blob: b7432d89c7b776bcbd6f4dd06955077d58cfd8f6 [file] [log] [blame]
//! See [`PathTransform`].
use crate::helpers::mod_path_to_ast;
use either::Either;
use hir::{
AsAssocItem, HirDisplay, HirFileId, ImportPathConfig, ModuleDef, SemanticsScope,
prettify_macro_expansion,
};
use itertools::Itertools;
use rustc_hash::FxHashMap;
use span::Edition;
use syntax::{
NodeOrToken, SyntaxNode,
ast::{self, AstNode, HasGenericArgs, make},
syntax_editor::{self, SyntaxEditor},
};
#[derive(Default, Debug)]
struct AstSubsts {
types_and_consts: Vec<TypeOrConst>,
lifetimes: Vec<ast::LifetimeArg>,
}
#[derive(Debug)]
enum TypeOrConst {
Either(ast::TypeArg), // indistinguishable type or const param
Const(ast::ConstArg),
}
type LifetimeName = String;
type DefaultedParam = Either<hir::TypeParam, hir::ConstParam>;
/// `PathTransform` substitutes path in SyntaxNodes in bulk.
///
/// This is mostly useful for IDE code generation. If you paste some existing
/// code into a new context (for example, to add method overrides to an `impl`
/// block), you generally want to appropriately qualify the names, and sometimes
/// you might want to substitute generic parameters as well:
///
/// ```ignore
/// mod x {
/// pub struct A<V>;
/// pub trait T<U> { fn foo(&self, _: U) -> A<U>; }
/// }
///
/// mod y {
/// use x::T;
///
/// impl T<()> for () {
/// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`.
/// // But we want a slightly-modified version of it:
/// fn foo(&self, _: ()) -> x::A<()> {}
/// }
/// }
/// ```
pub struct PathTransform<'a> {
generic_def: Option<hir::GenericDef>,
substs: AstSubsts,
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
}
impl<'a> PathTransform<'a> {
pub fn trait_impl(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
trait_: hir::Trait,
impl_: ast::Impl,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: Some(trait_.into()),
substs: get_syntactic_substs(impl_).unwrap_or_default(),
}
}
pub fn function_call(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
function: hir::Function,
generic_arg_list: ast::GenericArgList,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: Some(function.into()),
substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
}
}
pub fn impl_transformation(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
impl_: hir::Impl,
generic_arg_list: ast::GenericArgList,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: Some(impl_.into()),
substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
}
}
pub fn adt_transformation(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
adt: hir::Adt,
generic_arg_list: ast::GenericArgList,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: Some(adt.into()),
substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
}
}
pub fn generic_transformation(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: None,
substs: AstSubsts::default(),
}
}
#[must_use]
pub fn apply(&self, syntax: &SyntaxNode) -> SyntaxNode {
self.build_ctx().apply(syntax)
}
#[must_use]
pub fn apply_all<'b>(
&self,
nodes: impl IntoIterator<Item = &'b SyntaxNode>,
) -> Vec<SyntaxNode> {
let ctx = self.build_ctx();
nodes.into_iter().map(|node| ctx.apply(&node.clone())).collect()
}
fn prettify_target_node(&self, node: SyntaxNode) -> SyntaxNode {
match self.target_scope.file_id() {
HirFileId::FileId(_) => node,
HirFileId::MacroFile(file_id) => {
let db = self.target_scope.db;
prettify_macro_expansion(
db,
node,
&db.expansion_span_map(file_id),
self.target_scope.module().krate().into(),
)
}
}
}
fn prettify_target_ast<N: AstNode>(&self, node: N) -> N {
N::cast(self.prettify_target_node(node.syntax().clone())).unwrap()
}
fn build_ctx(&self) -> Ctx<'a> {
let db = self.source_scope.db;
let target_module = self.target_scope.module();
let source_module = self.source_scope.module();
let skip = match self.generic_def {
// this is a trait impl, so we need to skip the first type parameter (i.e. Self) -- this is a bit hacky
Some(hir::GenericDef::Trait(_)) => 1,
_ => 0,
};
let mut type_substs: FxHashMap<hir::TypeParam, ast::Type> = Default::default();
let mut const_substs: FxHashMap<hir::ConstParam, SyntaxNode> = Default::default();
let mut defaulted_params: Vec<DefaultedParam> = Default::default();
let target_edition = target_module.krate().edition(self.source_scope.db);
self.generic_def
.into_iter()
.flat_map(|it| it.type_or_const_params(db))
.skip(skip)
// The actual list of trait type parameters may be longer than the one
// used in the `impl` block due to trailing default type parameters.
