection_term.self_ty())
}
PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
| PredicateKind::Subtype(..)
| PredicateKind::Coerce(..)
| PredicateKind::Clause(ClauseKind::RegionOutlives(..))
| PredicateKind::Clause(ClauseKind::TypeOutlives(..))
| PredicateKind::Clause(ClauseKind::WellFormed(..))
| PredicateKind::DynCompatible(..)
| PredicateKind::NormalizesTo(..)
| PredicateKind::AliasRelate(..)
| PredicateKind::Clause(ClauseKind::ConstEvaluatable(..))
| PredicateKind::ConstEquate(..)
| PredicateKind::Clause(ClauseKind::HostEffect(..))
| PredicateKind::Clause(ClauseKind::UnstableFeature(_))
| PredicateKind::Ambiguous => false,
}
}
fn type_matches_expected_vid(
&self,
expected_vid: TyVid,
ty: crate::next_solver::Ty<'db>,
) -> bool {
let ty = self.shallow_resolve(ty);
match ty.kind() {
crate::next_solver::TyKind::Infer(rustc_type_ir::TyVar(found_vid)) => {
self.infer_ctxt.root_var(expected_vid) == self.infer_ctxt.root_var(found_vid)
}
_ => false,
}
}
/// Chalk doesn't know about the `diverging` flag, so when it unifies two
/// type variables of which one is diverging, the chosen root might not be
/// diverging and we have no way of marking it as such at that time. This
/// function goes through all type variables and make sure their root is
/// marked as diverging if necessary, so that resolving them gives the right
/// result.
pub(super) fn propagate_diverging_flag(&mut self) {
let mut new_tys = FxHashSet::default();
for ty in self.diverging_tys.iter() {
match ty.kind(Interner) {
TyKind::InferenceVar(var, kind) => match kind {
TyVariableKind::General => {
let root = InferenceVar::from(
self.infer_ctxt.root_var(TyVid::from_u32(var.index())).as_u32(),
);
if root.index() != var.index() {
new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner));
}
}
TyVariableKind::Integer => {
let root = InferenceVar::from(
self.infer_ctxt
.inner
.borrow_mut()
.int_unification_table()
.find(IntVid::from_usize(var.index() as usize))
.as_u32(),
);
if root.index() != var.index() {
new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner));
}
}
TyVariableKind::Float => {
let root = InferenceVar::from(
self.infer_ctxt
.inner
.borrow_mut()
.float_unification_table()
.find(FloatVid::from_usize(var.index() as usize))
.as_u32(),
);
if root.index() != var.index() {
new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner));
}
}
},
_ => {}
}
}
self.diverging_tys.extend(new_tys);
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, kind: TyVariableKind) {
self.diverging_tys.insert(TyKind::InferenceVar(iv, kind).intern(Interner));
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
let is_diverging =
self.diverging_tys.contains(&TyKind::InferenceVar(iv, kind).intern(Interner));
if is_diverging {
return TyKind::Never.intern(Interner);
}
match kind {
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(Interner)
}
pub(crate) fn canonicalize<T>(&mut self, t: T) -> rustc_type_ir::Canonical<DbInterner<'db>, T>
where
T: rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.select_obligations_where_possible();
self.infer_ctxt.canonicalize_response(t)
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
pub(crate) fn normalize_associated_types_in<T, U>(&mut self, ty: T) -> T
where
T: ChalkToNextSolver<'db, U>,
U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
self.normalize_associated_types_in_ns(ty.to_nextsolver(self.interner))
.to_chalk(self.interner)
}
// FIXME: We should get rid of this method. We cannot deeply normalize during inference, only when finishing.
