|  | //! This is the actual "grammar" of the Rust language. | 
|  | //! | 
|  | //! Each function in this module and its children corresponds | 
|  | //! to a production of the formal grammar. Submodules roughly | 
|  | //! correspond to different *areas* of the grammar. By convention, | 
|  | //! each submodule starts with `use super::*` import and exports | 
|  | //! "public" productions via `pub(super)`. | 
|  | //! | 
|  | //! See docs for [`Parser`](super::parser::Parser) to learn about API, | 
|  | //! available to the grammar, and see docs for [`Event`](super::event::Event) | 
|  | //! to learn how this actually manages to produce parse trees. | 
|  | //! | 
|  | //! Code in this module also contains inline tests, which start with | 
|  | //! `// test name-of-the-test` comment and look like this: | 
|  | //! | 
|  | //! ```text | 
|  | //! // test function_with_zero_parameters | 
|  | //! // fn foo() {} | 
|  | //! ``` | 
|  | //! | 
|  | //! After adding a new inline-test, run `cargo test -p xtask` to | 
|  | //! extract it as a standalone text-fixture into | 
|  | //! `crates/syntax/test_data/parser/`, and run `cargo test` once to | 
|  | //! create the "gold" value. | 
|  | //! | 
|  | //! Coding convention: rules like `where_clause` always produce either a | 
|  | //! node or an error, rules like `opt_where_clause` may produce nothing. | 
|  | //! Non-opt rules typically start with `assert!(p.at(FIRST_TOKEN))`, the | 
|  | //! caller is responsible for branching on the first token. | 
|  |  | 
|  | mod attributes; | 
|  | mod expressions; | 
|  | mod generic_args; | 
|  | mod generic_params; | 
|  | mod items; | 
|  | mod params; | 
|  | mod paths; | 
|  | mod patterns; | 
|  | mod types; | 
|  |  | 
|  | use crate::{ | 
|  | SyntaxKind::{self, *}, | 
|  | T, TokenSet, | 
|  | parser::{CompletedMarker, Marker, Parser}, | 
|  | }; | 
|  |  | 
|  | pub(crate) mod entry { | 
|  | use super::*; | 
|  |  | 
|  | pub(crate) mod prefix { | 
|  | use super::*; | 
|  |  | 
|  | pub(crate) fn vis(p: &mut Parser<'_>) { | 
|  | opt_visibility(p, false); | 
|  | } | 
|  |  | 
|  | pub(crate) fn block(p: &mut Parser<'_>) { | 
|  | expressions::block_expr(p); | 
|  | } | 
|  |  | 
|  | pub(crate) fn stmt(p: &mut Parser<'_>) { | 
|  | expressions::stmt(p, expressions::Semicolon::Forbidden); | 
|  | } | 
|  |  | 
|  | pub(crate) fn pat(p: &mut Parser<'_>) { | 
|  | patterns::pattern_single(p); | 
|  | } | 
|  |  | 
|  | pub(crate) fn pat_top(p: &mut Parser<'_>) { | 
|  | patterns::pattern(p); | 
|  | } | 
|  |  | 
|  | pub(crate) fn ty(p: &mut Parser<'_>) { | 
|  | types::type_(p); | 
|  | } | 
|  | pub(crate) fn expr(p: &mut Parser<'_>) { | 
|  | expressions::expr(p); | 
|  | } | 
|  | pub(crate) fn path(p: &mut Parser<'_>) { | 
|  | paths::type_path(p); | 
|  | } | 
|  | pub(crate) fn item(p: &mut Parser<'_>) { | 
|  | // We can set `is_in_extern=true`, because it only allows `safe fn`, and there is no ambiguity here. | 
|  | items::item_or_macro(p, true, true); | 
|  | } | 
|  | // Parse a meta item , which excluded [], e.g : #[ MetaItem ] | 
|  | pub(crate) fn meta_item(p: &mut Parser<'_>) { | 
|  | attributes::meta(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) mod top { | 