// For that case we extend the `substs` with an empty iterator so we
// can still hit those trailing values and check if they actually have
// a default type. If they do, go for that type from `hir` to `ast` so
// the resulting change can be applied correctly.
.zip(self.substs.types_and_consts.iter().map(Some).chain(std::iter::repeat(None)))
.for_each(|(k, v)| match (k.split(db), v) {
(Either::Right(k), Some(TypeOrConst::Either(v))) => {
if let Some(ty) = v.ty() {
type_substs.insert(k, self.prettify_target_ast(ty));
}
}
(Either::Right(k), None) => {
if let Some(default) = k.default(db) {
if let Some(default) =
&default.display_source_code(db, source_module.into(), false).ok()
{
type_substs.insert(k, make::ty(default).clone_for_update());
defaulted_params.push(Either::Left(k));
}
}
}
(Either::Left(k), Some(TypeOrConst::Either(v))) => {
if let Some(ty) = v.ty() {
const_substs.insert(k, self.prettify_target_node(ty.syntax().clone()));
}
}
(Either::Left(k), Some(TypeOrConst::Const(v))) => {
if let Some(expr) = v.expr() {
// FIXME: expressions in curly brackets can cause ambiguity after insertion
// (e.g. `N * 2` -> `{1 + 1} * 2`; it's unclear whether `{1 + 1}`
// is a standalone statement or a part of another expression)
// and sometimes require slight modifications; see
// https://doc.rust-lang.org/reference/statements.html#expression-statements
// (default values in curly brackets can cause the same problem)
const_substs.insert(k, self.prettify_target_node(expr.syntax().clone()));
}
}
(Either::Left(k), None) => {
if let Some(default) =
k.default(db, target_module.krate().to_display_target(db))
{
if let Some(default) = default.expr() {
const_substs.insert(k, default.syntax().clone_for_update());
defaulted_params.push(Either::Right(k));
}
}
}
_ => (), // ignore mismatching params
});
// No need to prettify lifetimes, there's nothing to prettify.
let lifetime_substs: FxHashMap<_, _> = self
.generic_def
.into_iter()
.flat_map(|it| it.lifetime_params(db))
.zip(self.substs.lifetimes.clone())
.filter_map(|(k, v)| {
Some((k.name(db).display(db, target_edition).to_string(), v.lifetime()?))
})
.collect();
let mut ctx = Ctx {
type_substs,
const_substs,
lifetime_substs,
target_module,
source_scope: self.source_scope,
same_self_type: self.target_scope.has_same_self_type(self.source_scope),
target_edition,
};
ctx.transform_default_values(defaulted_params);
ctx
}
}
struct Ctx<'a> {
type_substs: FxHashMap<hir::TypeParam, ast::Type>,
const_substs: FxHashMap<hir::ConstParam, SyntaxNode>,
lifetime_substs: FxHashMap<LifetimeName, ast::Lifetime>,
target_module: hir::Module,
source_scope: &'a SemanticsScope<'a>,
same_self_type: bool,
target_edition: Edition,
}
fn preorder_rev(item: &SyntaxNode) -> impl Iterator<Item = SyntaxNode> {
let x = item
.preorder()
.filter_map(|event| match event {
syntax::WalkEvent::Enter(node) => Some(node),
syntax::WalkEvent::Leave(_) => None,
})
.collect_vec();
x.into_iter().rev()
}
impl Ctx<'_> {
fn apply(&self, item: &SyntaxNode) -> SyntaxNode {
// `transform_path` may update a node's parent and that would break the
// tree traversal. Thus all paths in the tree are collected into a vec
// so that such operation is safe.
let item = self.transform_path(item).clone_subtree();
let mut editor = SyntaxEditor::new(item.clone());
preorder_rev(&item).filter_map(ast::Lifetime::cast).for_each(|lifetime| {
if let Some(subst) = self.lifetime_substs.get(&lifetime.syntax().text().to_string()) {
editor
.replace(lifetime.syntax(), subst.clone_subtree().clone_for_update().syntax());
}
});
editor.finish().new_root().clone()
}
fn transform_default_values(&mut self, defaulted_params: Vec<DefaultedParam>) {
// By now the default values are simply copied from where they are declared
// and should be transformed. As any value is allowed to refer to previous
// generic (both type and const) parameters, they should be all iterated left-to-right.