// Inference should use shallow normalization (`try_structurally_resolve_type()`) only, when needed.
pub(crate) fn normalize_associated_types_in_ns<T>(&mut self, ty: T) -> T
where
T: rustc_type_ir::TypeFoldable<DbInterner<'db>> + Clone,
{
let ty = self.resolve_vars_with_obligations(ty);
self.infer_ctxt
.at(&ObligationCause::new(), self.param_env)
.deeply_normalize(ty.clone())
.unwrap_or(ty)
}
/// Works almost same as [`Self::normalize_associated_types_in`], but this also resolves shallow
/// the inference variables
pub(crate) fn eagerly_normalize_and_resolve_shallow_in<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fn eagerly_resolve_ty<const N: usize>(
table: &mut InferenceTable<'_>,
ty: Ty,
mut tys: SmallVec<[Ty; N]>,
) -> Ty {
if tys.contains(&ty) {
return ty;
}
tys.push(ty.clone());
match ty.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
let ty = table.normalize_projection_ty(proj_ty.clone());
eagerly_resolve_ty(table, ty, tys)
}
TyKind::InferenceVar(..) => {
let ty = table.resolve_ty_shallow(&ty);
eagerly_resolve_ty(table, ty, tys)
}
_ => ty,
}
}
fold_tys_and_consts(
ty,
|e, _| match e {
Either::Left(ty) => {
Either::Left(eagerly_resolve_ty::<8>(self, ty, SmallVec::new()))
}
Either::Right(c) => Either::Right(match &c.data(Interner).value {
chalk_ir::ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::UnevaluatedConst(c_id, subst) => {
// FIXME: same as `normalize_associated_types_in`
if subst.len(Interner) == 0 {
if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) {
eval
} else {
unknown_const(c.data(Interner).ty.clone())
}
} else {
unknown_const(c.data(Interner).ty.clone())
}
}
_ => c,
},
_ => c,
}),
},
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let ty = TyKind::Alias(chalk_ir::AliasTy::Projection(proj_ty))
.intern(Interner)
.to_nextsolver(self.interner);
self.normalize_alias_ty(ty).to_chalk(self.interner)
}
pub(crate) fn normalize_alias_ty(
&mut self,
alias: crate::next_solver::Ty<'db>,
) -> crate::next_solver::Ty<'db> {
let infer_term = self.infer_ctxt.next_ty_var();
let obligation = crate::next_solver::Predicate::new(
self.interner,
crate::next_solver::Binder::dummy(crate::next_solver::PredicateKind::AliasRelate(
alias.into(),
infer_term.into(),
rustc_type_ir::AliasRelationDirection::Equate,
)),
);
self.register_obligation(obligation);
self.resolve_vars_with_obligations(infer_term)
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = match kind {
TyVariableKind::General => {
let var = self.infer_ctxt.next_ty_vid();
InferenceVar::from(var.as_u32())
}
TyVariableKind::Integer => {
let var = self.infer_ctxt.next_int_vid();
InferenceVar::from(var.as_u32())
}
TyVariableKind::Float => {
let var = self.infer_ctxt.next_float_vid();
InferenceVar::from(var.as_u32())
}
};
let ty = var.to_ty(Interner, kind);
if diverging {
self.diverging_tys.insert(ty.clone());
}
ty
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn next_ty_var(&mut self) -> crate::next_solver::Ty<'db> {
self.infer_ctxt.next_ty_var()
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const {
let var = self.infer_ctxt.next_const_vid();
let var = InferenceVar::from(var.as_u32());
var.to_const(Interner, ty)
}
pub(crate) fn new_lifetime_var(&mut self) -> Lifetime {
let var = self.infer_ctxt.next_region_vid();
let var = InferenceVar::from(var.as_u32());
var.to_lifetime(Interner)
}
pub(crate) fn next_region_var(&mut self) -> crate::next_solver::Region<'db> {
self.infer_ctxt.next_region_var()
}
pub(crate) fn resolve_with_fallback<T>(
&mut self,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.resolve_with_fallback_inner(t, &fallback)
}
pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind<Interner>]) -> Substitution {
Substitution::from_iter(
Interner,
binders.iter().map(|kind| match &kind.kind {
chalk_ir::VariableKind::Ty(ty_variable_kind) => {
self.new_var(*ty_variable_kind, false).cast(Interner)
}
chalk_ir::VariableKind::Lifetime => self.new_lifetime_var().cast(Interner),
