|  | //! Unification and canonicalization logic. | 
|  |  | 
|  | use std::fmt; | 
|  |  | 
|  | use chalk_ir::{ | 
|  | CanonicalVarKind, FloatTy, IntTy, TyVariableKind, cast::Cast, fold::TypeFoldable, | 
|  | interner::HasInterner, | 
|  | }; | 
|  | use either::Either; | 
|  | use hir_def::{AdtId, lang_item::LangItem}; | 
|  | use hir_expand::name::Name; | 
|  | use intern::sym; | 
|  | use rustc_hash::{FxHashMap, FxHashSet}; | 
|  | use rustc_type_ir::{ | 
|  | FloatVid, IntVid, TyVid, TypeVisitableExt, UpcastFrom, | 
|  | inherent::{IntoKind, Span, Term as _, Ty as _}, | 
|  | relate::{Relate, solver_relating::RelateExt}, | 
|  | solve::{Certainty, GoalSource}, | 
|  | }; | 
|  | use smallvec::SmallVec; | 
|  | use triomphe::Arc; | 
|  |  | 
|  | use super::{InferResult, InferenceContext, TypeError}; | 
|  | use crate::{ | 
|  | AliasTy, BoundVar, Canonical, Const, ConstValue, DebruijnIndex, GenericArg, GenericArgData, | 
|  | InferenceVar, Interner, Lifetime, OpaqueTyId, ProjectionTy, Scalar, Substitution, | 
|  | TraitEnvironment, Ty, TyExt, TyKind, VariableKind, | 
|  | consteval::unknown_const, | 
|  | db::HirDatabase, | 
|  | fold_generic_args, fold_tys_and_consts, | 
|  | next_solver::{ | 
|  | self, ClauseKind, DbInterner, ErrorGuaranteed, Predicate, PredicateKind, SolverDefIds, | 
|  | Term, TraitRef, | 
|  | fulfill::FulfillmentCtxt, | 
|  | infer::{ | 
|  | DbInternerInferExt, InferCtxt, InferOk, | 
|  | snapshot::CombinedSnapshot, | 
|  | traits::{Obligation, ObligationCause}, | 
|  | }, | 
|  | inspect::{InspectConfig, InspectGoal, ProofTreeVisitor}, | 
|  | mapping::{ChalkToNextSolver, NextSolverToChalk}, | 
|  | }, | 
|  | traits::{ | 
|  | FnTrait, NextTraitSolveResult, next_trait_solve_canonical_in_ctxt, next_trait_solve_in_ctxt, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | impl<'db> InferenceContext<'db> { | 
|  | pub(super) fn canonicalize<T>(&mut self, t: T) -> rustc_type_ir::Canonical<DbInterner<'db>, T> | 
|  | where | 
|  | T: rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | self.table.canonicalize(t) | 
|  | } | 
|  | } | 
|  |  | 
|  | struct NestedObligationsForSelfTy<'a, 'db> { | 
|  | ctx: &'a InferenceTable<'db>, | 
|  | self_ty: TyVid, | 
|  | root_cause: &'a ObligationCause, | 
|  | obligations_for_self_ty: &'a mut SmallVec<[Obligation<'db, Predicate<'db>>; 4]>, | 
|  | } | 
|  |  | 
|  | impl<'a, 'db> ProofTreeVisitor<'db> for NestedObligationsForSelfTy<'a, 'db> { | 
|  | type Result = (); | 
|  |  | 
|  | fn config(&self) -> InspectConfig { | 
|  | // Using an intentionally low depth to minimize the chance of future | 
|  | // breaking changes in case we adapt the approach later on. This also | 
|  | // avoids any hangs for exponentially growing proof trees. | 
|  | InspectConfig { max_depth: 5 } | 
|  | } | 
|  |  | 
|  | fn visit_goal(&mut self, inspect_goal: &InspectGoal<'_, 'db>) { | 
|  | // No need to walk into goal subtrees that certainly hold, since they | 
|  | // wouldn't then be stalled on an infer var. | 
|  | if inspect_goal.result() == Ok(Certainty::Yes) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let db = self.ctx.interner; | 
|  | let goal = inspect_goal.goal(); | 
|  | if self.ctx.predicate_has_self_ty(goal.predicate, self.self_ty) | 
|  | // We do not push the instantiated forms of goals as it would cause any | 
|  | // aliases referencing bound vars to go from having escaping bound vars to | 
|  | // being able to be normalized to an inference variable. | 
|  | // | 
|  | // This is mostly just a hack as arbitrary nested goals could still contain | 
|  | // such aliases while having a different `GoalSource`. Closure signature inference | 
|  | // however can't really handle *every* higher ranked `Fn` goal also being present | 
|  | // in the form of `?c: Fn<(<?x as Trait<'!a>>::Assoc)`. | 