|  | use super::*; | 
|  |  | 
|  | pub(crate) fn source_file(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | p.eat(SHEBANG); | 
|  | items::mod_contents(p, false); | 
|  | m.complete(p, SOURCE_FILE); | 
|  | } | 
|  |  | 
|  | pub(crate) fn macro_stmts(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  |  | 
|  | while !p.at(EOF) { | 
|  | expressions::stmt(p, expressions::Semicolon::Optional); | 
|  | } | 
|  |  | 
|  | m.complete(p, MACRO_STMTS); | 
|  | } | 
|  |  | 
|  | pub(crate) fn macro_items(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | items::mod_contents(p, false); | 
|  | m.complete(p, MACRO_ITEMS); | 
|  | } | 
|  |  | 
|  | pub(crate) fn pattern(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | patterns::pattern(p); | 
|  | if p.at(EOF) { | 
|  | m.abandon(p); | 
|  | return; | 
|  | } | 
|  | while !p.at(EOF) { | 
|  | p.bump_any(); | 
|  | } | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  |  | 
|  | pub(crate) fn type_(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | types::type_(p); | 
|  | if p.at(EOF) { | 
|  | m.abandon(p); | 
|  | return; | 
|  | } | 
|  | while !p.at(EOF) { | 
|  | p.bump_any(); | 
|  | } | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  |  | 
|  | pub(crate) fn expr(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | expressions::expr(p); | 
|  | if p.at(EOF) { | 
|  | m.abandon(p); | 
|  | return; | 
|  | } | 
|  | while !p.at(EOF) { | 
|  | p.bump_any(); | 
|  | } | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  |  | 
|  | pub(crate) fn meta_item(p: &mut Parser<'_>) { | 
|  | let m = p.start(); | 
|  | attributes::meta(p); | 
|  | if p.at(EOF) { | 
|  | m.abandon(p); | 
|  | return; | 
|  | } | 
|  | while !p.at(EOF) { | 
|  | p.bump_any(); | 
|  | } | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn reparser( | 
|  | node: SyntaxKind, | 
|  | first_child: Option<SyntaxKind>, | 
|  | parent: Option<SyntaxKind>, | 
|  | ) -> Option<fn(&mut Parser<'_>)> { | 
|  | let res = match node { | 
|  | BLOCK_EXPR => expressions::block_expr, | 
|  | RECORD_FIELD_LIST => items::record_field_list, | 
|  | RECORD_EXPR_FIELD_LIST => items::record_expr_field_list, | 
|  | VARIANT_LIST => items::variant_list, | 
|  | MATCH_ARM_LIST => items::match_arm_list, | 
|  | USE_TREE_LIST => items::use_tree_list, | 
|  | EXTERN_ITEM_LIST => items::extern_item_list, | 
|  | TOKEN_TREE if first_child? == T!['{'] => items::token_tree, | 
|  | ASSOC_ITEM_LIST => match parent? { | 
|  | IMPL | TRAIT => items::assoc_item_list, | 
|  | _ => return None, | 
|  | }, | 
|  | ITEM_LIST => items::item_list, | 
|  | _ => return None, | 
|  | }; | 
|  | Some(res) | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy, PartialEq, Eq)] | 
|  | enum BlockLike { | 
|  | Block, | 
|  | NotBlock, | 
|  | } | 
|  |  | 
|  | impl BlockLike { | 
|  | fn is_block(self) -> bool { | 
|  | self == BlockLike::Block | 
|  | } | 
|  |  | 
|  | fn is_blocklike(kind: SyntaxKind) -> bool { | 
|  | matches!(kind, BLOCK_EXPR | IF_EXPR | WHILE_EXPR | FOR_EXPR | LOOP_EXPR | MATCH_EXPR) | 
|  | } | 
|  | } | 
|  |  | 
|  | const VISIBILITY_FIRST: TokenSet = TokenSet::new(&[T![pub]]); | 
|  |  | 
|  | fn opt_visibility(p: &mut Parser<'_>, in_tuple_field: bool) -> bool { | 