chalk_ir::VariableKind::Const(ty) => self.new_const_var(ty.clone()).cast(Interner),
}),
)
}
pub(crate) fn instantiate_canonical<T>(&mut self, canonical: Canonical<T>) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + std::fmt::Debug,
{
let subst = self.fresh_subst(canonical.binders.as_slice(Interner));
subst.apply(canonical.value, Interner)
}
pub(crate) fn instantiate_canonical_ns<T>(
&mut self,
canonical: rustc_type_ir::Canonical<DbInterner<'db>, T>,
) -> T
where
T: rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
self.infer_ctxt.instantiate_canonical(&canonical).0
}
fn resolve_with_fallback_inner<T>(
&mut self,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
let var_stack = &mut vec![];
t.fold_with(
&mut resolve::Resolver { table: self, var_stack, fallback },
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn resolve_completely<T, U>(&mut self, t: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>,
U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
let t = self.resolve_with_fallback(t, &|_, _, d, _| d);
let t = self.normalize_associated_types_in(t);
// let t = self.resolve_opaque_tys_in(t);
// Resolve again, because maybe normalization inserted infer vars.
self.resolve_with_fallback(t, &|_, _, d, _| d)
}
/// Apply a fallback to unresolved scalar types. Integer type variables and float type
/// variables are replaced with i32 and f64, respectively.
///
/// This method is only intended to be called just before returning inference results (i.e. in
/// `InferenceContext::resolve_all()`).
///
/// FIXME: This method currently doesn't apply fallback to unconstrained general type variables
/// whereas rustc replaces them with `()` or `!`.
pub(super) fn fallback_if_possible(&mut self) {
let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner);
let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner);
let int_vars = self.infer_ctxt.inner.borrow_mut().int_unification_table().len();
for v in 0..int_vars {
let var = InferenceVar::from(v as u32).to_ty(Interner, TyVariableKind::Integer);
let maybe_resolved = self.resolve_ty_shallow(&var);
if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) {
// I don't think we can ever unify these vars with float vars, but keep this here for now
let fallback = match kind {
TyVariableKind::Integer => &int_fallback,
TyVariableKind::Float => &float_fallback,
TyVariableKind::General => unreachable!(),
};
self.unify(&var, fallback);
}
}
let float_vars = self.infer_ctxt.inner.borrow_mut().float_unification_table().len();
for v in 0..float_vars {
let var = InferenceVar::from(v as u32).to_ty(Interner, TyVariableKind::Float);
let maybe_resolved = self.resolve_ty_shallow(&var);
if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) {
// I don't think we can ever unify these vars with float vars, but keep this here for now
let fallback = match kind {
TyVariableKind::Integer => &int_fallback,
TyVariableKind::Float => &float_fallback,
TyVariableKind::General => unreachable!(),
};
self.unify(&var, fallback);
}
}
}
/// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that.
pub(crate) fn unify<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>(
&mut self,
ty1: &T,
ty2: &T,
) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
self.register_obligations(result.goals);
true
}
pub(crate) fn unify_ns<T: Relate<DbInterner<'db>>>(&mut self, lhs: T, rhs: T) -> bool {
let Ok(infer_ok) = self.try_unify_ns(lhs, rhs) else {
return false;
};
self.register_obligations(infer_ok.goals);
true
}
/// Unify two relatable values (e.g. `Ty`) and check whether trait goals which arise from that could be fulfilled
pub(crate) fn unify_deeply<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>(
&mut self,
ty1: &T,
ty2: &T,
) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
result.goals.into_iter().all(|goal| {
matches!(next_trait_solve_in_ctxt(&self.infer_ctxt, goal), Ok((_, Certainty::Yes)))
})
}
/// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the
/// caller needs to deal with them.
