| //! Type inference for expressions. |
| |
| use std::{ |
| iter::{repeat, repeat_with}, |
| mem, |
| }; |
| |
| use chalk_ir::{cast::Cast, fold::Shift, DebruijnIndex, Mutability, TyVariableKind}; |
| use either::Either; |
| use hir_def::{ |
| hir::{ |
| ArithOp, Array, BinaryOp, ClosureKind, Expr, ExprId, LabelId, Literal, Statement, UnaryOp, |
| }, |
| lang_item::{LangItem, LangItemTarget}, |
| path::{GenericArg, GenericArgs, Path}, |
| BlockId, FieldId, GenericDefId, GenericParamId, ItemContainerId, Lookup, TupleFieldId, TupleId, |
| }; |
| use hir_expand::name::Name; |
| use intern::sym; |
| use stdx::always; |
| use syntax::ast::RangeOp; |
| |
| use crate::{ |
| autoderef::{builtin_deref, deref_by_trait, Autoderef}, |
| consteval, |
| db::{InternedClosure, InternedCoroutine}, |
| error_lifetime, |
| generics::{generics, Generics}, |
| infer::{ |
| coerce::{CoerceMany, CoercionCause}, |
| find_continuable, |
| pat::contains_explicit_ref_binding, |
| BreakableKind, |
| }, |
| lang_items::lang_items_for_bin_op, |
| lower::{ |
| const_or_path_to_chalk, generic_arg_to_chalk, lower_to_chalk_mutability, ParamLoweringMode, |
| }, |
| mapping::{from_chalk, ToChalk}, |
| method_resolution::{self, VisibleFromModule}, |
| primitive::{self, UintTy}, |
| static_lifetime, to_chalk_trait_id, |
| traits::FnTrait, |
| Adjust, Adjustment, AdtId, AutoBorrow, Binders, CallableDefId, FnAbi, FnPointer, FnSig, |
| FnSubst, Interner, Rawness, Scalar, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, |
| TyExt, TyKind, |
| }; |
| |
| use super::{ |
| cast::CastCheck, coerce::auto_deref_adjust_steps, find_breakable, BreakableContext, Diverges, |
| Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch, |
| }; |
| |
| impl InferenceContext<'_> { |
| pub(crate) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty { |
| let ty = self.infer_expr_inner(tgt_expr, expected); |
| if let Some(expected_ty) = expected.only_has_type(&mut self.table) { |
| let could_unify = self.unify(&ty, &expected_ty); |
| if !could_unify { |
| self.result.type_mismatches.insert( |
| tgt_expr.into(), |
| TypeMismatch { expected: expected_ty, actual: ty.clone() }, |
| ); |
| } |
| } |
| ty |
| } |
| |
| pub(crate) fn infer_expr_no_expect(&mut self, tgt_expr: ExprId) -> Ty { |
| self.infer_expr_inner(tgt_expr, &Expectation::None) |
| } |
| |
| /// Infer type of expression with possibly implicit coerce to the expected type. |
| /// Return the type after possible coercion. |
| pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty { |
| let ty = self.infer_expr_inner(expr, expected); |
| if let Some(target) = expected.only_has_type(&mut self.table) { |
| match self.coerce(Some(expr), &ty, &target) { |
| Ok(res) => res, |
| Err(_) => { |
| self.result.type_mismatches.insert( |
| expr.into(), |
| TypeMismatch { expected: target.clone(), actual: ty.clone() }, |
| ); |
| target |
| } |
| } |
| } else { |
| ty |
| } |
| } |
| |
| fn infer_expr_coerce_never(&mut self, expr: ExprId, expected: &Expectation) -> Ty { |
| let ty = self.infer_expr_inner(expr, expected); |
| // While we don't allow *arbitrary* coercions here, we *do* allow |
| // coercions from `!` to `expected`. |
| if ty.is_never() { |
| if let Some(adjustments) = self.result.expr_adjustments.get(&expr) { |
| return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &**adjustments { |
| target.clone() |
| } else { |
| self.err_ty() |
| }; |
| } |
| |
| if let Some(target) = expected.only_has_type(&mut self.table) { |
| self.coerce(Some(expr), &ty, &target) |
| .expect("never-to-any coercion should always succeed") |
| } else { |
| ty |
| } |
| } else { |
| if let Some(expected_ty) = expected.only_has_type(&mut self.table) { |
| let could_unify = self.unify(&ty, &expected_ty); |
| if !could_unify { |
| self.result.type_mismatches.insert( |
| expr.into(), |
| TypeMismatch { expected: expected_ty, actual: ty.clone() }, |
| ); |
| } |
| } |
| ty |
| } |
| } |
| |
| fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty { |
| self.db.unwind_if_cancelled(); |
| |
| let ty = match &self.body[tgt_expr] { |
| Expr::Missing => self.err_ty(), |
| &Expr::If { condition, then_branch, else_branch } => { |
| let expected = &expected.adjust_for_branches(&mut self.table); |
| self.infer_expr_coerce_never( |
| condition, |
| &Expectation::HasType(self.result.standard_types.bool_.clone()), |
| ); |
| |
| let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| |
| let then_ty = self.infer_expr_inner(then_branch, expected); |
| let then_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| let mut coerce = CoerceMany::new(expected.coercion_target_type(&mut self.table)); |
| coerce.coerce(self, Some(then_branch), &then_ty, CoercionCause::Expr(then_branch)); |
| match else_branch { |
| Some(else_branch) => { |
| let else_ty = self.infer_expr_inner(else_branch, expected); |
| let else_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| coerce.coerce( |
| self, |
| Some(else_branch), |
| &else_ty, |
| CoercionCause::Expr(else_branch), |
| ); |
| self.diverges = condition_diverges | then_diverges & else_diverges; |
| } |
| None => { |
| coerce.coerce_forced_unit(self, CoercionCause::Expr(tgt_expr)); |
| self.diverges = condition_diverges; |
| } |
| } |
| |
| coerce.complete(self) |
| } |
| &Expr::Let { pat, expr } => { |
| let input_ty = self.infer_expr(expr, &Expectation::none()); |
| self.infer_top_pat(pat, &input_ty); |
| self.result.standard_types.bool_.clone() |
| } |
| Expr::Block { statements, tail, label, id } => { |
| self.infer_block(tgt_expr, *id, statements, *tail, *label, expected) |
| } |
| Expr::Unsafe { id, statements, tail } => { |
| self.infer_block(tgt_expr, *id, statements, *tail, None, expected) |
| } |
| Expr::Const(id) => { |
| self.with_breakable_ctx(BreakableKind::Border, None, None, |this| { |
| let loc = this.db.lookup_intern_anonymous_const(*id); |
| this.infer_expr(loc.root, expected) |
| }) |
| .1 |
| } |
| Expr::Async { id, statements, tail } => { |
| self.infer_async_block(tgt_expr, id, statements, tail) |
| } |
| &Expr::Loop { body, label } => { |
| // FIXME: should be: |
| // let ty = expected.coercion_target_type(&mut self.table); |
| let ty = self.table.new_type_var(); |
| let (breaks, ()) = |
| self.with_breakable_ctx(BreakableKind::Loop, Some(ty), label, |this| { |
| this.infer_expr(body, &Expectation::HasType(TyBuilder::unit())); |
| }); |
| |
| match breaks { |
| Some(breaks) => { |
| self.diverges = Diverges::Maybe; |
| breaks |
| } |
| None => self.result.standard_types.never.clone(), |
| } |
| } |
| Expr::Closure { body, args, ret_type, arg_types, closure_kind, capture_by: _ } => { |
| assert_eq!(args.len(), arg_types.len()); |
| |
| let mut sig_tys = Vec::with_capacity(arg_types.len() + 1); |
| |
| // collect explicitly written argument types |
| for arg_type in arg_types.iter() { |
| let arg_ty = match arg_type { |
| Some(type_ref) => self.make_ty(type_ref), |
| None => self.table.new_type_var(), |
| }; |
| sig_tys.push(arg_ty); |
| } |
| |
| // add return type |
| let ret_ty = match ret_type { |
| Some(type_ref) => self.make_ty(type_ref), |
| None => self.table.new_type_var(), |
| }; |
| if let ClosureKind::Async = closure_kind { |
| sig_tys.push(self.lower_async_block_type_impl_trait(ret_ty.clone(), *body)); |
| } else { |
| sig_tys.push(ret_ty.clone()); |
| } |
| |
| let sig_ty = TyKind::Function(FnPointer { |
| num_binders: 0, |
| sig: FnSig { |
| abi: FnAbi::RustCall, |
| safety: chalk_ir::Safety::Safe, |
| variadic: false, |
| }, |
| substitution: FnSubst( |
| Substitution::from_iter(Interner, sig_tys.iter().cloned()) |
| .shifted_in(Interner), |
| ), |
| }) |
| .intern(Interner); |
| |
| let (id, ty, resume_yield_tys) = match closure_kind { |
| ClosureKind::Coroutine(_) => { |
| // FIXME: report error when there are more than 1 parameter. |
| let resume_ty = match sig_tys.first() { |
| // When `sig_tys.len() == 1` the first type is the return type, not the |
| // first parameter type. |
| Some(ty) if sig_tys.len() > 1 => ty.clone(), |
| _ => self.result.standard_types.unit.clone(), |
| }; |
| let yield_ty = self.table.new_type_var(); |
| |
| let subst = TyBuilder::subst_for_coroutine(self.db, self.owner) |
| .push(resume_ty.clone()) |
| .push(yield_ty.clone()) |
| .push(ret_ty.clone()) |
| .build(); |
| |
| let coroutine_id = self |
| .db |
| .intern_coroutine(InternedCoroutine(self.owner, tgt_expr)) |
| .into(); |
| let coroutine_ty = TyKind::Coroutine(coroutine_id, subst).intern(Interner); |
| |
| (None, coroutine_ty, Some((resume_ty, yield_ty))) |
| } |
| ClosureKind::Closure | ClosureKind::Async => { |
