| //! Type inference, i.e. the process of walking through the code and determining |
| //! the type of each expression and pattern. |
| //! |
| //! For type inference, compare the implementations in rustc (the various |
| //! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and |
| //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for |
| //! inference here is the `infer` function, which infers the types of all |
| //! expressions in a given function. |
| //! |
| //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' |
| //! which represent currently unknown types; as we walk through the expressions, |
| //! we might determine that certain variables need to be equal to each other, or |
| //! to certain types. To record this, we use the union-find implementation from |
| //! the `ena` crate, which is extracted from rustc. |
| |
| mod cast; |
| pub(crate) mod closure; |
| mod coerce; |
| mod expr; |
| mod mutability; |
| mod pat; |
| mod path; |
| pub(crate) mod unify; |
| |
| use std::{convert::identity, iter, ops::Index}; |
| |
| use chalk_ir::{ |
| cast::Cast, |
| fold::TypeFoldable, |
| interner::HasInterner, |
| visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}, |
| DebruijnIndex, Mutability, Safety, Scalar, TyKind, TypeFlags, Variance, |
| }; |
| use either::Either; |
| use hir_def::{ |
| body::Body, |
| builtin_type::{BuiltinInt, BuiltinType, BuiltinUint}, |
| data::{ConstData, StaticData}, |
| hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, LabelId, PatId}, |
| lang_item::{LangItem, LangItemTarget}, |
| layout::Integer, |
| path::{ModPath, Path}, |
| resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs}, |
| type_ref::{LifetimeRef, TypeRef}, |
| AdtId, AssocItemId, DefWithBodyId, FieldId, FunctionId, ImplId, ItemContainerId, Lookup, |
| TraitId, TupleFieldId, TupleId, TypeAliasId, VariantId, |
| }; |
| use hir_expand::name::Name; |
| use indexmap::IndexSet; |
| use intern::sym; |
| use la_arena::{ArenaMap, Entry}; |
| use once_cell::unsync::OnceCell; |
| use rustc_hash::{FxHashMap, FxHashSet}; |
| use stdx::{always, never}; |
| use triomphe::Arc; |
| |
| use crate::{ |
| db::HirDatabase, |
| error_lifetime, fold_tys, |
| generics::Generics, |
| infer::{coerce::CoerceMany, unify::InferenceTable}, |
| lower::ImplTraitLoweringMode, |
| to_assoc_type_id, |
| traits::FnTrait, |
| utils::{InTypeConstIdMetadata, UnevaluatedConstEvaluatorFolder}, |
| AliasEq, AliasTy, Binders, ClosureId, Const, DomainGoal, GenericArg, Goal, ImplTraitId, |
| ImplTraitIdx, InEnvironment, Interner, Lifetime, OpaqueTyId, ParamLoweringMode, ProjectionTy, |
| Substitution, TraitEnvironment, Ty, TyBuilder, TyExt, |
| }; |
| |
| // This lint has a false positive here. See the link below for details. |
| // |
| // https://github.com/rust-lang/rust/issues/57411 |
| #[allow(unreachable_pub)] |
| pub use coerce::could_coerce; |
| #[allow(unreachable_pub)] |
| pub use unify::{could_unify, could_unify_deeply}; |
| |
| use cast::CastCheck; |
| pub(crate) use closure::{CaptureKind, CapturedItem, CapturedItemWithoutTy}; |
| |
| /// The entry point of type inference. |
| pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> { |
| let _p = tracing::info_span!("infer_query").entered(); |
| let resolver = def.resolver(db.upcast()); |
| let body = db.body(def); |
| let mut ctx = InferenceContext::new(db, def, &body, resolver); |
| |
| match def { |
| DefWithBodyId::FunctionId(f) => { |
| ctx.collect_fn(f); |
| } |
| DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)), |
| DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)), |
| DefWithBodyId::VariantId(v) => { |
| ctx.return_ty = TyBuilder::builtin( |
| match db.enum_data(v.lookup(db.upcast()).parent).variant_body_type() { |
| hir_def::layout::IntegerType::Pointer(signed) => match signed { |
| true => BuiltinType::Int(BuiltinInt::Isize), |
| false => BuiltinType::Uint(BuiltinUint::Usize), |
| }, |
| hir_def::layout::IntegerType::Fixed(size, signed) => match signed { |
| true => BuiltinType::Int(match size { |
| Integer::I8 => BuiltinInt::I8, |
| Integer::I16 => BuiltinInt::I16, |
| Integer::I32 => BuiltinInt::I32, |
| Integer::I64 => BuiltinInt::I64, |
| Integer::I128 => BuiltinInt::I128, |
| }), |
| false => BuiltinType::Uint(match size { |
| Integer::I8 => BuiltinUint::U8, |
| Integer::I16 => BuiltinUint::U16, |
| Integer::I32 => BuiltinUint::U32, |
| Integer::I64 => BuiltinUint::U64, |
| Integer::I128 => BuiltinUint::U128, |
| }), |
| }, |
| }, |
| ); |
| } |
| DefWithBodyId::InTypeConstId(c) => { |
| // FIXME(const-generic-body): We should not get the return type in this way. |
| ctx.return_ty = c |
| .lookup(db.upcast()) |
| .expected_ty |
| .box_any() |
| .downcast::<InTypeConstIdMetadata>() |
| .unwrap() |
| .0; |
| } |
| } |
| |
| ctx.infer_body(); |
| |
| ctx.infer_mut_body(); |
| |
| ctx.infer_closures(); |
| |
| Arc::new(ctx.resolve_all()) |
| } |
| |
| /// Fully normalize all the types found within `ty` in context of `owner` body definition. |
| /// |
| /// This is appropriate to use only after type-check: it assumes |
| /// that normalization will succeed, for example. |
| pub(crate) fn normalize(db: &dyn HirDatabase, trait_env: Arc<TraitEnvironment>, ty: Ty) -> Ty { |
| // FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only |
| // works for the type case, so we check array unconditionally. Remove the array part |
| // when the bug in chalk becomes fixed. |
| if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION) |
| && !matches!(ty.kind(Interner), TyKind::Array(..)) |
| { |
| return ty; |
| } |
| let mut table = unify::InferenceTable::new(db, trait_env); |
| |
| let ty_with_vars = table.normalize_associated_types_in(ty); |
| table.resolve_obligations_as_possible(); |
| table.propagate_diverging_flag(); |
| table.resolve_completely(ty_with_vars) |
| } |
| |
| /// Binding modes inferred for patterns. |
| /// <https://doc.rust-lang.org/reference/patterns.html#binding-modes> |
| #[derive(Copy, Clone, Debug, Eq, PartialEq, Default)] |
| pub enum BindingMode { |
| #[default] |
| Move, |
| Ref(Mutability), |
| } |
| |
| impl BindingMode { |
| fn convert(annotation: BindingAnnotation) -> BindingMode { |
| match annotation { |
| BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, |
| BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not), |
| BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), |
| } |
| } |
| } |
| |
| #[derive(Debug)] |
| pub(crate) struct InferOk<T> { |
| value: T, |
| goals: Vec<InEnvironment<Goal>>, |
| } |
| |
| impl<T> InferOk<T> { |
| fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> { |
| InferOk { value: f(self.value), goals: self.goals } |
| } |
| } |
| |
| #[derive(Debug)] |
| pub(crate) struct TypeError; |
| pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>; |
| |
| #[derive(Debug, PartialEq, Eq, Clone)] |
| pub enum InferenceDiagnostic { |
| NoSuchField { |
| field: ExprOrPatId, |
| private: bool, |
| variant: VariantId, |
| }, |
| PrivateField { |
| expr: ExprId, |
| field: FieldId, |
| }, |
| PrivateAssocItem { |
| id: ExprOrPatId, |
| item: AssocItemId, |
| }, |
| UnresolvedField { |
| expr: ExprId, |
| receiver: Ty, |
| name: Name, |
| method_with_same_name_exists: bool, |
| }, |
| UnresolvedMethodCall { |
| expr: ExprId, |
| receiver: Ty, |
| name: Name, |
| /// Contains the type the field resolves to |
| field_with_same_name: Option<Ty>, |
| assoc_func_with_same_name: Option<AssocItemId>, |
| }, |
| UnresolvedAssocItem { |
| id: ExprOrPatId, |
| }, |
| UnresolvedIdent { |
| expr: ExprId, |
| }, |
| // FIXME: This should be emitted in body lowering |
| BreakOutsideOfLoop { |
| expr: ExprId, |