|  | // | 
|  | // This also just better matches the behaviour of the old solver where we do not | 
|  | // encounter instantiated forms of goals, only nested goals that referred to bound | 
|  | // vars from instantiated goals. | 
|  | && !matches!(inspect_goal.source(), GoalSource::InstantiateHigherRanked) | 
|  | { | 
|  | self.obligations_for_self_ty.push(Obligation::new( | 
|  | db, | 
|  | self.root_cause.clone(), | 
|  | goal.param_env, | 
|  | goal.predicate, | 
|  | )); | 
|  | } | 
|  |  | 
|  | // If there's a unique way to prove a given goal, recurse into | 
|  | // that candidate. This means that for `impl<F: FnOnce(u32)> Trait<F> for () {}` | 
|  | // and a `(): Trait<?0>` goal we recurse into the impl and look at | 
|  | // the nested `?0: FnOnce(u32)` goal. | 
|  | if let Some(candidate) = inspect_goal.unique_applicable_candidate() { | 
|  | candidate.visit_nested_no_probe(self) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if types unify. | 
|  | /// | 
|  | /// Note that we consider placeholder types to unify with everything. | 
|  | /// This means that there may be some unresolved goals that actually set bounds for the placeholder | 
|  | /// type for the types to unify. For example `Option<T>` and `Option<U>` unify although there is | 
|  | /// unresolved goal `T = U`. | 
|  | pub fn could_unify( | 
|  | db: &dyn HirDatabase, | 
|  | env: Arc<TraitEnvironment<'_>>, | 
|  | tys: &Canonical<(Ty, Ty)>, | 
|  | ) -> bool { | 
|  | unify(db, env, tys).is_some() | 
|  | } | 
|  |  | 
|  | /// Check if types unify eagerly making sure there are no unresolved goals. | 
|  | /// | 
|  | /// This means that placeholder types are not considered to unify if there are any bounds set on | 
|  | /// them. For example `Option<T>` and `Option<U>` do not unify as we cannot show that `T = U` | 
|  | pub fn could_unify_deeply( | 
|  | db: &dyn HirDatabase, | 
|  | env: Arc<TraitEnvironment<'_>>, | 
|  | tys: &Canonical<(Ty, Ty)>, | 
|  | ) -> bool { | 
|  | let mut table = InferenceTable::new(db, env); | 
|  | let vars = make_substitutions(tys, &mut table); | 
|  | let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); | 
|  | let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); | 
|  | let ty1_with_vars = table.normalize_associated_types_in(ty1_with_vars); | 
|  | let ty2_with_vars = table.normalize_associated_types_in(ty2_with_vars); | 
|  | table.select_obligations_where_possible(); | 
|  | table.propagate_diverging_flag(); | 
|  | let ty1_with_vars = table.resolve_completely(ty1_with_vars); | 
|  | let ty2_with_vars = table.resolve_completely(ty2_with_vars); | 
|  | table.unify_deeply(&ty1_with_vars, &ty2_with_vars) | 
|  | } | 
|  |  | 
|  | pub(crate) fn unify( | 
|  | db: &dyn HirDatabase, | 
|  | env: Arc<TraitEnvironment<'_>>, | 
|  | tys: &Canonical<(Ty, Ty)>, | 
|  | ) -> Option<Substitution> { | 
|  | let mut table = InferenceTable::new(db, env); | 
|  | let vars = make_substitutions(tys, &mut table); | 
|  | let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); | 
|  | let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); | 
|  | if !table.unify(&ty1_with_vars, &ty2_with_vars) { | 
|  | return None; | 
|  | } | 
|  | // default any type vars that weren't unified back to their original bound vars | 
|  | // (kind of hacky) | 
|  | let find_var = |iv| { | 
|  | vars.iter(Interner).position(|v| match v.data(Interner) { | 
|  | GenericArgData::Ty(ty) => ty.inference_var(Interner), | 
|  | GenericArgData::Lifetime(lt) => lt.inference_var(Interner), | 
|  | GenericArgData::Const(c) => c.inference_var(Interner), | 
|  | } == Some(iv)) | 
|  | }; | 
|  | let fallback = |iv, kind, default, binder| match kind { | 
|  | chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv) | 
|  | .map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)), | 