| let closure_id = |
| self.db.intern_closure(InternedClosure(self.owner, tgt_expr)).into(); |
| let closure_ty = TyKind::Closure( |
| closure_id, |
| TyBuilder::subst_for_closure(self.db, self.owner, sig_ty.clone()), |
| ) |
| .intern(Interner); |
| self.deferred_closures.entry(closure_id).or_default(); |
| if let Some(c) = self.current_closure { |
| self.closure_dependencies.entry(c).or_default().push(closure_id); |
| } |
| (Some(closure_id), closure_ty, None) |
| } |
| }; |
| |
| // Eagerly try to relate the closure type with the expected |
| // type, otherwise we often won't have enough information to |
| // infer the body. |
| self.deduce_closure_type_from_expectations(tgt_expr, &ty, &sig_ty, expected); |
| |
| // Now go through the argument patterns |
| for (arg_pat, arg_ty) in args.iter().zip(&sig_tys) { |
| self.infer_top_pat(*arg_pat, arg_ty); |
| } |
| |
| // FIXME: lift these out into a struct |
| let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| let prev_closure = mem::replace(&mut self.current_closure, id); |
| let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone()); |
| let prev_ret_coercion = |
| mem::replace(&mut self.return_coercion, Some(CoerceMany::new(ret_ty))); |
| let prev_resume_yield_tys = |
| mem::replace(&mut self.resume_yield_tys, resume_yield_tys); |
| |
| self.with_breakable_ctx(BreakableKind::Border, None, None, |this| { |
| this.infer_return(*body); |
| }); |
| |
| self.diverges = prev_diverges; |
| self.return_ty = prev_ret_ty; |
| self.return_coercion = prev_ret_coercion; |
| self.current_closure = prev_closure; |
| self.resume_yield_tys = prev_resume_yield_tys; |
| |
| ty |
| } |
| Expr::Call { callee, args, .. } => { |
| let callee_ty = self.infer_expr(*callee, &Expectation::none()); |
| let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone(), false); |
| let (res, derefed_callee) = loop { |
| let Some((callee_deref_ty, _)) = derefs.next() else { |
| break (None, callee_ty.clone()); |
| }; |
| if let Some(res) = derefs.table.callable_sig(&callee_deref_ty, args.len()) { |
| break (Some(res), callee_deref_ty); |
| } |
| }; |
| // if the function is unresolved, we use is_varargs=true to |
| // suppress the arg count diagnostic here |
| let is_varargs = |
| derefed_callee.callable_sig(self.db).map_or(false, |sig| sig.is_varargs) |
| || res.is_none(); |
| let (param_tys, ret_ty) = match res { |
| Some((func, params, ret_ty)) => { |
| let mut adjustments = auto_deref_adjust_steps(&derefs); |
| if let TyKind::Closure(c, _) = |
| self.table.resolve_completely(callee_ty.clone()).kind(Interner) |
| { |
| if let Some(par) = self.current_closure { |
| self.closure_dependencies.entry(par).or_default().push(*c); |
| } |
| self.deferred_closures.entry(*c).or_default().push(( |
| derefed_callee.clone(), |
| callee_ty.clone(), |
| params.clone(), |
| tgt_expr, |
| )); |
| } |
| if let Some(fn_x) = func { |
| self.write_fn_trait_method_resolution( |
| fn_x, |
| &derefed_callee, |
| &mut adjustments, |
| &callee_ty, |
| ¶ms, |
| tgt_expr, |
| ); |
| } |
| self.write_expr_adj(*callee, adjustments); |
| (params, ret_ty) |
| } |
| None => { |
| self.result.diagnostics.push(InferenceDiagnostic::ExpectedFunction { |
| call_expr: tgt_expr, |
| found: callee_ty.clone(), |
| }); |
| (Vec::new(), self.err_ty()) |
| } |
| }; |
| let indices_to_skip = self.check_legacy_const_generics(derefed_callee, args); |
| self.register_obligations_for_call(&callee_ty); |
| |
| let expected_inputs = self.expected_inputs_for_expected_output( |
| expected, |
| ret_ty.clone(), |
| param_tys.clone(), |
| ); |
| |
| self.check_call_arguments( |
| tgt_expr, |
| args, |
| &expected_inputs, |
| ¶m_tys, |
| &indices_to_skip, |
| is_varargs, |
| ); |
| self.normalize_associated_types_in(ret_ty) |
| } |
| Expr::MethodCall { receiver, args, method_name, generic_args } => self |
| .infer_method_call( |
| tgt_expr, |
| *receiver, |
| args, |
| method_name, |
| generic_args.as_deref(), |
| expected, |
| ), |
| Expr::Match { expr, arms } => { |
| let input_ty = self.infer_expr(*expr, &Expectation::none()); |
| |
| if arms.is_empty() { |
| self.diverges = Diverges::Always; |
| self.result.standard_types.never.clone() |
| } else { |
| let matchee_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| let mut all_arms_diverge = Diverges::Always; |
| for arm in arms.iter() { |
| let input_ty = self.resolve_ty_shallow(&input_ty); |
| self.infer_top_pat(arm.pat, &input_ty); |
| } |
| |
| let expected = expected.adjust_for_branches(&mut self.table); |
| let result_ty = match &expected { |
| // We don't coerce to `()` so that if the match expression is a |
| // statement it's branches can have any consistent type. |
| Expectation::HasType(ty) if *ty != self.result.standard_types.unit => { |
| ty.clone() |
| } |
| _ => self.table.new_type_var(), |
| }; |
| let mut coerce = CoerceMany::new(result_ty); |
| |
| for arm in arms.iter() { |
| if let Some(guard_expr) = arm.guard { |
| self.diverges = Diverges::Maybe; |
| self.infer_expr_coerce_never( |
| guard_expr, |
| &Expectation::HasType(self.result.standard_types.bool_.clone()), |
| ); |
| } |
| self.diverges = Diverges::Maybe; |
| |
| let arm_ty = self.infer_expr_inner(arm.expr, &expected); |
| all_arms_diverge &= self.diverges; |
| coerce.coerce(self, Some(arm.expr), &arm_ty, CoercionCause::Expr(arm.expr)); |
| } |
| |
| self.diverges = matchee_diverges | all_arms_diverge; |
| |
| coerce.complete(self) |
| } |
| } |
| Expr::Path(p) => { |
| let g = self.resolver.update_to_inner_scope(self.db.upcast(), self.owner, tgt_expr); |
| let ty = match self.infer_path(p, tgt_expr.into()) { |
| Some(ty) => ty, |
| None => { |
| if matches!(p, Path::Normal { mod_path, .. } if mod_path.is_ident() || mod_path.is_self()) |
| { |
| self.push_diagnostic(InferenceDiagnostic::UnresolvedIdent { |
| expr: tgt_expr, |
| }); |
| } |
| self.err_ty() |
| } |
| }; |
| self.resolver.reset_to_guard(g); |
| ty |
| } |
| &Expr::Continue { label } => { |
| if find_continuable(&mut self.breakables, label).is_none() { |
| self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop { |
| expr: tgt_expr, |
| is_break: false, |
| bad_value_break: false, |
| }); |
| }; |
| self.result.standard_types.never.clone() |
| } |
| &Expr::Break { expr, label } => { |
| let val_ty = if let Some(expr) = expr { |
| let opt_coerce_to = match find_breakable(&mut self.breakables, label) { |
| Some(ctxt) => match &ctxt.coerce { |
| Some(coerce) => coerce.expected_ty(), |
| None => { |
| self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop { |
| expr: tgt_expr, |
| is_break: true, |
| bad_value_break: true, |
| }); |
| self.err_ty() |
| } |
| }, |
| None => self.err_ty(), |
| }; |
| self.infer_expr_inner(expr, &Expectation::HasType(opt_coerce_to)) |
| } else { |
| TyBuilder::unit() |
| }; |
| |
| match find_breakable(&mut self.breakables, label) { |
| Some(ctxt) => match ctxt.coerce.take() { |
| Some(mut coerce) => { |
| let cause = match expr { |
| Some(expr) => CoercionCause::Expr(expr), |
| None => CoercionCause::Expr(tgt_expr), |
| }; |
| coerce.coerce(self, expr, &val_ty, cause); |
| |
| // Avoiding borrowck |
| let ctxt = find_breakable(&mut self.breakables, label) |
| .expect("breakable stack changed during coercion"); |
| ctxt.may_break = true; |
| ctxt.coerce = Some(coerce); |
| } |
| None => ctxt.may_break = true, |
| }, |
| None => { |
| self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop { |
| expr: tgt_expr, |
| is_break: true, |
| bad_value_break: false, |
| }); |
| } |
| } |
| self.result.standard_types.never.clone() |
| } |
| &Expr::Return { expr } => self.infer_expr_return(tgt_expr, expr), |
| &Expr::Become { expr } => self.infer_expr_become(expr), |
| Expr::Yield { expr } => { |
| if let Some((resume_ty, yield_ty)) = self.resume_yield_tys.clone() { |
| if let Some(expr) = expr { |
| self.infer_expr_coerce(*expr, &Expectation::has_type(yield_ty)); |
| } else { |
| let unit = self.result.standard_types.unit.clone(); |
| let _ = self.coerce(Some(tgt_expr), &unit, &yield_ty); |
| } |
| resume_ty |
| } else { |
| // FIXME: report error (yield expr in non-coroutine) |
| self.result.standard_types.unknown.clone() |
| } |
| } |
| Expr::Yeet { expr } => { |
| if let &Some(expr) = expr { |
| self.infer_expr_no_expect(expr); |
| } |
| self.result.standard_types.never.clone() |
| } |
| Expr::RecordLit { path, fields, spread, .. } => { |
| let (ty, def_id) = self.resolve_variant(path.as_deref(), false); |
| |
| if let Some(t) = expected.only_has_type(&mut self.table) { |
| self.unify(&ty, &t); |
| } |
| |
| let substs = ty |