| is_break: bool, |
| bad_value_break: bool, |
| }, |
| MismatchedArgCount { |
| call_expr: ExprId, |
| expected: usize, |
| found: usize, |
| }, |
| MismatchedTupleStructPatArgCount { |
| pat: ExprOrPatId, |
| expected: usize, |
| found: usize, |
| }, |
| ExpectedFunction { |
| call_expr: ExprId, |
| found: Ty, |
| }, |
| TypedHole { |
| expr: ExprId, |
| expected: Ty, |
| }, |
| } |
| |
| /// A mismatch between an expected and an inferred type. |
| #[derive(Clone, PartialEq, Eq, Debug, Hash)] |
| pub struct TypeMismatch { |
| pub expected: Ty, |
| pub actual: Ty, |
| } |
| |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| struct InternedStandardTypes { |
| unknown: Ty, |
| bool_: Ty, |
| unit: Ty, |
| never: Ty, |
| } |
| |
| impl Default for InternedStandardTypes { |
| fn default() -> Self { |
| InternedStandardTypes { |
| unknown: TyKind::Error.intern(Interner), |
| bool_: TyKind::Scalar(Scalar::Bool).intern(Interner), |
| unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner), |
| never: TyKind::Never.intern(Interner), |
| } |
| } |
| } |
| /// Represents coercing a value to a different type of value. |
| /// |
| /// We transform values by following a number of `Adjust` steps in order. |
| /// See the documentation on variants of `Adjust` for more details. |
| /// |
| /// Here are some common scenarios: |
| /// |
| /// 1. The simplest cases are where a pointer is not adjusted fat vs thin. |
| /// Here the pointer will be dereferenced N times (where a dereference can |
| /// happen to raw or borrowed pointers or any smart pointer which implements |
| /// Deref, including Box<_>). The types of dereferences is given by |
| /// `autoderefs`. It can then be auto-referenced zero or one times, indicated |
| /// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is |
| /// `false`. |
| /// |
| /// 2. A thin-to-fat coercion involves unsizing the underlying data. We start |
| /// with a thin pointer, deref a number of times, unsize the underlying data, |
| /// then autoref. The 'unsize' phase may change a fixed length array to a |
| /// dynamically sized one, a concrete object to a trait object, or statically |
| /// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is |
| /// represented by: |
| /// |
| /// ``` |
| /// Deref(None) -> [i32; 4], |
| /// Borrow(AutoBorrow::Ref) -> &[i32; 4], |
| /// Unsize -> &[i32], |
| /// ``` |
| /// |
| /// Note that for a struct, the 'deep' unsizing of the struct is not recorded. |
| /// E.g., `struct Foo<T> { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]> |
| /// The autoderef and -ref are the same as in the above example, but the type |
| /// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about |
| /// the underlying conversions from `[i32; 4]` to `[i32]`. |
| /// |
| /// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In |
| /// that case, we have the pointer we need coming in, so there are no |
| /// autoderefs, and no autoref. Instead we just do the `Unsize` transformation. |
| /// At some point, of course, `Box` should move out of the compiler, in which |
| /// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> -> |
| /// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`. |
| #[derive(Clone, Debug, PartialEq, Eq, Hash)] |
| pub struct Adjustment { |
| pub kind: Adjust, |
| pub target: Ty, |
| } |
| |
| impl Adjustment { |
| pub fn borrow(m: Mutability, ty: Ty) -> Self { |
| let ty = TyKind::Ref(m, error_lifetime(), ty).intern(Interner); |
| Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty } |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub enum Adjust { |
| /// Go from ! to any type. |
| NeverToAny, |
| /// Dereference once, producing a place. |
| Deref(Option<OverloadedDeref>), |
| /// Take the address and produce either a `&` or `*` pointer. |
| Borrow(AutoBorrow), |
| Pointer(PointerCast), |
| } |
| |
| /// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)` |
| /// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`. |
| /// The target type is `U` in both cases, with the region and mutability |
| /// being those shared by both the receiver and the returned reference. |
| /// |
| /// Mutability is `None` when we are not sure. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub struct OverloadedDeref(pub Option<Mutability>); |
| |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub enum AutoBorrow { |
| /// Converts from T to &T. |
| Ref(Mutability), |
| /// Converts from T to *T. |
| RawPtr(Mutability), |
| } |
| |
| impl AutoBorrow { |
| fn mutability(self) -> Mutability { |
| let (AutoBorrow::Ref(m) | AutoBorrow::RawPtr(m)) = self; |
| m |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| pub enum PointerCast { |
| /// Go from a fn-item type to a fn-pointer type. |
| ReifyFnPointer, |
| |
| /// Go from a safe fn pointer to an unsafe fn pointer. |
| UnsafeFnPointer, |
| |
| /// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer. |
| /// It cannot convert a closure that requires unsafe. |
| ClosureFnPointer(Safety), |
| |
| /// Go from a mut raw pointer to a const raw pointer. |
| MutToConstPointer, |
| |
| #[allow(dead_code)] |
| /// Go from `*const [T; N]` to `*const T` |
| ArrayToPointer, |
| |
| /// Unsize a pointer/reference value, e.g., `&[T; n]` to |
| /// `&[T]`. Note that the source could be a thin or fat pointer. |
| /// This will do things like convert thin pointers to fat |
| /// pointers, or convert structs containing thin pointers to |
| /// structs containing fat pointers, or convert between fat |
| /// pointers. We don't store the details of how the transform is |
| /// done (in fact, we don't know that, because it might depend on |
| /// the precise type parameters). We just store the target |
| /// type. Codegen backends and miri figure out what has to be done |
| /// based on the precise source/target type at hand. |
| Unsize, |
| } |
| |
| /// The result of type inference: A mapping from expressions and patterns to types. |
| /// |
| /// When you add a field that stores types (including `Substitution` and the like), don't forget |
| /// `resolve_completely()`'ing them in `InferenceContext::resolve_all()`. Inference variables must |
| /// not appear in the final inference result. |
| #[derive(Clone, PartialEq, Eq, Debug, Default)] |
| pub struct InferenceResult { |
| /// For each method call expr, records the function it resolves to. |
| method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>, |
| /// For each field access expr, records the field it resolves to. |
| field_resolutions: FxHashMap<ExprId, Either<FieldId, TupleFieldId>>, |
| /// For each struct literal or pattern, records the variant it resolves to. |
| variant_resolutions: FxHashMap<ExprOrPatId, VariantId>, |
| /// For each associated item record what it resolves to |
| assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, Substitution)>, |
| /// Whenever a tuple field expression access a tuple field, we allocate a tuple id in |
| /// [`InferenceContext`] and store the tuples substitution there. This map is the reverse of |
| /// that which allows us to resolve a [`TupleFieldId`]s type. |
| pub tuple_field_access_types: FxHashMap<TupleId, Substitution>, |
| pub diagnostics: Vec<InferenceDiagnostic>, |
| pub type_of_expr: ArenaMap<ExprId, Ty>, |
| /// For each pattern record the type it resolves to. |
| /// |
| /// **Note**: When a pattern type is resolved it may still contain |
| /// unresolved or missing subpatterns or subpatterns of mismatched types. |
| pub type_of_pat: ArenaMap<PatId, Ty>, |
| pub type_of_binding: ArenaMap<BindingId, Ty>, |
| pub type_of_rpit: ArenaMap<ImplTraitIdx, Ty>, |