|  | if !p.at(T![pub]) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | let m = p.start(); | 
|  | p.bump(T![pub]); | 
|  | if p.at(T!['(']) { | 
|  | match p.nth(1) { | 
|  | // test crate_visibility | 
|  | // pub(crate) struct S; | 
|  | // pub(self) struct S; | 
|  | // pub(super) struct S; | 
|  |  | 
|  | // test_err crate_visibility_empty_recover | 
|  | // pub() struct S; | 
|  |  | 
|  | // test pub_parens_typepath | 
|  | // struct B(pub (super::A)); | 
|  | // struct B(pub (crate::A,)); | 
|  | T![crate] | T![self] | T![super] | T![ident] | T![')'] if p.nth(2) != T![:] => { | 
|  | // If we are in a tuple struct, then the parens following `pub` | 
|  | // might be an tuple field, not part of the visibility. So in that | 
|  | // case we don't want to consume an identifier. | 
|  |  | 
|  | // test pub_tuple_field | 
|  | // struct MyStruct(pub (u32, u32)); | 
|  | // struct MyStruct(pub (u32)); | 
|  | // struct MyStruct(pub ()); | 
|  | if !(in_tuple_field && matches!(p.nth(1), T![ident] | T![')'])) { | 
|  | p.bump(T!['(']); | 
|  | paths::vis_path(p); | 
|  | p.expect(T![')']); | 
|  | } | 
|  | } | 
|  | // test crate_visibility_in | 
|  | // pub(in super::A) struct S; | 
|  | // pub(in crate) struct S; | 
|  | T![in] => { | 
|  | p.bump(T!['(']); | 
|  | p.bump(T![in]); | 
|  | paths::vis_path(p); | 
|  | p.expect(T![')']); | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | m.complete(p, VISIBILITY); | 
|  | true | 
|  | } | 
|  |  | 
|  | fn opt_rename(p: &mut Parser<'_>) { | 
|  | if p.at(T![as]) { | 
|  | let m = p.start(); | 
|  | p.bump(T![as]); | 
|  | if !p.eat(T![_]) { | 
|  | name(p); | 
|  | } | 
|  | m.complete(p, RENAME); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn abi(p: &mut Parser<'_>) { | 
|  | assert!(p.at(T![extern])); | 
|  | let abi = p.start(); | 
|  | p.bump(T![extern]); | 
|  | p.eat(STRING); | 
|  | abi.complete(p, ABI); | 
|  | } | 
|  |  | 
|  | fn opt_ret_type(p: &mut Parser<'_>) -> bool { | 
|  | if p.at(T![->]) { | 
|  | let m = p.start(); | 
|  | p.bump(T![->]); | 
|  | types::type_no_bounds(p); | 
|  | m.complete(p, RET_TYPE); | 
|  | true | 
|  | } else { | 
|  | false | 
|  | } | 
|  | } | 
|  |  | 
|  | fn name_r(p: &mut Parser<'_>, recovery: TokenSet) { | 
|  | if p.at(IDENT) { | 
|  | let m = p.start(); | 
|  | p.bump(IDENT); | 
|  | m.complete(p, NAME); | 
|  | } else { | 
|  | p.err_recover("expected a name", recovery); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn name(p: &mut Parser<'_>) { | 
|  | name_r(p, TokenSet::EMPTY); | 
|  | } | 
|  |  | 
|  | fn name_ref_or_self(p: &mut Parser<'_>) { | 
|  | if matches!(p.current(), T![ident] | T![self]) { | 
|  | let m = p.start(); | 
|  | p.bump_any(); | 
|  | m.complete(p, NAME_REF); | 
|  | } else { | 
|  | p.err_and_bump("expected identifier or `self`"); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn name_ref_or_upper_self(p: &mut Parser<'_>) { | 
|  | if matches!(p.current(), T![ident] | T![Self]) { | 
|  | let m = p.start(); | 
|  | p.bump_any(); | 
|  | m.complete(p, NAME_REF); | 
|  | } else { | 
|  | p.err_and_bump("expected identifier or `Self`"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const PATH_NAME_REF_KINDS: TokenSet = | 