| .as_adt() |
| .map(|(_, s)| s.clone()) |
| .unwrap_or_else(|| Substitution::empty(Interner)); |
| if let Some(variant) = def_id { |
| self.write_variant_resolution(tgt_expr.into(), variant); |
| } |
| match def_id { |
| _ if fields.is_empty() => {} |
| Some(def) => { |
| let field_types = self.db.field_types(def); |
| let variant_data = def.variant_data(self.db.upcast()); |
| let visibilities = self.db.field_visibilities(def); |
| for field in fields.iter() { |
| let field_def = { |
| match variant_data.field(&field.name) { |
| Some(local_id) => { |
| if !visibilities[local_id].is_visible_from( |
| self.db.upcast(), |
| self.resolver.module(), |
| ) { |
| self.push_diagnostic( |
| InferenceDiagnostic::NoSuchField { |
| field: field.expr.into(), |
| private: true, |
| variant: def, |
| }, |
| ); |
| } |
| Some(local_id) |
| } |
| None => { |
| self.push_diagnostic(InferenceDiagnostic::NoSuchField { |
| field: field.expr.into(), |
| private: false, |
| variant: def, |
| }); |
| None |
| } |
| } |
| }; |
| let field_ty = field_def.map_or(self.err_ty(), |it| { |
| field_types[it].clone().substitute(Interner, &substs) |
| }); |
| |
| // Field type might have some unknown types |
| // FIXME: we may want to emit a single type variable for all instance of type fields? |
| let field_ty = self.insert_type_vars(field_ty); |
| self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty)); |
| } |
| } |
| None => { |
| for field in fields.iter() { |
| self.infer_expr_coerce(field.expr, &Expectation::None); |
| } |
| } |
| } |
| if let Some(expr) = spread { |
| self.infer_expr(*expr, &Expectation::has_type(ty.clone())); |
| } |
| ty |
| } |
| Expr::Field { expr, name } => self.infer_field_access(tgt_expr, *expr, name, expected), |
| Expr::Await { expr } => { |
| let inner_ty = self.infer_expr_inner(*expr, &Expectation::none()); |
| self.resolve_associated_type(inner_ty, self.resolve_future_future_output()) |
| } |
| Expr::Cast { expr, type_ref } => { |
| let cast_ty = self.make_ty(type_ref); |
| let expr_ty = self.infer_expr(*expr, &Expectation::Castable(cast_ty.clone())); |
| self.deferred_cast_checks.push(CastCheck::new(expr_ty, cast_ty.clone())); |
| cast_ty |
| } |
| Expr::Ref { expr, rawness, mutability } => { |
| let mutability = lower_to_chalk_mutability(*mutability); |
| let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected |
| .only_has_type(&mut self.table) |
| .as_ref() |
| .and_then(|t| t.as_reference_or_ptr()) |
| { |
| if exp_mutability == Mutability::Mut && mutability == Mutability::Not { |
| // FIXME: record type error - expected mut reference but found shared ref, |
| // which cannot be coerced |
| } |
| if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr { |
| // FIXME: record type error - expected reference but found ptr, |
| // which cannot be coerced |
| } |
| Expectation::rvalue_hint(self, Ty::clone(exp_inner)) |
| } else { |
| Expectation::none() |
| }; |
| let inner_ty = self.infer_expr_inner(*expr, &expectation); |
| match rawness { |
| Rawness::RawPtr => TyKind::Raw(mutability, inner_ty), |
| Rawness::Ref => TyKind::Ref(mutability, error_lifetime(), inner_ty), |
| } |
| .intern(Interner) |
| } |
| &Expr::Box { expr } => self.infer_expr_box(expr, expected), |
| Expr::UnaryOp { expr, op } => { |
| let inner_ty = self.infer_expr_inner(*expr, &Expectation::none()); |
| let inner_ty = self.resolve_ty_shallow(&inner_ty); |
| // FIXME: Note down method resolution her |
| match op { |
| UnaryOp::Deref => { |
| if let Some(deref_trait) = self.resolve_lang_trait(LangItem::Deref) { |
| if let Some(deref_fn) = self |
| .db |
| .trait_data(deref_trait) |
| .method_by_name(&Name::new_symbol_root(sym::deref.clone())) |
| { |
| // FIXME: this is wrong in multiple ways, subst is empty, and we emit it even for builtin deref (note that |
| // the mutability is not wrong, and will be fixed in `self.infer_mut`). |
| self.write_method_resolution( |
| tgt_expr, |
| deref_fn, |
| Substitution::empty(Interner), |
| ); |
| } |
| } |
| if let Some(derefed) = builtin_deref(self.table.db, &inner_ty, true) { |
| self.resolve_ty_shallow(derefed) |
| } else { |
| deref_by_trait(&mut self.table, inner_ty) |
| .unwrap_or_else(|| self.err_ty()) |
| } |
| } |
| UnaryOp::Neg => { |
| match inner_ty.kind(Interner) { |
| // Fast path for builtins |
| TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) |
| | TyKind::InferenceVar( |
| _, |
| TyVariableKind::Integer | TyVariableKind::Float, |
| ) => inner_ty, |
| // Otherwise we resolve via the std::ops::Neg trait |
| _ => self |
| .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()), |
| } |
| } |
| UnaryOp::Not => { |
| match inner_ty.kind(Interner) { |
| // Fast path for builtins |
| TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_)) |
| | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty, |
| // Otherwise we resolve via the std::ops::Not trait |
| _ => self |
| .resolve_associated_type(inner_ty, self.resolve_ops_not_output()), |
| } |
| } |
| } |
| } |
| Expr::BinaryOp { lhs, rhs, op } => match op { |
| Some(BinaryOp::Assignment { op: None }) => { |
| let lhs = *lhs; |
| let is_ordinary = match &self.body[lhs] { |
| Expr::Array(_) |
| | Expr::RecordLit { .. } |
| | Expr::Tuple { .. } |
| | Expr::Underscore => false, |
| Expr::Call { callee, .. } => !matches!(&self.body[*callee], Expr::Path(_)), |
| _ => true, |
| }; |
| |
| // In ordinary (non-destructuring) assignments, the type of |
| // `lhs` must be inferred first so that the ADT fields |
| // instantiations in RHS can be coerced to it. Note that this |
| // cannot happen in destructuring assignments because of how |
| // they are desugared. |
| if is_ordinary { |
| let lhs_ty = self.infer_expr(lhs, &Expectation::none()); |
| self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty)); |
| } else { |
| let rhs_ty = self.infer_expr(*rhs, &Expectation::none()); |
| self.infer_assignee_expr(lhs, &rhs_ty); |
| } |
| self.result.standard_types.unit.clone() |
| } |
| Some(BinaryOp::LogicOp(_)) => { |
| let bool_ty = self.result.standard_types.bool_.clone(); |
| self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone())); |
| let lhs_diverges = self.diverges; |
| self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone())); |
| // Depending on the LHS' value, the RHS can never execute. |
| self.diverges = lhs_diverges; |
| bool_ty |
| } |
| Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr), |
| _ => self.err_ty(), |
| }, |
| Expr::Range { lhs, rhs, range_type } => { |
| let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none())); |
| let rhs_expect = lhs_ty |
| .as_ref() |
| .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone())); |
| let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect)); |
| match (range_type, lhs_ty, rhs_ty) { |
| (RangeOp::Exclusive, None, None) => match self.resolve_range_full() { |
| Some(adt) => TyBuilder::adt(self.db, adt).build(), |
| None => self.err_ty(), |
| }, |
| (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() { |
| Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(), |
| None => self.err_ty(), |
| }, |
| (RangeOp::Inclusive, None, Some(ty)) => { |
| match self.resolve_range_to_inclusive() { |
| Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(), |
| None => self.err_ty(), |
| } |
| } |
| (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() { |
| Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(), |
| None => self.err_ty(), |
| }, |
| (RangeOp::Inclusive, Some(_), Some(ty)) => { |
| match self.resolve_range_inclusive() { |
| Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(), |
| None => self.err_ty(), |
| } |
| } |
| (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() { |
| Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(), |
| None => self.err_ty(), |
| }, |
| (RangeOp::Inclusive, _, None) => self.err_ty(), |
| } |
| } |
| Expr::Index { base, index, is_assignee_expr } => { |
| let base_ty = self.infer_expr_inner(*base, &Expectation::none()); |
| let index_ty = self.infer_expr(*index, &Expectation::none()); |
| |
| if let Some(index_trait) = self.resolve_lang_trait(LangItem::Index) { |
| let canonicalized = self.canonicalize(base_ty.clone()); |
| let receiver_adjustments = method_resolution::resolve_indexing_op( |
| self.db, |
| self.table.trait_env.clone(), |
| canonicalized, |
| index_trait, |
| ); |
| let (self_ty, mut adj) = receiver_adjustments |
| .map_or((self.err_ty(), Vec::new()), |adj| { |
| adj.apply(&mut self.table, base_ty) |
| }); |
| // mutability will be fixed up in `InferenceContext::infer_mut`; |