| /// Type of the result of `.into_iter()` on the for. `ExprId` is the one of the whole for loop. |
| pub type_of_for_iterator: FxHashMap<ExprId, Ty>, |
| type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>, |
| /// Whether there are any type-mismatching errors in the result. |
| pub(crate) has_errors: bool, |
| /// Interned common types to return references to. |
| // FIXME: Move this into `InferenceContext` |
| standard_types: InternedStandardTypes, |
| /// Stores the types which were implicitly dereferenced in pattern binding modes. |
| pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>, |
| /// Stores the binding mode (`ref` in `let ref x = 2`) of bindings. |
| /// |
| /// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an |
| /// or pattern can have multiple binding modes. For example: |
| /// ``` |
| /// fn foo(mut slice: &[u32]) -> usize { |
| /// slice = match slice { |
| /// [0, rest @ ..] | rest => rest, |
| /// }; |
| /// } |
| /// ``` |
| /// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`. |
| pub binding_modes: ArenaMap<PatId, BindingMode>, |
| pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>, |
| pub(crate) closure_info: FxHashMap<ClosureId, (Vec<CapturedItem>, FnTrait)>, |
| // FIXME: remove this field |
| pub mutated_bindings_in_closure: FxHashSet<BindingId>, |
| } |
| |
| impl InferenceResult { |
| pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> { |
| self.method_resolutions.get(&expr).cloned() |
| } |
| pub fn field_resolution(&self, expr: ExprId) -> Option<Either<FieldId, TupleFieldId>> { |
| self.field_resolutions.get(&expr).copied() |
| } |
| pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> { |
| self.variant_resolutions.get(&id.into()).copied() |
| } |
| pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> { |
| self.variant_resolutions.get(&id.into()).copied() |
| } |
| pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> { |
| self.assoc_resolutions.get(&id.into()).cloned() |
| } |
| pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> { |
| self.assoc_resolutions.get(&id.into()).cloned() |
| } |
| pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> { |
| self.type_mismatches.get(&expr.into()) |
| } |
| pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> { |
| self.type_mismatches.get(&pat.into()) |
| } |
| pub fn type_mismatches(&self) -> impl Iterator<Item = (ExprOrPatId, &TypeMismatch)> { |
| self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch)) |
| } |
| pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> { |
| self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat { |
| ExprOrPatId::ExprId(expr) => Some((expr, mismatch)), |
| _ => None, |
| }) |
| } |
| pub fn closure_info(&self, closure: &ClosureId) -> &(Vec<CapturedItem>, FnTrait) { |
| self.closure_info.get(closure).unwrap() |
| } |
| } |
| |
| impl Index<ExprId> for InferenceResult { |
| type Output = Ty; |
| |
| fn index(&self, expr: ExprId) -> &Ty { |
| self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown) |
| } |
| } |
| |
| impl Index<PatId> for InferenceResult { |
| type Output = Ty; |
| |
| fn index(&self, pat: PatId) -> &Ty { |
| self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown) |
| } |
| } |
| |
| impl Index<BindingId> for InferenceResult { |
| type Output = Ty; |
| |
| fn index(&self, b: BindingId) -> &Ty { |
| self.type_of_binding.get(b).unwrap_or(&self.standard_types.unknown) |
| } |
| } |
| |
| /// The inference context contains all information needed during type inference. |
| #[derive(Clone, Debug)] |
| pub(crate) struct InferenceContext<'a> { |
| pub(crate) db: &'a dyn HirDatabase, |
| pub(crate) owner: DefWithBodyId, |
| pub(crate) body: &'a Body, |
| pub(crate) resolver: Resolver, |
| generics: OnceCell<Option<Generics>>, |
| table: unify::InferenceTable<'a>, |
| /// The traits in scope, disregarding block modules. This is used for caching purposes. |
| traits_in_scope: FxHashSet<TraitId>, |
| pub(crate) result: InferenceResult, |
| tuple_field_accesses_rev: |
| IndexSet<Substitution, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>, |
| /// The return type of the function being inferred, the closure or async block if we're |
| /// currently within one. |
| /// |
| /// We might consider using a nested inference context for checking |
| /// closures so we can swap all shared things out at once. |
| return_ty: Ty, |
| /// If `Some`, this stores coercion information for returned |
| /// expressions. If `None`, this is in a context where return is |
| /// inappropriate, such as a const expression. |
| return_coercion: Option<CoerceMany>, |
| /// The resume type and the yield type, respectively, of the coroutine being inferred. |
| resume_yield_tys: Option<(Ty, Ty)>, |
| diverges: Diverges, |
| breakables: Vec<BreakableContext>, |
| |
| deferred_cast_checks: Vec<CastCheck>, |
| |
| // fields related to closure capture |
| current_captures: Vec<CapturedItemWithoutTy>, |
| current_closure: Option<ClosureId>, |
| /// Stores the list of closure ids that need to be analyzed before this closure. See the |
| /// comment on `InferenceContext::sort_closures` |
| closure_dependencies: FxHashMap<ClosureId, Vec<ClosureId>>, |
| deferred_closures: FxHashMap<ClosureId, Vec<(Ty, Ty, Vec<Ty>, ExprId)>>, |
| } |
| |
| #[derive(Clone, Debug)] |
| struct BreakableContext { |
| /// Whether this context contains at least one break expression. |
| may_break: bool, |
| /// The coercion target of the context. |
| coerce: Option<CoerceMany>, |
| /// The optional label of the context. |
| label: Option<LabelId>, |
| kind: BreakableKind, |
| } |
| |
| #[derive(Clone, Debug)] |
| enum BreakableKind { |
| Block, |
| Loop, |
| /// A border is something like an async block, closure etc. Anything that prevents |
| /// breaking/continuing through |
| Border, |
| } |
| |
| fn find_breakable( |
| ctxs: &mut [BreakableContext], |
| label: Option<LabelId>, |
| ) -> Option<&mut BreakableContext> { |
| let mut ctxs = ctxs |
| .iter_mut() |
| .rev() |
| .take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop)); |
| match label { |
| Some(_) => ctxs.find(|ctx| ctx.label == label), |
| None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)), |
| } |
| } |
| |
| fn find_continuable( |
| ctxs: &mut [BreakableContext], |
| label: Option<LabelId>, |
| ) -> Option<&mut BreakableContext> { |
| match label { |
| Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)), |
| None => find_breakable(ctxs, label), |
| } |
| } |
| |
| impl<'a> InferenceContext<'a> { |
| fn new( |
| db: &'a dyn HirDatabase, |
| owner: DefWithBodyId, |
| body: &'a Body, |
| resolver: Resolver, |
| ) -> Self { |
| let trait_env = db.trait_environment_for_body(owner); |
| InferenceContext { |
| generics: OnceCell::new(), |
| result: InferenceResult::default(), |
| table: unify::InferenceTable::new(db, trait_env), |
| tuple_field_accesses_rev: Default::default(), |
| return_ty: TyKind::Error.intern(Interner), // set in collect_* calls |
| resume_yield_tys: None, |
| return_coercion: None, |
| db, |
| owner, |
| body, |
| traits_in_scope: resolver.traits_in_scope(db.upcast()), |
| resolver, |
| diverges: Diverges::Maybe, |
| breakables: Vec::new(), |
| deferred_cast_checks: Vec::new(), |
| current_captures: Vec::new(), |
| current_closure: None, |
| deferred_closures: FxHashMap::default(), |
| closure_dependencies: FxHashMap::default(), |
| } |
| } |
| |
| pub(crate) fn generics(&self) -> Option<&Generics> { |
| self.generics |
| .get_or_init(|| { |
| self.resolver |
| .generic_def() |
| .map(|def| crate::generics::generics(self.db.upcast(), def)) |
| }) |
| .as_ref() |
| } |
| |
| // FIXME: This function should be private in module. It is currently only used in the consteval, since we need |