for param in defaulted_params {
let value = match &param {
Either::Left(k) => self.type_substs.get(k).unwrap().syntax(),
Either::Right(k) => self.const_substs.get(k).unwrap(),
};
// `transform_path` may update a node's parent and that would break the
// tree traversal. Thus all paths in the tree are collected into a vec
// so that such operation is safe.
let new_value = self.transform_path(value);
match param {
Either::Left(k) => {
self.type_substs.insert(k, ast::Type::cast(new_value.clone()).unwrap());
}
Either::Right(k) => {
self.const_substs.insert(k, new_value.clone());
}
}
}
}
fn transform_path(&self, path: &SyntaxNode) -> SyntaxNode {
fn find_child_paths(root_path: &SyntaxNode) -> Vec<ast::Path> {
let mut result = Vec::new();
for child in root_path.children() {
if let Some(child_path) = ast::Path::cast(child.clone()) {
result.push(child_path);
} else {
result.extend(find_child_paths(&child));
}
}
result
}
let root_path = path.clone_subtree();
let result = find_child_paths(&root_path);
let mut editor = SyntaxEditor::new(root_path.clone());
for sub_path in result {
let new = self.transform_path(sub_path.syntax());
editor.replace(sub_path.syntax(), new);
}
let update_sub_item = editor.finish().new_root().clone().clone_subtree();
let item = find_child_paths(&update_sub_item);
let mut editor = SyntaxEditor::new(update_sub_item);
for sub_path in item {
self.transform_path_(&mut editor, &sub_path);
}
editor.finish().new_root().clone()
}
fn transform_path_(&self, editor: &mut SyntaxEditor, path: &ast::Path) -> Option<()> {
if path.qualifier().is_some() {
return None;
}
if path.segment().is_some_and(|s| {
s.parenthesized_arg_list().is_some()
|| (s.self_token().is_some() && path.parent_path().is_none())
}) {
// don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway
// don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing
return None;
}
let resolution = self.source_scope.speculative_resolve(path)?;
match resolution {
hir::PathResolution::TypeParam(tp) => {
if let Some(subst) = self.type_substs.get(&tp) {
let parent = path.syntax().parent()?;
if let Some(parent) = ast::Path::cast(parent.clone()) {
// Path inside path means that there is an associated
// type/constant on the type parameter. It is necessary
// to fully qualify the type with `as Trait`. Even
// though it might be unnecessary if `subst` is generic
// type, always fully qualifying the path is safer
// because of potential clash of associated types from
// multiple traits
let trait_ref = find_trait_for_assoc_item(
self.source_scope,
tp,
parent.segment()?.name_ref()?,
)
.and_then(|trait_ref| {
let cfg = ImportPathConfig {
prefer_no_std: false,
prefer_prelude: true,
prefer_absolute: false,
allow_unstable: true,
};
let found_path = self.target_module.find_path(
self.source_scope.db,
hir::ModuleDef::Trait(trait_ref),
cfg,
)?;
match make::ty_path(mod_path_to_ast(&found_path, self.target_edition)) {
ast::Type::PathType(path_ty) => Some(path_ty),
_ => None,
}
});
let segment = make::path_segment_ty(subst.clone(), trait_ref);
let qualified = make::path_from_segments(std::iter::once(segment), false);
editor.replace(path.syntax(), qualified.clone_for_update().syntax());
} else if let Some(path_ty) = ast::PathType::cast(parent) {
let old = path_ty.syntax();
if old.parent().is_some() {
editor.replace(old, subst.clone_subtree().clone_for_update().syntax());
} else {
// Some `path_ty` has no parent, especially ones made for default value
// of type parameters.
// In this case, `ted` cannot replace `path_ty` with `subst` directly.
// So, just replace its children as long as the `subst` is the same type.
let new = subst.clone_subtree().clone_for_update();
if !matches!(new, ast::Type::PathType(..)) {
return None;
}
let start = path_ty.syntax().first_child().map(NodeOrToken::Node)?;
let end = path_ty.syntax().last_child().map(NodeOrToken::Node)?;
editor.replace_all(
start..=end,
new.syntax().children().map(NodeOrToken::Node).collect::<Vec<_>>(),
);
}
} else {
editor.replace(
path.syntax(),
subst.clone_subtree().clone_for_update().syntax(),
);
}
}
}
hir::PathResolution::Def(def) if def.as_assoc_item(self.source_scope.db).is_none() => {
if let hir::ModuleDef::Trait(_) = def {
if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) {
// `speculative_resolve` resolves segments like `<T as
// Trait>` into `Trait`, but just the trait name should
// not be used as the replacement of the original
// segment.