pub(crate) fn try_unify<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>(
&mut self,
t1: &T,
t2: &T,
) -> InferResult<'db, ()> {
let lhs = t1.to_nextsolver(self.interner);
let rhs = t2.to_nextsolver(self.interner);
self.try_unify_ns(lhs, rhs)
}
/// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the
/// caller needs to deal with them.
pub(crate) fn try_unify_ns<T: Relate<DbInterner<'db>>>(
&mut self,
lhs: T,
rhs: T,
) -> InferResult<'db, ()> {
let variance = rustc_type_ir::Variance::Invariant;
let span = crate::next_solver::Span::dummy();
match self.infer_ctxt.relate(self.param_env, lhs, variance, rhs, span) {
Ok(goals) => Ok(crate::infer::InferOk { goals, value: () }),
Err(_) => Err(TypeError),
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
#[tracing::instrument(skip(self))]
pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.shallow_resolve(ty.to_nextsolver(self.interner)).to_chalk(self.interner)
}
pub(crate) fn shallow_resolve(
&self,
ty: crate::next_solver::Ty<'db>,
) -> crate::next_solver::Ty<'db> {
self.infer_ctxt.shallow_resolve(ty)
}
pub(crate) fn resolve_vars_with_obligations<T>(&mut self, t: T) -> T
where
T: rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
use rustc_type_ir::TypeVisitableExt;
if !t.has_non_region_infer() {
return t;
}
let t = self.infer_ctxt.resolve_vars_if_possible(t);
if !t.has_non_region_infer() {
return t;
}
self.select_obligations_where_possible();
self.infer_ctxt.resolve_vars_if_possible(t)
}
pub(crate) fn structurally_resolve_type(&mut self, ty: &Ty) -> Ty {
if let TyKind::Alias(..) = ty.kind(Interner) {
self.structurally_normalize_ty(ty)
} else {
self.resolve_vars_with_obligations(ty.to_nextsolver(self.interner))
.to_chalk(self.interner)
}
}
fn structurally_normalize_ty(&mut self, ty: &Ty) -> Ty {
self.structurally_normalize_term(ty.to_nextsolver(self.interner).into())
.expect_ty()
.to_chalk(self.interner)
}
fn structurally_normalize_term(&mut self, term: Term<'db>) -> Term<'db> {
self.infer_ctxt
.at(&ObligationCause::new(), self.param_env)
.structurally_normalize_term(term, &mut self.fulfillment_cx)
.unwrap_or(term)
}
/// Try to resolve `ty` to a structural type, normalizing aliases.
///
/// In case there is still ambiguity, the returned type may be an inference
/// variable. This is different from `structurally_resolve_type` which errors
/// in this case.
pub(crate) fn try_structurally_resolve_type(
&mut self,
ty: crate::next_solver::Ty<'db>,
) -> crate::next_solver::Ty<'db> {
if let crate::next_solver::TyKind::Alias(..) = ty.kind() {
// We need to use a separate variable here as otherwise the temporary for
// `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting
// in a reentrant borrow, causing an ICE.