| // `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you |
| // used this function for another workaround, mention it here. If you really need this function and believe that |
| // there is no problem in it being `pub(crate)`, remove this comment. |
| pub(crate) fn resolve_all(self) -> InferenceResult { |
| let InferenceContext { |
| mut table, |
| mut result, |
| deferred_cast_checks, |
| tuple_field_accesses_rev, |
| .. |
| } = self; |
| // Destructure every single field so whenever new fields are added to `InferenceResult` we |
| // don't forget to handle them here. |
| let InferenceResult { |
| method_resolutions, |
| field_resolutions: _, |
| variant_resolutions: _, |
| assoc_resolutions, |
| diagnostics, |
| type_of_expr, |
| type_of_pat, |
| type_of_binding, |
| type_of_rpit, |
| type_of_for_iterator, |
| type_mismatches, |
| has_errors, |
| standard_types: _, |
| pat_adjustments, |
| binding_modes: _, |
| expr_adjustments, |
| // Types in `closure_info` have already been `resolve_completely()`'d during |
| // `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need |
| // to resolve them here. |
| closure_info: _, |
| mutated_bindings_in_closure: _, |
| tuple_field_access_types: _, |
| } = &mut result; |
| |
| table.fallback_if_possible(); |
| |
| // Comment from rustc: |
| // Even though coercion casts provide type hints, we check casts after fallback for |
| // backwards compatibility. This makes fallback a stronger type hint than a cast coercion. |
| for cast in deferred_cast_checks { |
| cast.check(&mut table); |
| } |
| |
| // FIXME resolve obligations as well (use Guidance if necessary) |
| table.resolve_obligations_as_possible(); |
| |
| // make sure diverging type variables are marked as such |
| table.propagate_diverging_flag(); |
| for ty in type_of_expr.values_mut() { |
| *ty = table.resolve_completely(ty.clone()); |
| *has_errors = *has_errors || ty.contains_unknown(); |
| } |
| for ty in type_of_pat.values_mut() { |
| *ty = table.resolve_completely(ty.clone()); |
| *has_errors = *has_errors || ty.contains_unknown(); |
| } |
| for ty in type_of_binding.values_mut() { |
| *ty = table.resolve_completely(ty.clone()); |
| *has_errors = *has_errors || ty.contains_unknown(); |
| } |
| for ty in type_of_rpit.values_mut() { |
| *ty = table.resolve_completely(ty.clone()); |
| *has_errors = *has_errors || ty.contains_unknown(); |
| } |
| for ty in type_of_for_iterator.values_mut() { |
| *ty = table.resolve_completely(ty.clone()); |
| *has_errors = *has_errors || ty.contains_unknown(); |
| } |
| |
| *has_errors = !type_mismatches.is_empty(); |
| |
| type_mismatches.retain(|_, mismatch| { |
| mismatch.expected = table.resolve_completely(mismatch.expected.clone()); |
| mismatch.actual = table.resolve_completely(mismatch.actual.clone()); |
| chalk_ir::zip::Zip::zip_with( |
| &mut UnknownMismatch(self.db), |
| Variance::Invariant, |
| &mismatch.expected, |
| &mismatch.actual, |
| ) |
| .is_ok() |
| }); |
| diagnostics.retain_mut(|diagnostic| { |
| use InferenceDiagnostic::*; |
| match diagnostic { |
| ExpectedFunction { found: ty, .. } |
| | UnresolvedField { receiver: ty, .. } |
| | UnresolvedMethodCall { receiver: ty, .. } => { |
| *ty = table.resolve_completely(ty.clone()); |
| // FIXME: Remove this when we are on par with rustc in terms of inference |
| if ty.contains_unknown() { |
| return false; |
| } |
| |
| if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic { |
| if let Some(ty) = field_with_same_name { |
| *ty = table.resolve_completely(ty.clone()); |
| if ty.contains_unknown() { |
| *field_with_same_name = None; |
| } |
| } |
| } |
| } |
| TypedHole { expected: ty, .. } => { |
| *ty = table.resolve_completely(ty.clone()); |
| } |
| _ => (), |
| } |
| true |
| }); |
| for (_, subst) in method_resolutions.values_mut() { |
| *subst = table.resolve_completely(subst.clone()); |
| } |
| for (_, subst) in assoc_resolutions.values_mut() { |
| *subst = table.resolve_completely(subst.clone()); |
| } |
| for adjustment in expr_adjustments.values_mut().flatten() { |
| adjustment.target = table.resolve_completely(adjustment.target.clone()); |
| } |
| for adjustment in pat_adjustments.values_mut().flatten() { |
| *adjustment = table.resolve_completely(adjustment.clone()); |
| } |
| result.tuple_field_access_types = tuple_field_accesses_rev |
| .into_iter() |
| .enumerate() |
| .map(|(idx, subst)| (TupleId(idx as u32), table.resolve_completely(subst))) |
| .collect(); |
| result |
| } |
| |
| fn collect_const(&mut self, data: &ConstData) { |
| let return_ty = self.make_ty(&data.type_ref); |
| |
| // Constants might be defining usage sites of TAITs. |
| self.make_tait_coercion_table(iter::once(&return_ty)); |
| |
| self.return_ty = return_ty; |
| } |
| |
| fn collect_static(&mut self, data: &StaticData) { |
| let return_ty = self.make_ty(&data.type_ref); |
| |
| // Statics might be defining usage sites of TAITs. |
| self.make_tait_coercion_table(iter::once(&return_ty)); |
| |
| self.return_ty = return_ty; |
| } |
| |
| fn collect_fn(&mut self, func: FunctionId) { |
| let data = self.db.function_data(func); |
| let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()) |
| .with_type_param_mode(ParamLoweringMode::Placeholder) |
| .with_impl_trait_mode(ImplTraitLoweringMode::Param); |
| let mut param_tys = |
| data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>(); |
| // Check if function contains a va_list, if it does then we append it to the parameter types |
| // that are collected from the function data |
| if data.is_varargs() { |
| let va_list_ty = match self.resolve_va_list() { |
| Some(va_list) => TyBuilder::adt(self.db, va_list) |
| .fill_with_defaults(self.db, || self.table.new_type_var()) |
| .build(), |
| None => self.err_ty(), |
| }; |
| |
| param_tys.push(va_list_ty); |
| } |
| let mut param_tys = param_tys.into_iter().chain(iter::repeat(self.table.new_type_var())); |
| if let Some(self_param) = self.body.self_param { |
| if let Some(ty) = param_tys.next() { |
| let ty = self.insert_type_vars(ty); |
| let ty = self.normalize_associated_types_in(ty); |
| self.write_binding_ty(self_param, ty); |
| } |
| } |
| let mut params_and_ret_tys = Vec::new(); |
| for (ty, pat) in param_tys.zip(&*self.body.params) { |
| let ty = self.insert_type_vars(ty); |
| let ty = self.normalize_associated_types_in(ty); |
| |
| self.infer_top_pat(*pat, &ty); |
| params_and_ret_tys.push(ty); |
| } |
| let return_ty = &*data.ret_type; |
| |
| let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()) |
| .with_type_param_mode(ParamLoweringMode::Placeholder) |
| .with_impl_trait_mode(ImplTraitLoweringMode::Opaque); |
| let return_ty = ctx.lower_ty(return_ty); |
| let return_ty = self.insert_type_vars(return_ty); |
| |
| let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) { |
| // RPIT opaque types use substitution of their parent function. |
| let fn_placeholders = TyBuilder::placeholder_subst(self.db, func); |
| let result = self.insert_inference_vars_for_impl_trait(return_ty, fn_placeholders); |
| let rpits = rpits.skip_binders(); |
| for (id, _) in rpits.impl_traits.iter() { |
| if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) { |
| never!("Missed RPIT in `insert_inference_vars_for_rpit`"); |
| e.insert(TyKind::Error.intern(Interner)); |
| } |
| } |
| result |
| } else { |
| return_ty |
| }; |
| |
| self.return_ty = self.normalize_associated_types_in(return_ty); |
| self.return_coercion = Some(CoerceMany::new(self.return_ty.clone())); |
| |
| // Functions might be defining usage sites of TAITs. |
| // To define an TAITs, that TAIT must appear in the function's signatures. |