|  | chalk_ir::VariableKind::Lifetime => find_var(iv) | 
|  | .map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)), | 
|  | chalk_ir::VariableKind::Const(ty) => find_var(iv) | 
|  | .map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)), | 
|  | }; | 
|  | Some(Substitution::from_iter( | 
|  | Interner, | 
|  | vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)), | 
|  | )) | 
|  | } | 
|  |  | 
|  | fn make_substitutions( | 
|  | tys: &chalk_ir::Canonical<(chalk_ir::Ty<Interner>, chalk_ir::Ty<Interner>)>, | 
|  | table: &mut InferenceTable<'_>, | 
|  | ) -> chalk_ir::Substitution<Interner> { | 
|  | Substitution::from_iter( | 
|  | Interner, | 
|  | tys.binders.iter(Interner).map(|it| match &it.kind { | 
|  | chalk_ir::VariableKind::Ty(_) => table.new_type_var().cast(Interner), | 
|  | // FIXME: maybe wrong? | 
|  | chalk_ir::VariableKind::Lifetime => table.new_type_var().cast(Interner), | 
|  | chalk_ir::VariableKind::Const(ty) => table.new_const_var(ty.clone()).cast(Interner), | 
|  | }), | 
|  | ) | 
|  | } | 
|  |  | 
|  | bitflags::bitflags! { | 
|  | #[derive(Default, Clone, Copy)] | 
|  | pub(crate) struct TypeVariableFlags: u8 { | 
|  | const DIVERGING = 1 << 0; | 
|  | const INTEGER = 1 << 1; | 
|  | const FLOAT = 1 << 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Clone)] | 
|  | pub(crate) struct InferenceTable<'db> { | 
|  | pub(crate) db: &'db dyn HirDatabase, | 
|  | pub(crate) interner: DbInterner<'db>, | 
|  | pub(crate) trait_env: Arc<TraitEnvironment<'db>>, | 
|  | pub(crate) tait_coercion_table: Option<FxHashMap<OpaqueTyId, Ty>>, | 
|  | pub(crate) infer_ctxt: InferCtxt<'db>, | 
|  | diverging_tys: FxHashSet<Ty>, | 
|  | pub(super) fulfillment_cx: FulfillmentCtxt<'db>, | 
|  | } | 
|  |  | 
|  | pub(crate) struct InferenceTableSnapshot<'db> { | 
|  | ctxt_snapshot: CombinedSnapshot, | 
|  | obligations: FulfillmentCtxt<'db>, | 
|  | diverging_tys: FxHashSet<Ty>, | 
|  | } | 
|  |  | 
|  | impl<'db> InferenceTable<'db> { | 
|  | pub(crate) fn new(db: &'db dyn HirDatabase, trait_env: Arc<TraitEnvironment<'db>>) -> Self { | 
|  | let interner = DbInterner::new_with(db, Some(trait_env.krate), trait_env.block); | 
|  | let infer_ctxt = interner.infer_ctxt().build(rustc_type_ir::TypingMode::Analysis { | 
|  | defining_opaque_types_and_generators: SolverDefIds::new_from_iter(interner, []), | 
|  | }); | 
|  | InferenceTable { | 
|  | db, | 
|  | interner, | 
|  | trait_env, | 
|  | tait_coercion_table: None, | 
|  | fulfillment_cx: FulfillmentCtxt::new(&infer_ctxt), | 
|  | infer_ctxt, | 
|  | diverging_tys: FxHashSet::default(), | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn type_var_is_sized(&self, self_ty: TyVid) -> bool { | 
|  | let Some(sized_did) = LangItem::Sized.resolve_trait(self.db, self.trait_env.krate) else { | 
|  | return true; | 
|  | }; | 
|  | self.obligations_for_self_ty(self_ty).into_iter().any(|obligation| { | 
|  | match obligation.predicate.kind().skip_binder() { | 
|  | crate::next_solver::PredicateKind::Clause( | 
|  | crate::next_solver::ClauseKind::Trait(data), | 
|  | ) => data.def_id().0 == sized_did, | 
|  | _ => false, | 
|  | } | 
|  | }) | 
|  | } | 
|  |  | 
|  | pub(super) fn obligations_for_self_ty( | 
|  | &self, | 
|  | self_ty: TyVid, | 
|  | ) -> SmallVec<[Obligation<'db, Predicate<'db>>; 4]> { | 
|  | let obligations = self.fulfillment_cx.pending_obligations(); | 
|  | let mut obligations_for_self_ty = SmallVec::new(); | 
|  | for obligation in obligations { | 
|  | let mut visitor = NestedObligationsForSelfTy { | 
|  | ctx: self, | 
|  | self_ty, | 
|  | obligations_for_self_ty: &mut obligations_for_self_ty, | 
|  | root_cause: &obligation.cause, | 
|  | }; | 
|  |  | 
|  | let goal = obligation.as_goal(); | 
|  | self.infer_ctxt.visit_proof_tree(goal, &mut visitor); | 
|  | } | 