let result = self
.infer_ctxt
.at(&ObligationCause::misc(), self.param_env)
.structurally_normalize_ty(ty, &mut self.fulfillment_cx);
match result {
Ok(normalized_ty) => normalized_ty,
Err(_errors) => crate::next_solver::Ty::new_error(self.interner, ErrorGuaranteed),
}
} else {
self.resolve_vars_with_obligations(ty)
}
}
pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot<'db> {
let ctxt_snapshot = self.infer_ctxt.start_snapshot();
let diverging_tys = self.diverging_tys.clone();
let obligations = self.fulfillment_cx.clone();
InferenceTableSnapshot { ctxt_snapshot, diverging_tys, obligations }
}
#[tracing::instrument(skip_all)]
pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot<'db>) {
self.infer_ctxt.rollback_to(snapshot.ctxt_snapshot);
self.diverging_tys = snapshot.diverging_tys;
self.fulfillment_cx = snapshot.obligations;
}
#[tracing::instrument(skip_all)]
pub(crate) fn run_in_snapshot<T>(
&mut self,
f: impl FnOnce(&mut InferenceTable<'db>) -> T,
) -> T {
let snapshot = self.snapshot();
let result = f(self);
self.rollback_to(snapshot);
result
}
pub(crate) fn commit_if_ok<T, E>(
&mut self,
f: impl FnOnce(&mut InferenceTable<'db>) -> Result<T, E>,
) -> Result<T, E> {
let snapshot = self.snapshot();
let result = f(self);
match result {
Ok(_) => {}
Err(_) => {
self.rollback_to(snapshot);
}
}
result
}
/// Checks an obligation without registering it. Useful mostly to check
/// whether a trait *might* be implemented before deciding to 'lock in' the
/// choice (during e.g. method resolution or deref).
#[tracing::instrument(level = "debug", skip(self))]
pub(crate) fn try_obligation(&mut self, predicate: Predicate<'db>) -> NextTraitSolveResult {
let goal = next_solver::Goal { param_env: self.param_env, predicate };
let canonicalized = self.canonicalize(goal);
next_trait_solve_canonical_in_ctxt(&self.infer_ctxt, canonicalized)
}
pub(crate) fn register_obligation(&mut self, predicate: Predicate<'db>) {
let goal = next_solver::Goal { param_env: self.param_env, predicate };
self.register_obligation_in_env(goal)
}
#[tracing::instrument(level = "debug", skip(self))]
fn register_obligation_in_env(
&mut self,
goal: next_solver::Goal<'db, next_solver::Predicate<'db>>,
) {
let result = next_trait_solve_in_ctxt(&self.infer_ctxt, goal);
tracing::debug!(?result);
match result {
Ok((_, Certainty::Yes)) => {}
Err(rustc_type_ir::solve::NoSolution) => {}
Ok((_, Certainty::Maybe { .. })) => {
self.fulfillment_cx.register_predicate_obligation(
&self.infer_ctxt,
Obligation::new(
self.interner,
ObligationCause::new(),
goal.param_env,
goal.predicate,
),
);
}
}
}
pub(crate) fn register_infer_ok<T>(&mut self, infer_ok: InferOk<'db, T>) -> T {
let InferOk { value, obligations } = infer_ok;
self.register_predicates(obligations);
value
}
pub(crate) fn register_obligations(
&mut self,
obligations: Vec<crate::next_solver::Goal<'db, crate::next_solver::Predicate<'db>>>,
) {
obligations.into_iter().for_each(|goal| self.register_obligation_in_env(goal));
}
pub(crate) fn select_obligations_where_possible(&mut self) {
self.fulfillment_cx.select_where_possible(&self.infer_ctxt);
}
pub(super) fn register_predicate(
&mut self,
obligation: crate::next_solver::infer::traits::PredicateObligation<'db>,
) {
if obligation.has_escaping_bound_vars() {
panic!("escaping bound vars in predicate {:?}", obligation);
}
self.fulfillment_cx.register_predicate_obligation(&self.infer_ctxt, obligation);
}
pub(super) fn register_predicates<I>(&mut self, obligations: I)
where
I: IntoIterator<Item = crate::next_solver::infer::traits::PredicateObligation<'db>>,