| // So, it suffices to check for params and return types. |
| params_and_ret_tys.push(self.return_ty.clone()); |
| self.make_tait_coercion_table(params_and_ret_tys.iter()); |
| } |
| |
| fn insert_inference_vars_for_impl_trait<T>(&mut self, t: T, placeholders: Substitution) -> T |
| where |
| T: crate::HasInterner<Interner = Interner> + crate::TypeFoldable<Interner>, |
| { |
| fold_tys( |
| t, |
| |ty, _| { |
| let opaque_ty_id = match ty.kind(Interner) { |
| TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id, |
| _ => return ty, |
| }; |
| let (impl_traits, idx) = |
| match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) { |
| ImplTraitId::ReturnTypeImplTrait(def, idx) => { |
| (self.db.return_type_impl_traits(def), idx) |
| } |
| ImplTraitId::TypeAliasImplTrait(def, idx) => { |
| (self.db.type_alias_impl_traits(def), idx) |
| } |
| _ => unreachable!(), |
| }; |
| let Some(impl_traits) = impl_traits else { |
| return ty; |
| }; |
| let bounds = (*impl_traits) |
| .map_ref(|rpits| rpits.impl_traits[idx].bounds.map_ref(|it| it.iter())); |
| let var = self.table.new_type_var(); |
| let var_subst = Substitution::from1(Interner, var.clone()); |
| for bound in bounds { |
| let predicate = bound.map(|it| it.cloned()).substitute(Interner, &placeholders); |
| let (var_predicate, binders) = |
| predicate.substitute(Interner, &var_subst).into_value_and_skipped_binders(); |
| always!(binders.is_empty(Interner)); // quantified where clauses not yet handled |
| let var_predicate = self |
| .insert_inference_vars_for_impl_trait(var_predicate, placeholders.clone()); |
| self.push_obligation(var_predicate.cast(Interner)); |
| } |
| self.result.type_of_rpit.insert(idx, var.clone()); |
| var |
| }, |
| DebruijnIndex::INNERMOST, |
| ) |
| } |
| |
| /// The coercion of a non-inference var into an opaque type should fail, |
| /// but not in the defining sites of the TAITs. |
| /// In such cases, we insert an proxy inference var for each TAIT, |
| /// and coerce into it instead of TAIT itself. |
| /// |
| /// The inference var stretagy is effective because; |
| /// |
| /// - It can still unify types that coerced into TAITs |
| /// - We are pushing `impl Trait` bounds into it |
| /// |
| /// This function inserts a map that maps the opaque type to that proxy inference var. |
| fn make_tait_coercion_table<'b>(&mut self, tait_candidates: impl Iterator<Item = &'b Ty>) { |
| struct TypeAliasImplTraitCollector<'a, 'b> { |
| db: &'b dyn HirDatabase, |
| table: &'b mut InferenceTable<'a>, |
| assocs: FxHashMap<OpaqueTyId, (ImplId, Ty)>, |
| non_assocs: FxHashMap<OpaqueTyId, Ty>, |
| } |
| |
| impl<'a, 'b> TypeVisitor<Interner> for TypeAliasImplTraitCollector<'a, 'b> { |
| type BreakTy = (); |
| |
| fn as_dyn(&mut self) -> &mut dyn TypeVisitor<Interner, BreakTy = Self::BreakTy> { |
| self |
| } |
| |
| fn interner(&self) -> Interner { |
| Interner |
| } |
| |
| fn visit_ty( |
| &mut self, |
| ty: &chalk_ir::Ty<Interner>, |
| outer_binder: DebruijnIndex, |
| ) -> std::ops::ControlFlow<Self::BreakTy> { |
| let ty = self.table.resolve_ty_shallow(ty); |
| |
| if let TyKind::OpaqueType(id, _) = ty.kind(Interner) { |
| if let ImplTraitId::TypeAliasImplTrait(alias_id, _) = |
| self.db.lookup_intern_impl_trait_id((*id).into()) |
| { |
| let loc = self.db.lookup_intern_type_alias(alias_id); |
| match loc.container { |
| ItemContainerId::ImplId(impl_id) => { |
| self.assocs.insert(*id, (impl_id, ty.clone())); |
| } |
| ItemContainerId::ModuleId(..) | ItemContainerId::ExternBlockId(..) => { |
| self.non_assocs.insert(*id, ty.clone()); |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| ty.super_visit_with(self, outer_binder) |
| } |
| } |
| |
| let mut collector = TypeAliasImplTraitCollector { |
| db: self.db, |
| table: &mut self.table, |
| assocs: FxHashMap::default(), |
| non_assocs: FxHashMap::default(), |
| }; |
| for ty in tait_candidates { |
| ty.visit_with(collector.as_dyn(), DebruijnIndex::INNERMOST); |
| } |
| |
| // Non-assoc TAITs can be define-used everywhere as long as they are |
| // in function signatures or const types, etc |
| let mut taits = collector.non_assocs; |
| |
| // assoc TAITs(ATPITs) can be only define-used inside their impl block. |
| // They cannot be define-used in inner items like in the following; |
| // |
| // ``` |
| // impl Trait for Struct { |
| // type Assoc = impl Default; |
| // |
| // fn assoc_fn() -> Self::Assoc { |
| // let foo: Self::Assoc = true; // Allowed here |
| // |
| // fn inner() -> Self::Assoc { |
| // false // Not allowed here |
| // } |
| // |
| // foo |
| // } |
| // } |
| // ``` |
| let impl_id = match self.owner { |
| DefWithBodyId::FunctionId(it) => { |
| let loc = self.db.lookup_intern_function(it); |
| if let ItemContainerId::ImplId(impl_id) = loc.container { |
| Some(impl_id) |
| } else { |
| None |
| } |
| } |
| DefWithBodyId::ConstId(it) => { |
| let loc = self.db.lookup_intern_const(it); |
| if let ItemContainerId::ImplId(impl_id) = loc.container { |
| Some(impl_id) |
| } else { |
| None |
| } |
| } |
| _ => None, |
| }; |
| |
| if let Some(impl_id) = impl_id { |
| taits.extend(collector.assocs.into_iter().filter_map(|(id, (impl_, ty))| { |
| if impl_ == impl_id { |
| Some((id, ty)) |
| } else { |
| None |
| } |
| })); |
| } |
| |
| let tait_coercion_table: FxHashMap<_, _> = taits |
| .into_iter() |
| .filter_map(|(id, ty)| { |
| if let ImplTraitId::TypeAliasImplTrait(alias_id, _) = |
| self.db.lookup_intern_impl_trait_id(id.into()) |
| { |
| let subst = TyBuilder::placeholder_subst(self.db, alias_id); |
| let ty = self.insert_inference_vars_for_impl_trait(ty, subst); |
| Some((id, ty)) |
| } else { |
| None |
| } |
| }) |
| .collect(); |
| |
| if !tait_coercion_table.is_empty() { |
| self.table.tait_coercion_table = Some(tait_coercion_table); |
| } |
| } |
| |
| fn infer_body(&mut self) { |
| match self.return_coercion { |
| Some(_) => self.infer_return(self.body.body_expr), |
| None => { |
| _ = self.infer_expr_coerce( |
| self.body.body_expr, |
| &Expectation::has_type(self.return_ty.clone()), |
| ) |
| } |
| } |
| } |
| |
| fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { |
| self.result.type_of_expr.insert(expr, ty); |
| } |
| |
| fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) { |
| self.result.expr_adjustments.insert(expr, adjustments); |
| } |
| |
| fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) { |
| self.result.method_resolutions.insert(expr, (func, subst)); |
| } |
| |
| fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) { |
| self.result.variant_resolutions.insert(id, variant); |
| } |
| |
| fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) { |
| self.result.assoc_resolutions.insert(id, (item, subs)); |
| } |
| |
| fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { |
| self.result.type_of_pat.insert(pat, ty); |
| } |
| |
| fn write_binding_ty(&mut self, id: BindingId, ty: Ty) { |
| self.result.type_of_binding.insert(id, ty); |
| } |
| |
| fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) { |
| self.result.diagnostics.push(diagnostic); |
| } |
| |
| fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { |
| let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); |
| let ty = ctx.lower_ty(type_ref); |
| let ty = self.insert_type_vars(ty); |
| self.normalize_associated_types_in(ty) |
| } |
| |
| fn err_ty(&self) -> Ty { |
| self.result.standard_types.unknown.clone() |
| } |
| |
| fn make_lifetime(&mut self, lifetime_ref: &LifetimeRef) -> Lifetime { |
| let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); |
| let lt = ctx.lower_lifetime(lifetime_ref); |
| self.insert_type_vars(lt) |
| } |
| |