| adj.push(Adjustment::borrow(Mutability::Not, self_ty.clone())); |
| self.write_expr_adj(*base, adj); |
| if let Some(func) = self |
| .db |
| .trait_data(index_trait) |
| .method_by_name(&Name::new_symbol_root(sym::index.clone())) |
| { |
| let substs = TyBuilder::subst_for_def(self.db, index_trait, None) |
| .push(self_ty.clone()) |
| .push(index_ty.clone()) |
| .build(); |
| self.write_method_resolution(tgt_expr, func, substs); |
| } |
| let assoc = self.resolve_ops_index_output(); |
| let res = self.resolve_associated_type_with_params( |
| self_ty.clone(), |
| assoc, |
| &[index_ty.clone().cast(Interner)], |
| ); |
| |
| if *is_assignee_expr { |
| if let Some(index_trait) = self.resolve_lang_trait(LangItem::IndexMut) { |
| let trait_ref = TyBuilder::trait_ref(self.db, index_trait) |
| .push(self_ty) |
| .fill(|_| index_ty.clone().cast(Interner)) |
| .build(); |
| self.push_obligation(trait_ref.cast(Interner)); |
| } |
| } |
| |
| res |
| } else { |
| self.err_ty() |
| } |
| } |
| Expr::Tuple { exprs, .. } => { |
| let mut tys = match expected |
| .only_has_type(&mut self.table) |
| .as_ref() |
| .map(|t| t.kind(Interner)) |
| { |
| Some(TyKind::Tuple(_, substs)) => substs |
| .iter(Interner) |
| .map(|a| a.assert_ty_ref(Interner).clone()) |
| .chain(repeat_with(|| self.table.new_type_var())) |
| .take(exprs.len()) |
| .collect::<Vec<_>>(), |
| _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(), |
| }; |
| |
| for (expr, ty) in exprs.iter().zip(tys.iter_mut()) { |
| self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone())); |
| } |
| |
| TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner) |
| } |
| Expr::Array(array) => self.infer_expr_array(array, expected), |
| Expr::Literal(lit) => match lit { |
| Literal::Bool(..) => self.result.standard_types.bool_.clone(), |
| Literal::String(..) => { |
| TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner)) |
| .intern(Interner) |
| } |
| Literal::ByteString(bs) => { |
| let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner); |
| |
| let len = consteval::usize_const( |
| self.db, |
| Some(bs.len() as u128), |
| self.resolver.krate(), |
| ); |
| |
| let array_type = TyKind::Array(byte_type, len).intern(Interner); |
| TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner) |
| } |
| Literal::CString(..) => TyKind::Ref( |
| Mutability::Not, |
| static_lifetime(), |
| self.resolve_lang_item(LangItem::CStr) |
| .and_then(LangItemTarget::as_struct) |
| .map_or_else( |
| || self.err_ty(), |
| |strukt| { |
| TyKind::Adt(AdtId(strukt.into()), Substitution::empty(Interner)) |
| .intern(Interner) |
| }, |
| ), |
| ) |
| .intern(Interner), |
| Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner), |
| Literal::Int(_v, ty) => match ty { |
| Some(int_ty) => { |
| TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty))) |
| .intern(Interner) |
| } |
| None => self.table.new_integer_var(), |
| }, |
| Literal::Uint(_v, ty) => match ty { |
| Some(int_ty) => { |
| TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty))) |
| .intern(Interner) |
| } |
| None => self.table.new_integer_var(), |
| }, |
| Literal::Float(_v, ty) => match ty { |
| Some(float_ty) => { |
| TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty))) |
| .intern(Interner) |
| } |
| None => self.table.new_float_var(), |
| }, |
| }, |
| Expr::Underscore => { |
| // Underscore expressions may only appear in assignee expressions, |
| // which are handled by `infer_assignee_expr()`. |
| // Any other underscore expression is an error, we render a specialized diagnostic |
| // to let the user know what type is expected though. |
| let expected = expected.to_option(&mut self.table).unwrap_or_else(|| self.err_ty()); |
| self.push_diagnostic(InferenceDiagnostic::TypedHole { |
| expr: tgt_expr, |
| expected: expected.clone(), |
| }); |
| expected |
| } |
| Expr::OffsetOf(_) => TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner), |
| Expr::InlineAsm(it) => { |
| self.infer_expr_no_expect(it.e); |
| self.result.standard_types.unit.clone() |
| } |
| }; |
| // use a new type variable if we got unknown here |
| let ty = self.insert_type_vars_shallow(ty); |
| self.write_expr_ty(tgt_expr, ty.clone()); |
| if self.resolve_ty_shallow(&ty).is_never() { |
| // Any expression that produces a value of type `!` must have diverged |
| self.diverges = Diverges::Always; |
| } |
| ty |
| } |
| |
| fn infer_async_block( |
| &mut self, |
| tgt_expr: ExprId, |
| id: &Option<BlockId>, |
| statements: &[Statement], |
| tail: &Option<ExprId>, |
| ) -> Ty { |
| let ret_ty = self.table.new_type_var(); |
| let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe); |
| let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone()); |
| let prev_ret_coercion = |
| mem::replace(&mut self.return_coercion, Some(CoerceMany::new(ret_ty.clone()))); |
| |
| // FIXME: We should handle async blocks like we handle closures |
| let expected = &Expectation::has_type(ret_ty); |
| let (_, inner_ty) = self.with_breakable_ctx(BreakableKind::Border, None, None, |this| { |
| let ty = this.infer_block(tgt_expr, *id, statements, *tail, None, expected); |
| if let Some(target) = expected.only_has_type(&mut this.table) { |
| match this.coerce(Some(tgt_expr), &ty, &target) { |
| Ok(res) => res, |
| Err(_) => { |
| this.result.type_mismatches.insert( |
| tgt_expr.into(), |
| TypeMismatch { expected: target.clone(), actual: ty.clone() }, |
| ); |
| target |
| } |
| } |
| } else { |
| ty |
| } |
| }); |
| |
| self.diverges = prev_diverges; |
| self.return_ty = prev_ret_ty; |
| self.return_coercion = prev_ret_coercion; |
| |
| self.lower_async_block_type_impl_trait(inner_ty, tgt_expr) |
| } |
| |
| pub(crate) fn lower_async_block_type_impl_trait( |
| &mut self, |
| inner_ty: Ty, |
| tgt_expr: ExprId, |
| ) -> Ty { |
| // Use the first type parameter as the output type of future. |
| // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType> |
| let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, tgt_expr); |
| let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into(); |
| TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty)).intern(Interner) |
| } |
| |
| pub(crate) fn write_fn_trait_method_resolution( |
| &mut self, |
| fn_x: FnTrait, |
| derefed_callee: &Ty, |
| adjustments: &mut Vec<Adjustment>, |
| callee_ty: &Ty, |
| params: &[Ty], |
| tgt_expr: ExprId, |
| ) { |
| match fn_x { |
| FnTrait::FnOnce => (), |
| FnTrait::FnMut => { |
| if let TyKind::Ref(Mutability::Mut, _, inner) = derefed_callee.kind(Interner) { |
| if adjustments |
| .last() |
| .map(|it| matches!(it.kind, Adjust::Borrow(_))) |
| .unwrap_or(true) |
| { |
| // prefer reborrow to move |
| adjustments |
| .push(Adjustment { kind: Adjust::Deref(None), target: inner.clone() }); |
| adjustments.push(Adjustment::borrow(Mutability::Mut, inner.clone())) |
| } |
| } else { |
| adjustments.push(Adjustment::borrow(Mutability::Mut, derefed_callee.clone())); |
| } |
| } |
| FnTrait::Fn => { |
| if !matches!(derefed_callee.kind(Interner), TyKind::Ref(Mutability::Not, _, _)) { |
| adjustments.push(Adjustment::borrow(Mutability::Not, derefed_callee.clone())); |
| } |
| } |
| } |
| let Some(trait_) = fn_x.get_id(self.db, self.table.trait_env.krate) else { |
| return; |
| }; |
| let trait_data = self.db.trait_data(trait_); |
| if let Some(func) = trait_data.method_by_name(&fn_x.method_name()) { |
| let subst = TyBuilder::subst_for_def(self.db, trait_, None) |
| .push(callee_ty.clone()) |
| .push(TyBuilder::tuple_with(params.iter().cloned())) |
| .build(); |
| self.write_method_resolution(tgt_expr, func, subst); |
| } |
| } |
| |
| fn infer_expr_array( |
| &mut self, |
| array: &Array, |
| expected: &Expectation, |
| ) -> chalk_ir::Ty<Interner> { |
| let elem_ty = match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) { |
| Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(), |
| _ => self.table.new_type_var(), |
| }; |
| |
| let krate = self.resolver.krate(); |
| |
| let expected = Expectation::has_type(elem_ty.clone()); |
| let (elem_ty, len) = match array { |
| Array::ElementList { elements, .. } if elements.is_empty() => { |
| (elem_ty, consteval::usize_const(self.db, Some(0), krate)) |
| } |
| Array::ElementList { elements, .. } => { |
| let mut coerce = CoerceMany::new(elem_ty); |
| for &expr in elements.iter() { |
| let cur_elem_ty = self.infer_expr_inner(expr, &expected); |
| coerce.coerce(self, Some(expr), &cur_elem_ty, CoercionCause::Expr(expr)); |
| } |
| ( |
| coerce.complete(self), |
| consteval::usize_const(self.db, Some(elements.len() as u128), krate), |
| ) |
| } |
| &Array::Repeat { initializer, repeat } => { |