{
obligations.into_iter().for_each(|obligation| {
self.register_predicate(obligation);
});
}
pub(crate) fn callable_sig(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(Option<FnTrait>, Vec<crate::next_solver::Ty<'db>>, crate::next_solver::Ty<'db>)>
{
match ty.callable_sig(self.db) {
Some(sig) => Some((
None,
sig.params().iter().map(|param| param.to_nextsolver(self.interner)).collect(),
sig.ret().to_nextsolver(self.interner),
)),
None => {
let (f, args_ty, return_ty) = self.callable_sig_from_fn_trait(ty, num_args)?;
Some((Some(f), args_ty, return_ty))
}
}
}
fn callable_sig_from_fn_trait(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(FnTrait, Vec<next_solver::Ty<'db>>, next_solver::Ty<'db>)> {
for (fn_trait_name, output_assoc_name, subtraits) in [
(FnTrait::FnOnce, sym::Output, &[FnTrait::Fn, FnTrait::FnMut][..]),
(FnTrait::AsyncFnMut, sym::CallRefFuture, &[FnTrait::AsyncFn]),
(FnTrait::AsyncFnOnce, sym::CallOnceFuture, &[]),
] {
let krate = self.trait_env.krate;
let fn_trait = fn_trait_name.get_id(self.db, krate)?;
let trait_data = fn_trait.trait_items(self.db);
let output_assoc_type =
trait_data.associated_type_by_name(&Name::new_symbol_root(output_assoc_name))?;
let mut arg_tys = Vec::with_capacity(num_args);
let arg_ty = next_solver::Ty::new_tup_from_iter(
self.interner,
std::iter::repeat_with(|| {
let ty = self.next_ty_var();
arg_tys.push(ty);
ty
})
.take(num_args),
);
let args = [ty.to_nextsolver(self.interner), arg_ty];
let trait_ref = crate::next_solver::TraitRef::new(self.interner, fn_trait.into(), args);
let projection = crate::next_solver::Ty::new_alias(
self.interner,
rustc_type_ir::AliasTyKind::Projection,
crate::next_solver::AliasTy::new(self.interner, output_assoc_type.into(), args),
);
let pred = crate::next_solver::Predicate::upcast_from(trait_ref, self.interner);
if !self.try_obligation(pred).no_solution() {
self.register_obligation(pred);
let return_ty = self.normalize_alias_ty(projection);
for &fn_x in subtraits {
let fn_x_trait = fn_x.get_id(self.db, krate)?;
let trait_ref =
crate::next_solver::TraitRef::new(self.interner, fn_x_trait.into(), args);
let pred = crate::next_solver::Predicate::upcast_from(trait_ref, self.interner);
if !self.try_obligation(pred).no_solution() {
return Some((fn_x, arg_tys, return_ty));
}
}
return Some((fn_trait_name, arg_tys, return_ty));
}
}
None
}
pub(super) fn insert_type_vars<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fold_generic_args(
ty,
|arg, _| match arg {
GenericArgData::Ty(ty) => GenericArgData::Ty(self.insert_type_vars_shallow(ty)),
// FIXME: insert lifetime vars once LifetimeData::InferenceVar
// and specific error variant for lifetimes start being constructed
GenericArgData::Lifetime(lt) => GenericArgData::Lifetime(lt),
GenericArgData::Const(c) => {
GenericArgData::Const(self.insert_const_vars_shallow(c))
}
},
DebruijnIndex::INNERMOST,
)
}
/// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
pub(super) fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty.kind(Interner) {
TyKind::Error => self.new_type_var(),
TyKind::InferenceVar(..) => {
let ty_resolved = self.structurally_resolve_type(&ty);
if ty_resolved.is_unknown() { self.new_type_var() } else { ty }
}
_ => ty,
}
}
/// Whenever you lower a user-written type, you should call this.
pub(crate) fn process_user_written_ty<T, U>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>,
U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
self.process_remote_user_written_ty(ty)
// FIXME: Register a well-formed obligation.