|  | TokenSet::new(&[IDENT, T![self], T![super], T![crate], T![Self]]); | 
|  |  | 
|  | fn name_ref_mod_path(p: &mut Parser<'_>) { | 
|  | if p.at_ts(PATH_NAME_REF_KINDS) { | 
|  | let m = p.start(); | 
|  | p.bump_any(); | 
|  | m.complete(p, NAME_REF); | 
|  | } else { | 
|  | p.err_and_bump("expected identifier, `self`, `super`, `crate`, or `Self`"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const PATH_NAME_REF_OR_INDEX_KINDS: TokenSet = | 
|  | PATH_NAME_REF_KINDS.union(TokenSet::new(&[INT_NUMBER])); | 
|  |  | 
|  | fn name_ref_mod_path_or_index(p: &mut Parser<'_>) { | 
|  | if p.at_ts(PATH_NAME_REF_OR_INDEX_KINDS) { | 
|  | let m = p.start(); | 
|  | p.bump_any(); | 
|  | m.complete(p, NAME_REF); | 
|  | } else { | 
|  | p.err_and_bump("expected integer, identifier, `self`, `super`, `crate`, or `Self`"); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn name_ref_or_index(p: &mut Parser<'_>) { | 
|  | assert!(p.at(IDENT) || p.at(INT_NUMBER)); | 
|  | let m = p.start(); | 
|  | p.bump_any(); | 
|  | m.complete(p, NAME_REF); | 
|  | } | 
|  |  | 
|  | fn lifetime(p: &mut Parser<'_>) { | 
|  | assert!(p.at(LIFETIME_IDENT)); | 
|  | let m = p.start(); | 
|  | p.bump(LIFETIME_IDENT); | 
|  | m.complete(p, LIFETIME); | 
|  | } | 
|  |  | 
|  | fn error_block(p: &mut Parser<'_>, message: &str) { | 
|  | assert!(p.at(T!['{'])); | 
|  | let m = p.start(); | 
|  | p.error(message); | 
|  | p.bump(T!['{']); | 
|  | expressions::expr_block_contents(p); | 
|  | p.eat(T!['}']); | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  |  | 
|  | // test_err top_level_let | 
|  | // let ref foo: fn() = 1 + 3; | 
|  | fn error_let_stmt(p: &mut Parser<'_>, message: &str) { | 
|  | assert!(p.at(T![let])); | 
|  | let m = p.start(); | 
|  | p.error(message); | 
|  | expressions::let_stmt(p, expressions::Semicolon::Optional); | 
|  | m.complete(p, ERROR); | 
|  | } | 
|  |  | 
|  | /// The `parser` passed this is required to at least consume one token if it returns `true`. | 
|  | /// If the `parser` returns false, parsing will stop. | 
|  | fn delimited( | 
|  | p: &mut Parser<'_>, | 
|  | bra: SyntaxKind, | 
|  | ket: SyntaxKind, | 
|  | delim: SyntaxKind, | 
|  | unexpected_delim_message: impl Fn() -> String, | 
|  | first_set: TokenSet, | 
|  | mut parser: impl FnMut(&mut Parser<'_>) -> bool, | 
|  | ) { | 
|  | p.bump(bra); | 
|  | while !p.at(ket) && !p.at(EOF) { | 
|  | if p.at(delim) { | 
|  | // Recover if an argument is missing and only got a delimiter, | 
|  | // e.g. `(a, , b)`. | 
|  |  | 
|  | // Wrap the erroneous delimiter in an error node so that fixup logic gets rid of it. | 
|  | // FIXME: Ideally this should be handled in fixup in a structured way, but our list | 
|  | // nodes currently have no concept of a missing node between two delimiters. | 
|  | // So doing it this way is easier. | 
|  | let m = p.start(); | 
|  | p.error(unexpected_delim_message()); | 
|  | p.bump(delim); | 
|  | m.complete(p, ERROR); | 
|  | continue; | 
|  | } | 
|  | if !parser(p) { | 
|  | break; | 
|  | } | 
|  | if !p.eat(delim) { | 
|  | if p.at_ts(first_set) { | 
|  | p.error(format!("expected {delim:?}")); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | p.expect(ket); | 
|  | } |