| self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty.clone())); |
| let usize = TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner); |
| match self.body[repeat] { |
| Expr::Underscore => { |
| self.write_expr_ty(repeat, usize); |
| } |
| _ => _ = self.infer_expr(repeat, &Expectation::HasType(usize)), |
| } |
| |
| ( |
| elem_ty, |
| consteval::eval_to_const( |
| repeat, |
| ParamLoweringMode::Placeholder, |
| self, |
| DebruijnIndex::INNERMOST, |
| ), |
| ) |
| } |
| }; |
| // Try to evaluate unevaluated constant, and insert variable if is not possible. |
| let len = self.table.insert_const_vars_shallow(len); |
| TyKind::Array(elem_ty, len).intern(Interner) |
| } |
| |
| pub(super) fn infer_return(&mut self, expr: ExprId) { |
| let ret_ty = self |
| .return_coercion |
| .as_mut() |
| .expect("infer_return called outside function body") |
| .expected_ty(); |
| let return_expr_ty = self.infer_expr_inner(expr, &Expectation::HasType(ret_ty)); |
| let mut coerce_many = self.return_coercion.take().unwrap(); |
| coerce_many.coerce(self, Some(expr), &return_expr_ty, CoercionCause::Expr(expr)); |
| self.return_coercion = Some(coerce_many); |
| } |
| |
| fn infer_expr_return(&mut self, ret: ExprId, expr: Option<ExprId>) -> Ty { |
| match self.return_coercion { |
| Some(_) => { |
| if let Some(expr) = expr { |
| self.infer_return(expr); |
| } else { |
| let mut coerce = self.return_coercion.take().unwrap(); |
| coerce.coerce_forced_unit(self, CoercionCause::Expr(ret)); |
| self.return_coercion = Some(coerce); |
| } |
| } |
| None => { |
| // FIXME: diagnose return outside of function |
| if let Some(expr) = expr { |
| self.infer_expr_no_expect(expr); |
| } |
| } |
| } |
| self.result.standard_types.never.clone() |
| } |
| |
| fn infer_expr_become(&mut self, expr: ExprId) -> Ty { |
| match &self.return_coercion { |
| Some(return_coercion) => { |
| let ret_ty = return_coercion.expected_ty(); |
| |
| let call_expr_ty = |
| self.infer_expr_inner(expr, &Expectation::HasType(ret_ty.clone())); |
| |
| // NB: this should *not* coerce. |
| // tail calls don't support any coercions except lifetimes ones (like `&'static u8 -> &'a u8`). |
| self.unify(&call_expr_ty, &ret_ty); |
| } |
| None => { |
| // FIXME: diagnose `become` outside of functions |
| self.infer_expr_no_expect(expr); |
| } |
| } |
| |
| self.result.standard_types.never.clone() |
| } |
| |
| fn infer_expr_box(&mut self, inner_expr: ExprId, expected: &Expectation) -> Ty { |
| if let Some(box_id) = self.resolve_boxed_box() { |
| let table = &mut self.table; |
| let inner_exp = expected |
| .to_option(table) |
| .as_ref() |
| .and_then(|e| e.as_adt()) |
| .filter(|(e_adt, _)| e_adt == &box_id) |
| .map(|(_, subts)| { |
| let g = subts.at(Interner, 0); |
| Expectation::rvalue_hint(self, Ty::clone(g.assert_ty_ref(Interner))) |
| }) |
| .unwrap_or_else(Expectation::none); |
| |
| let inner_ty = self.infer_expr_inner(inner_expr, &inner_exp); |
| TyBuilder::adt(self.db, box_id) |
| .push(inner_ty) |
| .fill_with_defaults(self.db, || self.table.new_type_var()) |
| .build() |
| } else { |
| self.err_ty() |
| } |
| } |
| |
| pub(super) fn infer_assignee_expr(&mut self, lhs: ExprId, rhs_ty: &Ty) -> Ty { |
| let is_rest_expr = |expr| { |
| matches!( |
| &self.body[expr], |
| Expr::Range { lhs: None, rhs: None, range_type: RangeOp::Exclusive }, |
| ) |
| }; |
| |
| let rhs_ty = self.resolve_ty_shallow(rhs_ty); |
| |
| let ty = match &self.body[lhs] { |
| Expr::Tuple { exprs, .. } => { |
| // We don't consider multiple ellipses. This is analogous to |
| // `hir_def::body::lower::ExprCollector::collect_tuple_pat()`. |
| let ellipsis = exprs.iter().position(|e| is_rest_expr(*e)).map(|it| it as u32); |
| let exprs: Vec<_> = exprs.iter().filter(|e| !is_rest_expr(**e)).copied().collect(); |
| |
| self.infer_tuple_pat_like(&rhs_ty, (), ellipsis, &exprs) |
| } |
| Expr::Call { callee, args, .. } => { |
| // Tuple structs |
| let path = match &self.body[*callee] { |
| Expr::Path(path) => Some(path), |
| _ => None, |
| }; |
| |
| // We don't consider multiple ellipses. This is analogous to |
| // `hir_def::body::lower::ExprCollector::collect_tuple_pat()`. |
| let ellipsis = args.iter().position(|e| is_rest_expr(*e)).map(|it| it as u32); |
| let args: Vec<_> = args.iter().filter(|e| !is_rest_expr(**e)).copied().collect(); |
| |
| self.infer_tuple_struct_pat_like(path, &rhs_ty, (), lhs, ellipsis, &args) |
| } |
| Expr::Array(Array::ElementList { elements, .. }) => { |
| let elem_ty = match rhs_ty.kind(Interner) { |
| TyKind::Array(st, _) => st.clone(), |
| _ => self.err_ty(), |
| }; |
| |
| // There's no need to handle `..` as it cannot be bound. |
| let sub_exprs = elements.iter().filter(|e| !is_rest_expr(**e)); |
| |
| for e in sub_exprs { |
| self.infer_assignee_expr(*e, &elem_ty); |
| } |
| |
| match rhs_ty.kind(Interner) { |
| TyKind::Array(_, _) => rhs_ty.clone(), |
| // Even when `rhs_ty` is not an array type, this assignee |
| // expression is inferred to be an array (of unknown element |
| // type and length). This should not be just an error type, |
| // because we are to compute the unifiability of this type and |
| // `rhs_ty` in the end of this function to issue type mismatches. |
| _ => TyKind::Array( |
| self.err_ty(), |
| crate::consteval::usize_const(self.db, None, self.resolver.krate()), |
| ) |
| .intern(Interner), |
| } |
| } |
| Expr::RecordLit { path, fields, .. } => { |
| let subs = fields.iter().map(|f| (f.name.clone(), f.expr)); |
| |
| self.infer_record_pat_like(path.as_deref(), &rhs_ty, (), lhs, subs) |
| } |
| Expr::Underscore => rhs_ty.clone(), |
| _ => { |
| // `lhs` is a place expression, a unit struct, or an enum variant. |
| let lhs_ty = self.infer_expr_inner(lhs, &Expectation::none()); |
| |
| // This is the only branch where this function may coerce any type. |
| // We are returning early to avoid the unifiability check below. |
| let lhs_ty = self.insert_type_vars_shallow(lhs_ty); |
| let ty = match self.coerce(None, &rhs_ty, &lhs_ty) { |
| Ok(ty) => ty, |
| Err(_) => { |
| self.result.type_mismatches.insert( |
| lhs.into(), |
| TypeMismatch { expected: rhs_ty.clone(), actual: lhs_ty.clone() }, |
| ); |
| // `rhs_ty` is returned so no further type mismatches are |
| // reported because of this mismatch. |
| rhs_ty |
| } |
| }; |
| self.write_expr_ty(lhs, ty.clone()); |
| return ty; |
| } |
| }; |
| |
| let ty = self.insert_type_vars_shallow(ty); |
| if !self.unify(&ty, &rhs_ty) { |
| self.result |
| .type_mismatches |
| .insert(lhs.into(), TypeMismatch { expected: rhs_ty.clone(), actual: ty.clone() }); |
| } |
| self.write_expr_ty(lhs, ty.clone()); |
| ty |
| } |
| |
| fn infer_overloadable_binop( |
| &mut self, |
| lhs: ExprId, |
| op: BinaryOp, |
| rhs: ExprId, |
| tgt_expr: ExprId, |
| ) -> Ty { |
| let lhs_expectation = Expectation::none(); |
| let lhs_ty = self.infer_expr(lhs, &lhs_expectation); |
| let rhs_ty = self.table.new_type_var(); |
| |
| let trait_func = lang_items_for_bin_op(op).and_then(|(name, lang_item)| { |
| let trait_id = self.resolve_lang_item(lang_item)?.as_trait()?; |
| let func = self.db.trait_data(trait_id).method_by_name(&name)?; |
| Some((trait_id, func)) |
| }); |
| let (trait_, func) = match trait_func { |
| Some(it) => it, |
| None => { |
| // HACK: `rhs_ty` is a general inference variable with no clue at all at this |
| // point. Passing `lhs_ty` as both operands just to check if `lhs_ty` is a builtin |
| // type applicable to `op`. |
| let ret_ty = if self.is_builtin_binop(&lhs_ty, &lhs_ty, op) { |
| // Assume both operands are builtin so we can continue inference. No guarantee |
| // on the correctness, rustc would complain as necessary lang items don't seem |
| // to exist anyway. |
| self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op) |
| } else { |
| self.err_ty() |
| }; |
| |
| self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty)); |
| |
| return ret_ty; |
| } |
| }; |
| |
| // HACK: We can use this substitution for the function because the function itself doesn't |
| // have its own generic parameters. |
| let subst = TyBuilder::subst_for_def(self.db, trait_, None) |
| .push(lhs_ty.clone()) |
| .push(rhs_ty.clone()) |
| .build(); |
| self.write_method_resolution(tgt_expr, func, subst.clone()); |
| |
| let method_ty = self.db.value_ty(func.into()).unwrap().substitute(Interner, &subst); |
| self.register_obligations_for_call(&method_ty); |
| |
| self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone())); |
| |
| let ret_ty = match method_ty.callable_sig(self.db) { |
| Some(sig) => { |