| /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it. |
| fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { |
| self.table.insert_type_vars_shallow(ty) |
| } |
| |
| fn insert_type_vars<T>(&mut self, ty: T) -> T |
| where |
| T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, |
| { |
| self.table.insert_type_vars(ty) |
| } |
| |
| fn push_obligation(&mut self, o: DomainGoal) { |
| self.table.register_obligation(o.cast(Interner)); |
| } |
| |
| fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { |
| let ty1 = ty1 |
| .clone() |
| .try_fold_with( |
| &mut UnevaluatedConstEvaluatorFolder { db: self.db }, |
| DebruijnIndex::INNERMOST, |
| ) |
| .unwrap(); |
| let ty2 = ty2 |
| .clone() |
| .try_fold_with( |
| &mut UnevaluatedConstEvaluatorFolder { db: self.db }, |
| DebruijnIndex::INNERMOST, |
| ) |
| .unwrap(); |
| self.table.unify(&ty1, &ty2) |
| } |
| |
| /// Attempts to returns the deeply last field of nested structures, but |
| /// does not apply any normalization in its search. Returns the same type |
| /// if input `ty` is not a structure at all. |
| fn struct_tail_without_normalization(&mut self, ty: Ty) -> Ty { |
| self.struct_tail_with_normalize(ty, identity) |
| } |
| |
| /// Returns the deeply last field of nested structures, or the same type if |
| /// not a structure at all. Corresponds to the only possible unsized field, |
| /// and its type can be used to determine unsizing strategy. |
| /// |
| /// This is parameterized over the normalization strategy (i.e. how to |
| /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity |
| /// function to indicate no normalization should take place. |
| fn struct_tail_with_normalize( |
| &mut self, |
| mut ty: Ty, |
| mut normalize: impl FnMut(Ty) -> Ty, |
| ) -> Ty { |
| // FIXME: fetch the limit properly |
| let recursion_limit = 10; |
| for iteration in 0.. { |
| if iteration > recursion_limit { |
| return self.err_ty(); |
| } |
| match ty.kind(Interner) { |
| TyKind::Adt(chalk_ir::AdtId(hir_def::AdtId::StructId(struct_id)), substs) => { |
| match self.db.field_types((*struct_id).into()).values().next_back().cloned() { |
| Some(field) => { |
| ty = field.substitute(Interner, substs); |
| } |
| None => break, |
| } |
| } |
| TyKind::Adt(..) => break, |
| TyKind::Tuple(_, substs) => { |
| match substs |
| .as_slice(Interner) |
| .split_last() |
| .and_then(|(last_ty, _)| last_ty.ty(Interner)) |
| { |
| Some(last_ty) => ty = last_ty.clone(), |
| None => break, |
| } |
| } |
| TyKind::Alias(..) => { |
| let normalized = normalize(ty.clone()); |
| if ty == normalized { |
| return ty; |
| } else { |
| ty = normalized; |
| } |
| } |
| _ => break, |
| } |
| } |
| ty |
| } |
| |
| /// Recurses through the given type, normalizing associated types mentioned |
| /// in it by replacing them by type variables and registering obligations to |
| /// resolve later. This should be done once for every type we get from some |
| /// type annotation (e.g. from a let type annotation, field type or function |
| /// call). `make_ty` handles this already, but e.g. for field types we need |
| /// to do it as well. |
| fn normalize_associated_types_in<T>(&mut self, ty: T) -> T |
| where |
| T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, |
| { |
| self.table.normalize_associated_types_in(ty) |
| } |
| |
| fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty { |
| self.table.resolve_ty_shallow(ty) |
| } |
| |
| fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty { |
| self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[]) |
| } |
| |
| fn resolve_associated_type_with_params( |
| &mut self, |
| inner_ty: Ty, |
| assoc_ty: Option<TypeAliasId>, |
| // FIXME(GATs): these are args for the trait ref, args for assoc type itself should be |
| // handled when we support them. |
| params: &[GenericArg], |
| ) -> Ty { |
| match assoc_ty { |
| Some(res_assoc_ty) => { |
| let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container { |
| hir_def::ItemContainerId::TraitId(trait_) => trait_, |
| _ => panic!("resolve_associated_type called with non-associated type"), |
| }; |
| let ty = self.table.new_type_var(); |
| let mut param_iter = params.iter().cloned(); |
| let trait_ref = TyBuilder::trait_ref(self.db, trait_) |
| .push(inner_ty) |
| .fill(|_| param_iter.next().unwrap()) |
| .build(); |
| let alias_eq = AliasEq { |
| alias: AliasTy::Projection(ProjectionTy { |
| associated_ty_id: to_assoc_type_id(res_assoc_ty), |
| substitution: trait_ref.substitution.clone(), |
| }), |
| ty: ty.clone(), |
| }; |
| self.push_obligation(trait_ref.cast(Interner)); |
| self.push_obligation(alias_eq.cast(Interner)); |
| ty |
| } |
| None => self.err_ty(), |
| } |
| } |
| |
| fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) { |
| let path = match path { |
| Some(path) => path, |
| None => return (self.err_ty(), None), |
| }; |
| let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); |
| let (resolution, unresolved) = if value_ns { |
| match self.resolver.resolve_path_in_value_ns(self.db.upcast(), path) { |
| Some(ResolveValueResult::ValueNs(value, _)) => match value { |
| ValueNs::EnumVariantId(var) => { |
| let substs = ctx.substs_from_path(path, var.into(), true); |
| let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| return (ty, Some(var.into())); |
| } |
| ValueNs::StructId(strukt) => { |
| let substs = ctx.substs_from_path(path, strukt.into(), true); |
| let ty = self.db.ty(strukt.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| return (ty, Some(strukt.into())); |
| } |
| ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None), |
| _ => return (self.err_ty(), None), |
| }, |
| Some(ResolveValueResult::Partial(typens, unresolved, _)) => { |
| (typens, Some(unresolved)) |
| } |
| None => return (self.err_ty(), None), |
| } |
| } else { |
| match self.resolver.resolve_path_in_type_ns(self.db.upcast(), path) { |
| Some((it, idx, _)) => (it, idx), |
| None => return (self.err_ty(), None), |
| } |
| }; |
| let Some(mod_path) = path.mod_path() else { |
| never!("resolver should always resolve lang item paths"); |
| return (self.err_ty(), None); |
| }; |
| return match resolution { |
| TypeNs::AdtId(AdtId::StructId(strukt)) => { |
| let substs = ctx.substs_from_path(path, strukt.into(), true); |
| let ty = self.db.ty(strukt.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| forbid_unresolved_segments((ty, Some(strukt.into())), unresolved) |
| } |
| TypeNs::AdtId(AdtId::UnionId(u)) => { |
| let substs = ctx.substs_from_path(path, u.into(), true); |
| let ty = self.db.ty(u.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| forbid_unresolved_segments((ty, Some(u.into())), unresolved) |
| } |
| TypeNs::EnumVariantId(var) => { |
| let substs = ctx.substs_from_path(path, var.into(), true); |
| let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| forbid_unresolved_segments((ty, Some(var.into())), unresolved) |
| } |
| TypeNs::SelfType(impl_id) => { |
| let generics = crate::generics::generics(self.db.upcast(), impl_id.into()); |
| let substs = generics.placeholder_subst(self.db); |
| let mut ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs); |
| |
| let Some(mut remaining_idx) = unresolved else { |
| return self.resolve_variant_on_alias(ty, None, mod_path); |
| }; |
| |
| let mut remaining_segments = path.segments().skip(remaining_idx); |
| |
| // We need to try resolving unresolved segments one by one because each may resolve |
| // to a projection, which `TyLoweringContext` cannot handle on its own. |
| while !remaining_segments.is_empty() { |
| let resolved_segment = path.segments().get(remaining_idx - 1).unwrap(); |
| let current_segment = remaining_segments.take(1); |