}
/// The difference of this method from `process_user_written_ty()` is that this method doesn't register a well-formed obligation,
/// while `process_user_written_ty()` should (but doesn't currently).
pub(crate) fn process_remote_user_written_ty<T, U>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>,
U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>,
{
let ty = self.insert_type_vars(ty);
// See https://github.com/rust-lang/rust/blob/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs#L487-L495:
// Even though the new solver only lazily normalizes usually, here we eagerly normalize so that not everything needs
// to normalize before inspecting the `TyKind`.
// FIXME(next-solver): We should not deeply normalize here, only shallowly.
self.normalize_associated_types_in(ty)
}
/// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it.
pub(super) fn insert_const_vars_shallow(&mut self, c: Const) -> Const {
let data = c.data(Interner);
match &data.value {
ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::Unknown => self.new_const_var(data.ty.clone()),
// try to evaluate unevaluated const. Replace with new var if const eval failed.
crate::ConstScalar::UnevaluatedConst(id, subst) => {
if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) {
eval
} else {
self.new_const_var(data.ty.clone())
}
}
_ => c,
},
_ => c,
}
}
/// Check if given type is `Sized` or not
pub(crate) fn is_sized(&mut self, ty: &Ty) -> bool {
fn short_circuit_trivial_tys(ty: &Ty) -> Option<bool> {
match ty.kind(Interner) {
TyKind::Scalar(..)
| TyKind::Ref(..)
| TyKind::Raw(..)
| TyKind::Never
| TyKind::FnDef(..)
| TyKind::Array(..)
| TyKind::Function(..) => Some(true),
TyKind::Slice(..) | TyKind::Str | TyKind::Dyn(..) => Some(false),
_ => None,
}
}
let mut ty = ty.clone();
ty = self.eagerly_normalize_and_resolve_shallow_in(ty);
if let Some(sized) = short_circuit_trivial_tys(&ty) {
return sized;
}
{
let mut structs = SmallVec::<[_; 8]>::new();
// Must use a loop here and not recursion because otherwise users will conduct completely
// artificial examples of structs that have themselves as the tail field and complain r-a crashes.
while let Some((AdtId::StructId(id), subst)) = ty.as_adt() {
let struct_data = id.fields(self.db);
if let Some((last_field, _)) = struct_data.fields().iter().next_back() {
let last_field_ty = self.db.field_types(id.into())[last_field]
.clone()
.substitute(Interner, subst);
if structs.contains(&ty) {
// A struct recursively contains itself as a tail field somewhere.
return true; // Don't overload the users with too many errors.
}
structs.push(ty);
// Structs can have DST as its last field and such cases are not handled
// as unsized by the chalk, so we do this manually.
ty = last_field_ty;
ty = self.eagerly_normalize_and_resolve_shallow_in(ty);
if let Some(sized) = short_circuit_trivial_tys(&ty) {
return sized;
}
} else {
break;
};
}
}
let Some(sized) = LangItem::Sized.resolve_trait(self.db, self.trait_env.krate) else {
return false;
};
let sized_pred = Predicate::upcast_from(
TraitRef::new(self.interner, sized.into(), [ty.to_nextsolver(self.interner)]),
self.interner,
);
self.try_obligation(sized_pred).certain()
}
}
impl fmt::Debug for InferenceTable<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable")
.field("name", &self.infer_ctxt.inner.borrow().type_variable_storage)
.field("fulfillment_cx", &self.fulfillment_cx)
.finish()
}
}
mod resolve {
use super::InferenceTable;
use crate::{
ConcreteConst, Const, ConstData, ConstScalar, ConstValue, DebruijnIndex, GenericArg,
InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind,
next_solver::mapping::NextSolverToChalk,
};
use chalk_ir::{
cast::Cast,
fold::{TypeFoldable, TypeFolder},
};
use rustc_type_ir::{FloatVid, IntVid, TyVid};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(super) enum VarKind {
Ty(TyVariableKind),
Const,
}
#[derive(chalk_derive::FallibleTypeFolder)]
#[has_interner(Interner)]
pub(super) struct Resolver<
'a,
'b,
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
> {
pub(super) table: &'a mut InferenceTable<'b>,