| let p_left = &sig.params()[0]; |
| if matches!(op, BinaryOp::CmpOp(..) | BinaryOp::Assignment { .. }) { |
| if let &TyKind::Ref(mtbl, _, _) = p_left.kind(Interner) { |
| self.write_expr_adj( |
| lhs, |
| vec![Adjustment { |
| kind: Adjust::Borrow(AutoBorrow::Ref(mtbl)), |
| target: p_left.clone(), |
| }], |
| ); |
| } |
| } |
| let p_right = &sig.params()[1]; |
| if matches!(op, BinaryOp::CmpOp(..)) { |
| if let &TyKind::Ref(mtbl, _, _) = p_right.kind(Interner) { |
| self.write_expr_adj( |
| rhs, |
| vec![Adjustment { |
| kind: Adjust::Borrow(AutoBorrow::Ref(mtbl)), |
| target: p_right.clone(), |
| }], |
| ); |
| } |
| } |
| sig.ret().clone() |
| } |
| None => self.err_ty(), |
| }; |
| |
| let ret_ty = self.normalize_associated_types_in(ret_ty); |
| |
| if self.is_builtin_binop(&lhs_ty, &rhs_ty, op) { |
| // use knowledge of built-in binary ops, which can sometimes help inference |
| let builtin_ret = self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op); |
| self.unify(&builtin_ret, &ret_ty); |
| } |
| |
| ret_ty |
| } |
| |
| fn infer_block( |
| &mut self, |
| expr: ExprId, |
| block_id: Option<BlockId>, |
| statements: &[Statement], |
| tail: Option<ExprId>, |
| label: Option<LabelId>, |
| expected: &Expectation, |
| ) -> Ty { |
| let coerce_ty = expected.coercion_target_type(&mut self.table); |
| let g = self.resolver.update_to_inner_scope(self.db.upcast(), self.owner, expr); |
| let prev_env = block_id.map(|block_id| { |
| let prev_env = self.table.trait_env.clone(); |
| TraitEnvironment::with_block(&mut self.table.trait_env, block_id); |
| prev_env |
| }); |
| |
| let (break_ty, ty) = |
| self.with_breakable_ctx(BreakableKind::Block, Some(coerce_ty), label, |this| { |
| for stmt in statements { |
| match stmt { |
| Statement::Let { pat, type_ref, initializer, else_branch } => { |
| let decl_ty = type_ref |
| .as_ref() |
| .map(|tr| this.make_ty(tr)) |
| .unwrap_or_else(|| this.table.new_type_var()); |
| |
| let ty = if let Some(expr) = initializer { |
| let ty = if contains_explicit_ref_binding(this.body, *pat) { |
| this.infer_expr(*expr, &Expectation::has_type(decl_ty.clone())) |
| } else { |
| this.infer_expr_coerce( |
| *expr, |
| &Expectation::has_type(decl_ty.clone()), |
| ) |
| }; |
| if type_ref.is_some() { |
| decl_ty |
| } else { |
| ty |
| } |
| } else { |
| decl_ty |
| }; |
| |
| this.infer_top_pat(*pat, &ty); |
| |
| if let Some(expr) = else_branch { |
| let previous_diverges = |
| mem::replace(&mut this.diverges, Diverges::Maybe); |
| this.infer_expr_coerce( |
| *expr, |
| &Expectation::HasType(this.result.standard_types.never.clone()), |
| ); |
| this.diverges = previous_diverges; |
| } |
| } |
| &Statement::Expr { expr, has_semi } => { |
| if has_semi { |
| this.infer_expr(expr, &Expectation::none()); |
| } else { |
| this.infer_expr_coerce( |
| expr, |
| &Expectation::HasType(this.result.standard_types.unit.clone()), |
| ); |
| } |
| } |
| Statement::Item => (), |
| } |
| } |
| |
| // FIXME: This should make use of the breakable CoerceMany |
| if let Some(expr) = tail { |
| this.infer_expr_coerce(expr, expected) |
| } else { |
| // Citing rustc: if there is no explicit tail expression, |
| // that is typically equivalent to a tail expression |
| // of `()` -- except if the block diverges. In that |
| // case, there is no value supplied from the tail |
| // expression (assuming there are no other breaks, |
| // this implies that the type of the block will be |
| // `!`). |
| if this.diverges.is_always() { |
| // we don't even make an attempt at coercion |
| this.table.new_maybe_never_var() |
| } else if let Some(t) = expected.only_has_type(&mut this.table) { |
| if this |
| .coerce(Some(expr), &this.result.standard_types.unit.clone(), &t) |
| .is_err() |
| { |
| this.result.type_mismatches.insert( |
| expr.into(), |
| TypeMismatch { |
| expected: t.clone(), |
| actual: this.result.standard_types.unit.clone(), |
| }, |
| ); |
| } |
| t |
| } else { |
| this.result.standard_types.unit.clone() |
| } |
| } |
| }); |
| self.resolver.reset_to_guard(g); |
| if let Some(prev_env) = prev_env { |
| self.table.trait_env = prev_env; |
| } |
| |
| break_ty.unwrap_or(ty) |
| } |
| |
| fn lookup_field( |
| &mut self, |
| receiver_ty: &Ty, |
| name: &Name, |
| ) -> Option<(Ty, Either<FieldId, TupleFieldId>, Vec<Adjustment>, bool)> { |
| let mut autoderef = Autoderef::new(&mut self.table, receiver_ty.clone(), false); |
| let mut private_field = None; |
| let res = autoderef.by_ref().find_map(|(derefed_ty, _)| { |
| let (field_id, parameters) = match derefed_ty.kind(Interner) { |
| TyKind::Tuple(_, substs) => { |
| return name.as_tuple_index().and_then(|idx| { |
| substs |
| .as_slice(Interner) |
| .get(idx) |
| .map(|a| a.assert_ty_ref(Interner)) |
| .cloned() |
| .map(|ty| { |
| ( |
| Either::Right(TupleFieldId { |
| tuple: TupleId( |
| self.tuple_field_accesses_rev |
| .insert_full(substs.clone()) |
| .0 |
| as u32, |
| ), |
| index: idx as u32, |
| }), |
| ty, |
| ) |
| }) |
| }); |
| } |
| TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => { |
| let local_id = self.db.struct_data(*s).variant_data.field(name)?; |
| let field = FieldId { parent: (*s).into(), local_id }; |
| (field, parameters.clone()) |
| } |
| TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => { |
| let local_id = self.db.union_data(*u).variant_data.field(name)?; |
| let field = FieldId { parent: (*u).into(), local_id }; |
| (field, parameters.clone()) |
| } |
| _ => return None, |
| }; |
| let is_visible = self.db.field_visibilities(field_id.parent)[field_id.local_id] |
| .is_visible_from(self.db.upcast(), self.resolver.module()); |
| if !is_visible { |
| if private_field.is_none() { |
| private_field = Some((field_id, parameters)); |
| } |
| return None; |
| } |
| let ty = self.db.field_types(field_id.parent)[field_id.local_id] |
| .clone() |
| .substitute(Interner, ¶meters); |
| Some((Either::Left(field_id), ty)) |
| }); |
| |
| Some(match res { |
| Some((field_id, ty)) => { |
| let adjustments = auto_deref_adjust_steps(&autoderef); |
| let ty = self.insert_type_vars(ty); |
| let ty = self.normalize_associated_types_in(ty); |
| |
| (ty, field_id, adjustments, true) |
| } |
| None => { |
| let (field_id, subst) = private_field?; |
| let adjustments = auto_deref_adjust_steps(&autoderef); |
| let ty = self.db.field_types(field_id.parent)[field_id.local_id] |
| .clone() |
| .substitute(Interner, &subst); |
| let ty = self.insert_type_vars(ty); |
| let ty = self.normalize_associated_types_in(ty); |
| |
| (ty, Either::Left(field_id), adjustments, false) |
| } |
| }) |
| } |
| |
| fn infer_field_access( |
| &mut self, |
| tgt_expr: ExprId, |
| receiver: ExprId, |
| name: &Name, |
| expected: &Expectation, |
| ) -> Ty { |
| let receiver_ty = self.infer_expr_inner(receiver, &Expectation::none()); |
| |
| if name.is_missing() { |
| // Bail out early, don't even try to look up field. Also, we don't issue an unresolved |
| // field diagnostic because this is a syntax error rather than a semantic error. |
| return self.err_ty(); |
| } |
| |
| match self.lookup_field(&receiver_ty, name) { |
| Some((ty, field_id, adjustments, is_public)) => { |
| self.write_expr_adj(receiver, adjustments); |
| self.result.field_resolutions.insert(tgt_expr, field_id); |
| if !is_public { |
| if let Either::Left(field) = field_id { |
| // FIXME: Merge this diagnostic into UnresolvedField? |
| self.result |
| .diagnostics |
| .push(InferenceDiagnostic::PrivateField { expr: tgt_expr, field }); |
| } |
| } |
| ty |
| } |
| None => { |
| // no field found, lets attempt to resolve it like a function so that IDE things |
| // work out while people are typing |
| let canonicalized_receiver = self.canonicalize(receiver_ty.clone()); |
| let resolved = method_resolution::lookup_method( |
| self.db, |
| &canonicalized_receiver, |
| self.table.trait_env.clone(), |
| self.get_traits_in_scope().as_ref().left_or_else(|&it| it), |
| VisibleFromModule::Filter(self.resolver.module()), |
| name, |
| ); |
| self.result.diagnostics.push(InferenceDiagnostic::UnresolvedField { |
| expr: tgt_expr, |
| receiver: receiver_ty.clone(), |
| name: name.clone(), |
| method_with_same_name_exists: resolved.is_some(), |
| }); |
| match resolved { |
| Some((adjust, func, _)) => { |
| let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty); |
| let generics = generics(self.db.upcast(), func.into()); |
| let substs = self.substs_for_method_call(generics, None); |
| self.write_expr_adj(receiver, adjustments); |
| self.write_method_resolution(tgt_expr, func, substs.clone()); |
| |
| self.check_method_call( |
| tgt_expr, |
| &[], |