return None;
}
}
let cfg = ImportPathConfig {
prefer_no_std: false,
prefer_prelude: true,
prefer_absolute: false,
allow_unstable: true,
};
let found_path = self.target_module.find_path(self.source_scope.db, def, cfg)?;
let res = mod_path_to_ast(&found_path, self.target_edition).clone_for_update();
let mut res_editor = SyntaxEditor::new(res.syntax().clone_subtree());
if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) {
if let Some(segment) = res.segment() {
if let Some(old) = segment.generic_arg_list() {
res_editor.replace(
old.syntax(),
args.clone_subtree().syntax().clone_for_update(),
)
} else {
res_editor.insert(
syntax_editor::Position::last_child_of(segment.syntax()),
args.clone_subtree().syntax().clone_for_update(),
);
}
}
}
let res = res_editor.finish().new_root().clone();
editor.replace(path.syntax().clone(), res);
}
hir::PathResolution::ConstParam(cp) => {
if let Some(subst) = self.const_substs.get(&cp) {
editor.replace(path.syntax(), subst.clone_subtree().clone_for_update());
}
}
hir::PathResolution::SelfType(imp) => {
// keep Self type if it does not need to be replaced
if self.same_self_type {
return None;
}
let ty = imp.self_ty(self.source_scope.db);
let ty_str = &ty
.display_source_code(
self.source_scope.db,
self.source_scope.module().into(),
true,
)
.ok()?;
let ast_ty = make::ty(ty_str).clone_for_update();
if let Some(adt) = ty.as_adt() {
if let ast::Type::PathType(path_ty) = &ast_ty {
let cfg = ImportPathConfig {
prefer_no_std: false,
prefer_prelude: true,
prefer_absolute: false,
allow_unstable: true,
};
let found_path = self.target_module.find_path(
self.source_scope.db,
ModuleDef::from(adt),
cfg,
)?;
if let Some(qual) =
mod_path_to_ast(&found_path, self.target_edition).qualifier()
{
let res = make::path_concat(qual, path_ty.path()?).clone_for_update();
editor.replace(path.syntax(), res.syntax());
return Some(());
}
}
}
editor.replace(path.syntax(), ast_ty.syntax());
}
hir::PathResolution::Local(_)
| hir::PathResolution::Def(_)
| hir::PathResolution::BuiltinAttr(_)
| hir::PathResolution::ToolModule(_)
| hir::PathResolution::DeriveHelper(_) => (),
}
Some(())
}
}
// FIXME: It would probably be nicer if we could get this via HIR (i.e. get the
// trait ref, and then go from the types in the substs back to the syntax).
fn get_syntactic_substs(impl_def: ast::Impl) -> Option<AstSubsts> {
let target_trait = impl_def.trait_()?;
let path_type = match target_trait {
ast::Type::PathType(path) => path,
_ => return None,
};
let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?;
get_type_args_from_arg_list(generic_arg_list)
}
fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option<AstSubsts> {
let mut result = AstSubsts::default();
generic_arg_list.generic_args().for_each(|generic_arg| match generic_arg {
// Const params are marked as consts on definition only,
// being passed to the trait they are indistguishable from type params;
// anyway, we don't really need to distinguish them here.
ast::GenericArg::TypeArg(type_arg) => {
result.types_and_consts.push(TypeOrConst::Either(type_arg))
}
// Some const values are recognized correctly.
ast::GenericArg::ConstArg(const_arg) => {
result.types_and_consts.push(TypeOrConst::Const(const_arg));
}
ast::GenericArg::LifetimeArg(l_arg) => result.lifetimes.push(l_arg),
_ => (),
});
Some(result)
}
fn find_trait_for_assoc_item(
scope: &SemanticsScope<'_>,
type_param: hir::TypeParam,
assoc_item: ast::NameRef,
) -> Option<hir::Trait> {
let db = scope.db;
let trait_bounds = type_param.trait_bounds(db);
let assoc_item_name = assoc_item.text();
for trait_ in trait_bounds {
let names = trait_.items(db).into_iter().filter_map(|item| match item {
hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)),
hir::AssocItem::Const(cst) => cst.name(db),
_ => None,
});
for name in names {
if assoc_item_name.as_str() == name.as_str() {
// It is fine to return the first match because in case of
// multiple possibilities, the exact trait must be disambiguated
// in the definition of trait being implemented, so this search
// should not be needed.
return Some(trait_);
}
}
}
None
}