pub(super) var_stack: &'a mut Vec<(InferenceVar, VarKind)>,
pub(super) fallback: F,
}
impl<F> TypeFolder<Interner> for Resolver<'_, '_, F>
where
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
{
fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
outer_binder: DebruijnIndex,
) -> Ty {
match kind {
TyVariableKind::General => {
let vid = self.table.infer_ctxt.root_var(TyVid::from(var.index()));
let var = InferenceVar::from(vid.as_u32());
if self.var_stack.contains(&(var, VarKind::Ty(kind))) {
// recursive type
let default = self.table.fallback_value(var, kind).cast(Interner);
return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone();
}
if let Ok(known_ty) = self.table.infer_ctxt.probe_ty_var(vid) {
let known_ty: Ty = known_ty.to_chalk(self.table.interner);
// known_ty may contain other variables that are known by now
self.var_stack.push((var, VarKind::Ty(kind)));
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result
} else {
let default = self.table.fallback_value(var, kind).cast(Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone()
}
}
TyVariableKind::Integer => {
let vid = self
.table
.infer_ctxt
.inner
.borrow_mut()
.int_unification_table()
.find(IntVid::from(var.index()));
let var = InferenceVar::from(vid.as_u32());
if self.var_stack.contains(&(var, VarKind::Ty(kind))) {
// recursive type
let default = self.table.fallback_value(var, kind).cast(Interner);
return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone();
}
if let Some(known_ty) = self.table.infer_ctxt.resolve_int_var(vid) {
let known_ty: Ty = known_ty.to_chalk(self.table.interner);
// known_ty may contain other variables that are known by now
self.var_stack.push((var, VarKind::Ty(kind)));
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result
} else {
let default = self.table.fallback_value(var, kind).cast(Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone()
}
}
TyVariableKind::Float => {
let vid = self
.table
.infer_ctxt
.inner
.borrow_mut()
.float_unification_table()
.find(FloatVid::from(var.index()));
let var = InferenceVar::from(vid.as_u32());
if self.var_stack.contains(&(var, VarKind::Ty(kind))) {
// recursive type
let default = self.table.fallback_value(var, kind).cast(Interner);
return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone();
}
if let Some(known_ty) = self.table.infer_ctxt.resolve_float_var(vid) {
let known_ty: Ty = known_ty.to_chalk(self.table.interner);
// known_ty may contain other variables that are known by now
self.var_stack.push((var, VarKind::Ty(kind)));
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result
} else {
let default = self.table.fallback_value(var, kind).cast(Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone()
}
}
}
}
fn fold_inference_const(
&mut self,
ty: Ty,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Const {
let vid = self
.table
.infer_ctxt
.root_const_var(rustc_type_ir::ConstVid::from_u32(var.index()));
let var = InferenceVar::from(vid.as_u32());
let default = ConstData {
ty: ty.clone(),
value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
}
.intern(Interner)
.cast(Interner);
if self.var_stack.contains(&(var, VarKind::Const)) {
// recursive
return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone();
}
if let Ok(known_const) = self.table.infer_ctxt.probe_const_var(vid) {
let known_const: Const = known_const.to_chalk(self.table.interner);
// known_ty may contain other variables that are known by now
self.var_stack.push((var, VarKind::Const));
let result = known_const.fold_with(self, outer_binder);
self.var_stack.pop();
result
} else {
(self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone()
}
}
fn fold_inference_lifetime(
&mut self,
_var: InferenceVar,
_outer_binder: DebruijnIndex,
) -> Lifetime {
// fall back all lifetimes to 'error -- currently we don't deal
// with any lifetimes, but we can sometimes get some lifetime
// variables through Chalk's unification, and this at least makes
// sure we don't leak them outside of inference
crate::error_lifetime()
}
}
}