| self.db.value_ty(func.into()).unwrap(), |
| substs, |
| ty, |
| expected, |
| ) |
| } |
| None => self.err_ty(), |
| } |
| } |
| } |
| } |
| |
| fn infer_method_call( |
| &mut self, |
| tgt_expr: ExprId, |
| receiver: ExprId, |
| args: &[ExprId], |
| method_name: &Name, |
| generic_args: Option<&GenericArgs>, |
| expected: &Expectation, |
| ) -> Ty { |
| let receiver_ty = self.infer_expr_inner(receiver, &Expectation::none()); |
| let canonicalized_receiver = self.canonicalize(receiver_ty.clone()); |
| |
| let resolved = method_resolution::lookup_method( |
| self.db, |
| &canonicalized_receiver, |
| self.table.trait_env.clone(), |
| self.get_traits_in_scope().as_ref().left_or_else(|&it| it), |
| VisibleFromModule::Filter(self.resolver.module()), |
| method_name, |
| ); |
| let (receiver_ty, method_ty, substs) = match resolved { |
| Some((adjust, func, visible)) => { |
| let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty); |
| let generics = generics(self.db.upcast(), func.into()); |
| let substs = self.substs_for_method_call(generics, generic_args); |
| self.write_expr_adj(receiver, adjustments); |
| self.write_method_resolution(tgt_expr, func, substs.clone()); |
| if !visible { |
| self.push_diagnostic(InferenceDiagnostic::PrivateAssocItem { |
| id: tgt_expr.into(), |
| item: func.into(), |
| }) |
| } |
| (ty, self.db.value_ty(func.into()).unwrap(), substs) |
| } |
| None => { |
| let field_with_same_name_exists = match self.lookup_field(&receiver_ty, method_name) |
| { |
| Some((ty, field_id, adjustments, _public)) => { |
| self.write_expr_adj(receiver, adjustments); |
| self.result.field_resolutions.insert(tgt_expr, field_id); |
| Some(ty) |
| } |
| None => None, |
| }; |
| |
| let assoc_func_with_same_name = method_resolution::iterate_method_candidates( |
| &canonicalized_receiver, |
| self.db, |
| self.table.trait_env.clone(), |
| self.get_traits_in_scope().as_ref().left_or_else(|&it| it), |
| VisibleFromModule::Filter(self.resolver.module()), |
| Some(method_name), |
| method_resolution::LookupMode::Path, |
| |_ty, item, visible| { |
| if visible { |
| Some(item) |
| } else { |
| None |
| } |
| }, |
| ); |
| |
| self.result.diagnostics.push(InferenceDiagnostic::UnresolvedMethodCall { |
| expr: tgt_expr, |
| receiver: receiver_ty.clone(), |
| name: method_name.clone(), |
| field_with_same_name: field_with_same_name_exists, |
| assoc_func_with_same_name, |
| }); |
| ( |
| receiver_ty, |
| Binders::empty(Interner, self.err_ty()), |
| Substitution::empty(Interner), |
| ) |
| } |
| }; |
| self.check_method_call(tgt_expr, args, method_ty, substs, receiver_ty, expected) |
| } |
| |
| fn check_method_call( |
| &mut self, |
| tgt_expr: ExprId, |
| args: &[ExprId], |
| method_ty: Binders<Ty>, |
| substs: Substitution, |
| receiver_ty: Ty, |
| expected: &Expectation, |
| ) -> Ty { |
| let method_ty = method_ty.substitute(Interner, &substs); |
| self.register_obligations_for_call(&method_ty); |
| let ((formal_receiver_ty, param_tys), ret_ty, is_varargs) = |
| match method_ty.callable_sig(self.db) { |
| Some(sig) => ( |
| if !sig.params().is_empty() { |
| (sig.params()[0].clone(), sig.params()[1..].to_vec()) |
| } else { |
| (self.err_ty(), Vec::new()) |
| }, |
| sig.ret().clone(), |
| sig.is_varargs, |
| ), |
| None => ((self.err_ty(), Vec::new()), self.err_ty(), true), |
| }; |
| self.unify(&formal_receiver_ty, &receiver_ty); |
| |
| let expected_inputs = |
| self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone()); |
| |
| self.check_call_arguments(tgt_expr, args, &expected_inputs, ¶m_tys, &[], is_varargs); |
| self.normalize_associated_types_in(ret_ty) |
| } |
| |
| fn expected_inputs_for_expected_output( |
| &mut self, |
| expected_output: &Expectation, |
| output: Ty, |
| inputs: Vec<Ty>, |
| ) -> Vec<Ty> { |
| if let Some(expected_ty) = expected_output.only_has_type(&mut self.table) { |
| self.table.fudge_inference(|table| { |
| if table.try_unify(&expected_ty, &output).is_ok() { |
| table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind { |
| chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner), |
| chalk_ir::VariableKind::Lifetime => { |
| var.to_lifetime(Interner).cast(Interner) |
| } |
| chalk_ir::VariableKind::Const(ty) => { |
| var.to_const(Interner, ty).cast(Interner) |
| } |
| }) |
| } else { |
| Vec::new() |
| } |
| }) |
| } else { |
| Vec::new() |
| } |
| } |
| |
| fn check_call_arguments( |
| &mut self, |
| expr: ExprId, |
| args: &[ExprId], |
| expected_inputs: &[Ty], |
| param_tys: &[Ty], |
| skip_indices: &[u32], |
| is_varargs: bool, |
| ) { |
| if args.len() != param_tys.len() + skip_indices.len() && !is_varargs { |
| self.push_diagnostic(InferenceDiagnostic::MismatchedArgCount { |
| call_expr: expr, |
| expected: param_tys.len() + skip_indices.len(), |
| found: args.len(), |
| }); |
| } |
| |
| // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 -- |
| // We do this in a pretty awful way: first we type-check any arguments |
| // that are not closures, then we type-check the closures. This is so |
| // that we have more information about the types of arguments when we |
| // type-check the functions. This isn't really the right way to do this. |
| for check_closures in [false, true] { |
| let mut skip_indices = skip_indices.iter().copied().fuse().peekable(); |
| let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty())); |
| let expected_iter = expected_inputs |
| .iter() |
| .cloned() |
| .chain(param_iter.clone().skip(expected_inputs.len())); |
| for (idx, ((&arg, param_ty), expected_ty)) in |
| args.iter().zip(param_iter).zip(expected_iter).enumerate() |
| { |
| let is_closure = matches!(&self.body[arg], Expr::Closure { .. }); |
| if is_closure != check_closures { |
| continue; |
| } |
| |
| while skip_indices.peek().map_or(false, |i| *i < idx as u32) { |
| skip_indices.next(); |
| } |
| if skip_indices.peek().copied() == Some(idx as u32) { |
| continue; |
| } |
| |
| // the difference between param_ty and expected here is that |
| // expected is the parameter when the expected *return* type is |
| // taken into account. So in `let _: &[i32] = identity(&[1, 2])` |
| // the expected type is already `&[i32]`, whereas param_ty is |
| // still an unbound type variable. We don't always want to force |
| // the parameter to coerce to the expected type (for example in |
| // `coerce_unsize_expected_type_4`). |
| let param_ty = self.normalize_associated_types_in(param_ty); |
| let expected_ty = self.normalize_associated_types_in(expected_ty); |
| let expected = Expectation::rvalue_hint(self, expected_ty); |
| // infer with the expected type we have... |
| let ty = self.infer_expr_inner(arg, &expected); |
| |
| // then coerce to either the expected type or just the formal parameter type |
| let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) { |
| // if we are coercing to the expectation, unify with the |
| // formal parameter type to connect everything |
| self.unify(&ty, ¶m_ty); |
| ty |
| } else { |
| param_ty |
| }; |
| // The function signature may contain some unknown types, so we need to insert |
| // type vars here to avoid type mismatch false positive. |
| let coercion_target = self.insert_type_vars(coercion_target); |
| if self.coerce(Some(arg), &ty, &coercion_target).is_err() { |
| self.result.type_mismatches.insert( |
| arg.into(), |
| TypeMismatch { expected: coercion_target, actual: ty.clone() }, |
| ); |
| } |
| } |
| } |
| } |
| |
| fn substs_for_method_call( |
| &mut self, |
| def_generics: Generics, |
| generic_args: Option<&GenericArgs>, |
| ) -> Substitution { |
| let ( |
| parent_params, |
| has_self_param, |
| type_params, |
| const_params, |
| impl_trait_params, |
| lifetime_params, |
| ) = def_generics.provenance_split(); |
| assert!(!has_self_param); // method shouldn't have another Self param |
| let total_len = |
| parent_params + type_params + const_params + impl_trait_params + lifetime_params; |
| let mut substs = Vec::with_capacity(total_len); |
| |
| // handle provided arguments |
| if let Some(generic_args) = generic_args { |
| // if args are provided, it should be all of them, but we can't rely on that |
| let self_params = type_params + const_params + lifetime_params; |
| |
| let mut args = generic_args.args.iter().peekable(); |
| for kind_id in def_generics.iter_self_id().take(self_params) { |
| let arg = args.peek(); |
| let arg = match (kind_id, arg) { |
| // Lifetimes can be elided. |
| // Once we have implemented lifetime elision correctly, |
| // this should be handled in a proper way. |
| ( |
| GenericParamId::LifetimeParamId(_), |