| |
| // If we can resolve to an enum variant, it takes priority over associated type |
| // of the same name. |
| if let Some((AdtId::EnumId(id), _)) = ty.as_adt() { |
| let enum_data = self.db.enum_data(id); |
| let name = current_segment.first().unwrap().name; |
| if let Some(variant) = enum_data.variant(name) { |
| return if remaining_segments.len() == 1 { |
| (ty, Some(variant.into())) |
| } else { |
| // We still have unresolved paths, but enum variants never have |
| // associated types! |
| (self.err_ty(), None) |
| }; |
| } |
| } |
| |
| // `lower_partly_resolved_path()` returns `None` as type namespace unless |
| // `remaining_segments` is empty, which is never the case here. We don't know |
| // which namespace the new `ty` is in until normalized anyway. |
| (ty, _) = ctx.lower_partly_resolved_path( |
| resolution, |
| resolved_segment, |
| current_segment, |
| false, |
| ); |
| |
| ty = self.table.insert_type_vars(ty); |
| ty = self.table.normalize_associated_types_in(ty); |
| ty = self.table.resolve_ty_shallow(&ty); |
| if ty.is_unknown() { |
| return (self.err_ty(), None); |
| } |
| |
| // FIXME(inherent_associated_types): update `resolution` based on `ty` here. |
| remaining_idx += 1; |
| remaining_segments = remaining_segments.skip(1); |
| } |
| |
| let variant = ty.as_adt().and_then(|(id, _)| match id { |
| AdtId::StructId(s) => Some(VariantId::StructId(s)), |
| AdtId::UnionId(u) => Some(VariantId::UnionId(u)), |
| AdtId::EnumId(_) => { |
| // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` |
| None |
| } |
| }); |
| (ty, variant) |
| } |
| TypeNs::TypeAliasId(it) => { |
| let resolved_seg = match unresolved { |
| None => path.segments().last().unwrap(), |
| Some(n) => path.segments().get(path.segments().len() - n - 1).unwrap(), |
| }; |
| let substs = |
| ctx.substs_from_path_segment(resolved_seg, Some(it.into()), true, None); |
| let ty = self.db.ty(it.into()); |
| let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); |
| |
| self.resolve_variant_on_alias(ty, unresolved, mod_path) |
| } |
| TypeNs::AdtSelfType(_) => { |
| // FIXME this could happen in array size expressions, once we're checking them |
| (self.err_ty(), None) |
| } |
| TypeNs::GenericParam(_) => { |
| // FIXME potentially resolve assoc type |
| (self.err_ty(), None) |
| } |
| TypeNs::AdtId(AdtId::EnumId(_)) |
| | TypeNs::BuiltinType(_) |
| | TypeNs::TraitId(_) |
| | TypeNs::TraitAliasId(_) => { |
| // FIXME diagnostic |
| (self.err_ty(), None) |
| } |
| }; |
| |
| fn forbid_unresolved_segments( |
| result: (Ty, Option<VariantId>), |
| unresolved: Option<usize>, |
| ) -> (Ty, Option<VariantId>) { |
| if unresolved.is_none() { |
| result |
| } else { |
| // FIXME diagnostic |
| (TyKind::Error.intern(Interner), None) |
| } |
| } |
| } |
| |
| fn resolve_variant_on_alias( |
| &mut self, |
| ty: Ty, |
| unresolved: Option<usize>, |
| path: &ModPath, |
| ) -> (Ty, Option<VariantId>) { |
| let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0); |
| let ty = match ty.kind(Interner) { |
| TyKind::Alias(AliasTy::Projection(proj_ty)) => { |
| self.db.normalize_projection(proj_ty.clone(), self.table.trait_env.clone()) |
| } |
| _ => ty, |
| }; |
| match remaining { |
| None => { |
| let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id { |
| AdtId::StructId(s) => Some(VariantId::StructId(s)), |
| AdtId::UnionId(u) => Some(VariantId::UnionId(u)), |
| AdtId::EnumId(_) => { |
| // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` |
| None |
| } |
| }); |
| (ty, variant) |
| } |
| Some(1) => { |
| let segment = path.segments().last().unwrap(); |
| // this could be an enum variant or associated type |
| if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() { |
| let enum_data = self.db.enum_data(enum_id); |
| if let Some(variant) = enum_data.variant(segment) { |
| return (ty, Some(variant.into())); |
| } |
| } |
| // FIXME potentially resolve assoc type |
| (self.err_ty(), None) |
| } |
| Some(_) => { |
| // FIXME diagnostic |
| (self.err_ty(), None) |
| } |
| } |
| } |
| |
| fn resolve_lang_item(&self, item: LangItem) -> Option<LangItemTarget> { |
| let krate = self.resolver.krate(); |
| self.db.lang_item(krate, item) |
| } |
| |
| fn resolve_output_on(&self, trait_: TraitId) -> Option<TypeAliasId> { |
| self.db |
| .trait_data(trait_) |
| .associated_type_by_name(&Name::new_symbol_root(sym::Output.clone())) |
| } |
| |
| fn resolve_lang_trait(&self, lang: LangItem) -> Option<TraitId> { |
| self.resolve_lang_item(lang)?.as_trait() |
| } |
| |
| fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?) |
| } |
| |
| fn resolve_ops_not_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?) |
| } |
| |
| fn resolve_future_future_output(&self) -> Option<TypeAliasId> { |
| let ItemContainerId::TraitId(trait_) = self |
| .resolve_lang_item(LangItem::IntoFutureIntoFuture)? |
| .as_function()? |
| .lookup(self.db.upcast()) |
| .container |
| else { |
| return None; |
| }; |
| self.resolve_output_on(trait_) |
| } |
| |
| fn resolve_boxed_box(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_full(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_inclusive(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_from(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_to(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_range_to_inclusive(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn resolve_ops_index_output(&self) -> Option<TypeAliasId> { |
| self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?) |
| } |
| |
| fn resolve_va_list(&self) -> Option<AdtId> { |
| let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?; |
| Some(struct_.into()) |
| } |
| |
| fn get_traits_in_scope(&self) -> Either<FxHashSet<TraitId>, &FxHashSet<TraitId>> { |
| let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable(); |
| if b_traits.peek().is_some() { |
| Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect()) |
| } else { |
| Either::Right(&self.traits_in_scope) |
| } |
| } |
| } |
| |
| /// When inferring an expression, we propagate downward whatever type hint we |
| /// are able in the form of an `Expectation`. |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| pub(crate) enum Expectation { |
| None, |
| HasType(Ty), |
| #[allow(dead_code)] |
| Castable(Ty), |
| RValueLikeUnsized(Ty), |
| } |
| |
| impl Expectation { |
| /// The expectation that the type of the expression needs to equal the given |
| /// type. |
| fn has_type(ty: Ty) -> Self { |
| if ty.is_unknown() { |
| // FIXME: get rid of this? |
| Expectation::None |
| } else { |
| Expectation::HasType(ty) |
| } |
| } |
| |
| /// The following explanation is copied straight from rustc: |
| /// Provides an expectation for an rvalue expression given an *optional* |
| /// hint, which is not required for type safety (the resulting type might |
| /// be checked higher up, as is the case with `&expr` and `box expr`), but |
| /// is useful in determining the concrete type. |
| /// |
| /// The primary use case is where the expected type is a fat pointer, |
| /// like `&[isize]`. For example, consider the following statement: |
| /// |
| /// let it: &[isize] = &[1, 2, 3]; |
| /// |
| /// In this case, the expected type for the `&[1, 2, 3]` expression is |
| /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the |
| /// expectation `ExpectHasType([isize])`, that would be too strong -- |
| /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`. |
| /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced |
| /// to the type `&[isize]`. Therefore, we propagate this more limited hint, |
| /// which still is useful, because it informs integer literals and the like. |