| None | Some(GenericArg::Type(_) | GenericArg::Const(_)), |
| ) => error_lifetime().cast(Interner), |
| |
| // If we run out of `generic_args`, stop pushing substs |
| (_, None) => break, |
| |
| // Normal cases |
| (_, Some(_)) => generic_arg_to_chalk( |
| self.db, |
| kind_id, |
| args.next().unwrap(), // `peek()` is `Some(_)`, so guaranteed no panic |
| self, |
| |this, type_ref| this.make_ty(type_ref), |
| |this, c, ty| { |
| const_or_path_to_chalk( |
| this.db, |
| &this.resolver, |
| this.owner.into(), |
| ty, |
| c, |
| ParamLoweringMode::Placeholder, |
| || this.generics(), |
| DebruijnIndex::INNERMOST, |
| ) |
| }, |
| |this, lt_ref| this.make_lifetime(lt_ref), |
| ), |
| }; |
| |
| substs.push(arg); |
| } |
| }; |
| |
| // Handle everything else as unknown. This also handles generic arguments for the method's |
| // parent (impl or trait), which should come after those for the method. |
| for (id, _data) in def_generics.iter().skip(substs.len()) { |
| match id { |
| GenericParamId::TypeParamId(_) => { |
| substs.push(self.table.new_type_var().cast(Interner)) |
| } |
| GenericParamId::ConstParamId(id) => { |
| substs.push(self.table.new_const_var(self.db.const_param_ty(id)).cast(Interner)) |
| } |
| GenericParamId::LifetimeParamId(_) => { |
| substs.push(self.table.new_lifetime_var().cast(Interner)) |
| } |
| } |
| } |
| assert_eq!(substs.len(), total_len); |
| Substitution::from_iter(Interner, substs) |
| } |
| |
| fn register_obligations_for_call(&mut self, callable_ty: &Ty) { |
| let callable_ty = self.resolve_ty_shallow(callable_ty); |
| if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) { |
| let def: CallableDefId = from_chalk(self.db, *fn_def); |
| let generic_predicates = |
| self.db.generic_predicates(GenericDefId::from_callable(self.db.upcast(), def)); |
| for predicate in generic_predicates.iter() { |
| let (predicate, binders) = predicate |
| .clone() |
| .substitute(Interner, parameters) |
| .into_value_and_skipped_binders(); |
| always!(binders.len(Interner) == 0); // quantified where clauses not yet handled |
| self.push_obligation(predicate.cast(Interner)); |
| } |
| // add obligation for trait implementation, if this is a trait method |
| match def { |
| CallableDefId::FunctionId(f) => { |
| if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container { |
| // construct a TraitRef |
| let params_len = parameters.len(Interner); |
| let trait_params_len = generics(self.db.upcast(), trait_.into()).len(); |
| let substs = Substitution::from_iter( |
| Interner, |
| // The generic parameters for the trait come after those for the |
| // function. |
| ¶meters.as_slice(Interner)[params_len - trait_params_len..], |
| ); |
| self.push_obligation( |
| TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs } |
| .cast(Interner), |
| ); |
| } |
| } |
| CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {} |
| } |
| } |
| } |
| |
| /// Returns the argument indices to skip. |
| fn check_legacy_const_generics(&mut self, callee: Ty, args: &[ExprId]) -> Box<[u32]> { |
| let (func, subst) = match callee.kind(Interner) { |
| TyKind::FnDef(fn_id, subst) => { |
| let callable = CallableDefId::from_chalk(self.db, *fn_id); |
| let func = match callable { |
| CallableDefId::FunctionId(f) => f, |
| _ => return Default::default(), |
| }; |
| (func, subst) |
| } |
| _ => return Default::default(), |
| }; |
| |
| let data = self.db.function_data(func); |
| let Some(legacy_const_generics_indices) = &data.legacy_const_generics_indices else { |
| return Default::default(); |
| }; |
| |
| // only use legacy const generics if the param count matches with them |
| if data.params.len() + legacy_const_generics_indices.len() != args.len() { |
| if args.len() <= data.params.len() { |
| return Default::default(); |
| } else { |
| // there are more parameters than there should be without legacy |
| // const params; use them |
| let mut indices = legacy_const_generics_indices.as_ref().clone(); |
| indices.sort(); |
| return indices; |
| } |
| } |
| |
| // check legacy const parameters |
| for (subst_idx, arg_idx) in legacy_const_generics_indices.iter().copied().enumerate() { |
| let arg = match subst.at(Interner, subst_idx).constant(Interner) { |
| Some(c) => c, |
| None => continue, // not a const parameter? |
| }; |
| if arg_idx >= args.len() as u32 { |
| continue; |
| } |
| let _ty = arg.data(Interner).ty.clone(); |
| let expected = Expectation::none(); // FIXME use actual const ty, when that is lowered correctly |
| self.infer_expr(args[arg_idx as usize], &expected); |
| // FIXME: evaluate and unify with the const |
| } |
| let mut indices = legacy_const_generics_indices.as_ref().clone(); |
| indices.sort(); |
| indices |
| } |
| |
| /// Dereferences a single level of immutable referencing. |
| fn deref_ty_if_possible(&mut self, ty: &Ty) -> Ty { |
| let ty = self.resolve_ty_shallow(ty); |
| match ty.kind(Interner) { |
| TyKind::Ref(Mutability::Not, _, inner) => self.resolve_ty_shallow(inner), |
| _ => ty, |
| } |
| } |
| |
| /// Enforces expectations on lhs type and rhs type depending on the operator and returns the |
| /// output type of the binary op. |
| fn enforce_builtin_binop_types(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> Ty { |
| // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447). |
| let lhs = self.deref_ty_if_possible(lhs); |
| let rhs = self.deref_ty_if_possible(rhs); |
| |
| let (op, is_assign) = match op { |
| BinaryOp::Assignment { op: Some(inner) } => (BinaryOp::ArithOp(inner), true), |
| _ => (op, false), |
| }; |
| |
| let output_ty = match op { |
| BinaryOp::LogicOp(_) => { |
| let bool_ = self.result.standard_types.bool_.clone(); |
| self.unify(&lhs, &bool_); |
| self.unify(&rhs, &bool_); |
| bool_ |
| } |
| |
| BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => { |
| // result type is same as LHS always |
| lhs |
| } |
| |
| BinaryOp::ArithOp(_) => { |
| // LHS, RHS, and result will have the same type |
| self.unify(&lhs, &rhs); |
| lhs |
| } |
| |
| BinaryOp::CmpOp(_) => { |
| // LHS and RHS will have the same type |
| self.unify(&lhs, &rhs); |
| self.result.standard_types.bool_.clone() |
| } |
| |
| BinaryOp::Assignment { op: None } => { |
| stdx::never!("Simple assignment operator is not binary op."); |
| lhs |
| } |
| |
| BinaryOp::Assignment { .. } => unreachable!("handled above"), |
| }; |
| |
| if is_assign { |
| self.result.standard_types.unit.clone() |
| } else { |
| output_ty |
| } |
| } |
| |
| fn is_builtin_binop(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> bool { |
| // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447). |
| let lhs = self.deref_ty_if_possible(lhs); |
| let rhs = self.deref_ty_if_possible(rhs); |
| |
| let op = match op { |
| BinaryOp::Assignment { op: Some(inner) } => BinaryOp::ArithOp(inner), |
| _ => op, |
| }; |
| |
| match op { |
| BinaryOp::LogicOp(_) => true, |
| |
| BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => { |
| lhs.is_integral() && rhs.is_integral() |
| } |
| |
| BinaryOp::ArithOp( |
| ArithOp::Add | ArithOp::Sub | ArithOp::Mul | ArithOp::Div | ArithOp::Rem, |
| ) => { |
| lhs.is_integral() && rhs.is_integral() |
| || lhs.is_floating_point() && rhs.is_floating_point() |
| } |
| |
| BinaryOp::ArithOp(ArithOp::BitAnd | ArithOp::BitOr | ArithOp::BitXor) => { |
| lhs.is_integral() && rhs.is_integral() |
| || lhs.is_floating_point() && rhs.is_floating_point() |
| || matches!( |
| (lhs.kind(Interner), rhs.kind(Interner)), |
| (TyKind::Scalar(Scalar::Bool), TyKind::Scalar(Scalar::Bool)) |
| ) |
| } |
| |
| BinaryOp::CmpOp(_) => { |
| let is_scalar = |kind| { |
| matches!( |
| kind, |
| &TyKind::Scalar(_) |
| | TyKind::FnDef(..) |
| | TyKind::Function(_) |
| | TyKind::Raw(..) |
| | TyKind::InferenceVar( |
| _, |
| TyVariableKind::Integer | TyVariableKind::Float |
| ) |
| ) |
| }; |
| is_scalar(lhs.kind(Interner)) && is_scalar(rhs.kind(Interner)) |
| } |
| |
| BinaryOp::Assignment { op: None } => { |
| stdx::never!("Simple assignment operator is not binary op."); |
| false |
| } |
| |
| BinaryOp::Assignment { .. } => unreachable!("handled above"), |
| } |
| } |
| |
| fn with_breakable_ctx<T>( |
| &mut self, |
| kind: BreakableKind, |
| ty: Option<Ty>, |
| label: Option<LabelId>, |
| cb: impl FnOnce(&mut Self) -> T, |
| ) -> (Option<Ty>, T) { |
| self.breakables.push({ |
| BreakableContext { kind, may_break: false, coerce: ty.map(CoerceMany::new), label } |
| }); |
| let res = cb(self); |
| let ctx = self.breakables.pop().expect("breakable stack broken"); |
| (if ctx.may_break { ctx.coerce.map(|ctx| ctx.complete(self)) } else { None }, res) |
| } |
| } |