| /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169 |
| /// for examples of where this comes up,. |
| fn rvalue_hint(ctx: &mut InferenceContext<'_>, ty: Ty) -> Self { |
| match ctx.struct_tail_without_normalization(ty.clone()).kind(Interner) { |
| TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty), |
| _ => Expectation::has_type(ty), |
| } |
| } |
| |
| /// This expresses no expectation on the type. |
| fn none() -> Self { |
| Expectation::None |
| } |
| |
| fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation { |
| match self { |
| Expectation::None => Expectation::None, |
| Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)), |
| Expectation::Castable(t) => Expectation::Castable(table.resolve_ty_shallow(t)), |
| Expectation::RValueLikeUnsized(t) => { |
| Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t)) |
| } |
| } |
| } |
| |
| fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> { |
| match self.resolve(table) { |
| Expectation::None => None, |
| Expectation::HasType(t) |
| | Expectation::Castable(t) |
| | Expectation::RValueLikeUnsized(t) => Some(t), |
| } |
| } |
| |
| fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> { |
| match self { |
| Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)), |
| Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => { |
| None |
| } |
| } |
| } |
| |
| fn coercion_target_type(&self, table: &mut unify::InferenceTable<'_>) -> Ty { |
| self.only_has_type(table).unwrap_or_else(|| table.new_type_var()) |
| } |
| |
| /// Comment copied from rustc: |
| /// Disregard "castable to" expectations because they |
| /// can lead us astray. Consider for example `if cond |
| /// {22} else {c} as u8` -- if we propagate the |
| /// "castable to u8" constraint to 22, it will pick the |
| /// type 22u8, which is overly constrained (c might not |
| /// be a u8). In effect, the problem is that the |
| /// "castable to" expectation is not the tightest thing |
| /// we can say, so we want to drop it in this case. |
| /// The tightest thing we can say is "must unify with |
| /// else branch". Note that in the case of a "has type" |
| /// constraint, this limitation does not hold. |
| /// |
| /// If the expected type is just a type variable, then don't use |
| /// an expected type. Otherwise, we might write parts of the type |
| /// when checking the 'then' block which are incompatible with the |
| /// 'else' branch. |
| fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation { |
| match self { |
| Expectation::HasType(ety) => { |
| let ety = table.resolve_ty_shallow(ety); |
| if ety.is_ty_var() { |
| Expectation::None |
| } else { |
| Expectation::HasType(ety) |
| } |
| } |
| Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()), |
| _ => Expectation::None, |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] |
| enum Diverges { |
| Maybe, |
| Always, |
| } |
| |
| impl Diverges { |
| fn is_always(self) -> bool { |
| self == Diverges::Always |
| } |
| } |
| |
| impl std::ops::BitAnd for Diverges { |
| type Output = Self; |
| fn bitand(self, other: Self) -> Self { |
| std::cmp::min(self, other) |
| } |
| } |
| |
| impl std::ops::BitOr for Diverges { |
| type Output = Self; |
| fn bitor(self, other: Self) -> Self { |
| std::cmp::max(self, other) |
| } |
| } |
| |
| impl std::ops::BitAndAssign for Diverges { |
| fn bitand_assign(&mut self, other: Self) { |
| *self = *self & other; |
| } |
| } |
| |
| impl std::ops::BitOrAssign for Diverges { |
| fn bitor_assign(&mut self, other: Self) { |
| *self = *self | other; |
| } |
| } |
| |
| /// A zipper that checks for unequal occurrences of `{unknown}` and unresolved projections |
| /// in the two types. Used to filter out mismatch diagnostics that only differ in |
| /// `{unknown}` and unresolved projections. These mismatches are usually not helpful. |
| /// As the cause is usually an underlying name resolution problem |
| struct UnknownMismatch<'db>(&'db dyn HirDatabase); |
| impl chalk_ir::zip::Zipper<Interner> for UnknownMismatch<'_> { |
| fn zip_tys(&mut self, variance: Variance, a: &Ty, b: &Ty) -> chalk_ir::Fallible<()> { |
| let zip_substs = |this: &mut Self, |
| variances, |
| sub_a: &Substitution, |
| sub_b: &Substitution| { |
| this.zip_substs(variance, variances, sub_a.as_slice(Interner), sub_b.as_slice(Interner)) |
| }; |
| match (a.kind(Interner), b.kind(Interner)) { |
| (TyKind::Adt(id_a, sub_a), TyKind::Adt(id_b, sub_b)) if id_a == id_b => zip_substs( |
| self, |
| Some(self.unification_database().adt_variance(*id_a)), |
| sub_a, |
| sub_b, |
| )?, |
| ( |
| TyKind::AssociatedType(assoc_ty_a, sub_a), |
| TyKind::AssociatedType(assoc_ty_b, sub_b), |
| ) if assoc_ty_a == assoc_ty_b => zip_substs(self, None, sub_a, sub_b)?, |
| (TyKind::Tuple(arity_a, sub_a), TyKind::Tuple(arity_b, sub_b)) |
| if arity_a == arity_b => |
| { |
| zip_substs(self, None, sub_a, sub_b)? |
| } |
| (TyKind::OpaqueType(opaque_ty_a, sub_a), TyKind::OpaqueType(opaque_ty_b, sub_b)) |
| if opaque_ty_a == opaque_ty_b => |
| { |
| zip_substs(self, None, sub_a, sub_b)? |
| } |
| (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => self.zip_tys(variance, ty_a, ty_b)?, |
| (TyKind::FnDef(fn_def_a, sub_a), TyKind::FnDef(fn_def_b, sub_b)) |
| if fn_def_a == fn_def_b => |
| { |
| zip_substs( |
| self, |
| Some(self.unification_database().fn_def_variance(*fn_def_a)), |
| sub_a, |
| sub_b, |
| )? |
| } |
| (TyKind::Ref(mutability_a, _, ty_a), TyKind::Ref(mutability_b, _, ty_b)) |
| if mutability_a == mutability_b => |
| { |
| self.zip_tys(variance, ty_a, ty_b)? |
| } |
| (TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b)) |
| if mutability_a == mutability_b => |
| { |
| self.zip_tys(variance, ty_a, ty_b)? |
| } |
| (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) if const_a == const_b => { |
| self.zip_tys(variance, ty_a, ty_b)? |
| } |
| (TyKind::Closure(id_a, sub_a), TyKind::Closure(id_b, sub_b)) if id_a == id_b => { |
| zip_substs(self, None, sub_a, sub_b)? |
| } |
| (TyKind::Coroutine(coroutine_a, sub_a), TyKind::Coroutine(coroutine_b, sub_b)) |
| if coroutine_a == coroutine_b => |
| { |
| zip_substs(self, None, sub_a, sub_b)? |
| } |
| ( |
| TyKind::CoroutineWitness(coroutine_a, sub_a), |
| TyKind::CoroutineWitness(coroutine_b, sub_b), |
| ) if coroutine_a == coroutine_b => zip_substs(self, None, sub_a, sub_b)?, |
| (TyKind::Function(fn_ptr_a), TyKind::Function(fn_ptr_b)) |
| if fn_ptr_a.sig == fn_ptr_b.sig && fn_ptr_a.num_binders == fn_ptr_b.num_binders => |
| { |
| zip_substs(self, None, &fn_ptr_a.substitution.0, &fn_ptr_b.substitution.0)? |
| } |
| (TyKind::Error, TyKind::Error) => (), |
| (TyKind::Error, _) |
| | (_, TyKind::Error) |
| | (TyKind::Alias(AliasTy::Projection(_)) | TyKind::AssociatedType(_, _), _) |
| | (_, TyKind::Alias(AliasTy::Projection(_)) | TyKind::AssociatedType(_, _)) => { |
| return Err(chalk_ir::NoSolution) |
| } |
| _ => (), |
| } |
| |
| Ok(()) |
| } |
| |
| fn zip_lifetimes(&mut self, _: Variance, _: &Lifetime, _: &Lifetime) -> chalk_ir::Fallible<()> { |
| Ok(()) |
| } |
| |
| fn zip_consts(&mut self, _: Variance, _: &Const, _: &Const) -> chalk_ir::Fallible<()> { |
| Ok(()) |
| } |
| |
| fn zip_binders<T>( |
| &mut self, |
| variance: Variance, |
| a: &Binders<T>, |
| b: &Binders<T>, |
| ) -> chalk_ir::Fallible<()> |
| where |
| T: Clone |
| + HasInterner<Interner = Interner> |
| + chalk_ir::zip::Zip<Interner> |
| + TypeFoldable<Interner>, |
| { |
| chalk_ir::zip::Zip::zip_with(self, variance, a.skip_binders(), b.skip_binders()) |
| } |
| |
| fn interner(&self) -> Interner { |
| Interner |
| } |
| |
| fn unification_database(&self) -> &dyn chalk_ir::UnificationDatabase<Interner> { |
| &self.0 |
| } |
| } |