|  |  | 
|  | obligations_for_self_ty.retain_mut(|obligation| { | 
|  | obligation.predicate = self.infer_ctxt.resolve_vars_if_possible(obligation.predicate); | 
|  | !obligation.predicate.has_placeholders() | 
|  | }); | 
|  | obligations_for_self_ty | 
|  | } | 
|  |  | 
|  | fn predicate_has_self_ty(&self, predicate: Predicate<'db>, expected_vid: TyVid) -> bool { | 
|  | match predicate.kind().skip_binder() { | 
|  | PredicateKind::Clause(ClauseKind::Trait(data)) => { | 
|  | self.type_matches_expected_vid(expected_vid, data.self_ty()) | 
|  | } | 
|  | PredicateKind::Clause(ClauseKind::Projection(data)) => { | 
|  | self.type_matches_expected_vid(expected_vid, data.projection_term.self_ty()) | 
|  | } | 
|  | PredicateKind::Clause(ClauseKind::ConstArgHasType(..)) | 
|  | | PredicateKind::Subtype(..) | 
|  | | PredicateKind::Coerce(..) | 
|  | | PredicateKind::Clause(ClauseKind::RegionOutlives(..)) | 
|  | | PredicateKind::Clause(ClauseKind::TypeOutlives(..)) | 
|  | | PredicateKind::Clause(ClauseKind::WellFormed(..)) | 
|  | | PredicateKind::DynCompatible(..) | 
|  | | PredicateKind::NormalizesTo(..) | 
|  | | PredicateKind::AliasRelate(..) | 
|  | | PredicateKind::Clause(ClauseKind::ConstEvaluatable(..)) | 
|  | | PredicateKind::ConstEquate(..) | 
|  | | PredicateKind::Clause(ClauseKind::HostEffect(..)) | 
|  | | PredicateKind::Clause(ClauseKind::UnstableFeature(_)) | 
|  | | PredicateKind::Ambiguous => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | fn type_matches_expected_vid( | 
|  | &self, | 
|  | expected_vid: TyVid, | 
|  | ty: crate::next_solver::Ty<'db>, | 
|  | ) -> bool { | 
|  | let ty = self.shallow_resolve(ty); | 
|  |  | 
|  | match ty.kind() { | 
|  | crate::next_solver::TyKind::Infer(rustc_type_ir::TyVar(found_vid)) => { | 
|  | self.infer_ctxt.root_var(expected_vid) == self.infer_ctxt.root_var(found_vid) | 
|  | } | 
|  | _ => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Chalk doesn't know about the `diverging` flag, so when it unifies two | 
|  | /// type variables of which one is diverging, the chosen root might not be | 
|  | /// diverging and we have no way of marking it as such at that time. This | 
|  | /// function goes through all type variables and make sure their root is | 
|  | /// marked as diverging if necessary, so that resolving them gives the right | 
|  | /// result. | 
|  | pub(super) fn propagate_diverging_flag(&mut self) { | 
|  | let mut new_tys = FxHashSet::default(); | 
|  | for ty in self.diverging_tys.iter() { | 
|  | match ty.kind(Interner) { | 
|  | TyKind::InferenceVar(var, kind) => match kind { | 
|  | TyVariableKind::General => { | 
|  | let root = InferenceVar::from( | 
|  | self.infer_ctxt.root_var(TyVid::from_u32(var.index())).as_u32(), | 
|  | ); | 
|  | if root.index() != var.index() { | 
|  | new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner)); | 
|  | } | 
|  | } | 
|  | TyVariableKind::Integer => { | 
|  | let root = InferenceVar::from( | 
|  | self.infer_ctxt | 
|  | .inner | 
|  | .borrow_mut() | 
|  | .int_unification_table() | 
|  | .find(IntVid::from_usize(var.index() as usize)) | 
|  | .as_u32(), | 
|  | ); | 
|  | if root.index() != var.index() { | 
|  | new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner)); | 
|  | } | 
|  | } | 
|  | TyVariableKind::Float => { | 
|  | let root = InferenceVar::from( | 
|  | self.infer_ctxt | 
|  | .inner | 
|  | .borrow_mut() | 
|  | .float_unification_table() | 
|  | .find(FloatVid::from_usize(var.index() as usize)) | 
|  | .as_u32(), | 
|  | ); | 
|  | if root.index() != var.index() { | 
|  | new_tys.insert(TyKind::InferenceVar(root, *kind).intern(Interner)); | 
|  | } | 
|  | } | 
|  | }, | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | self.diverging_tys.extend(new_tys); | 
|  | } | 
|  |  | 
|  | pub(super) fn set_diverging(&mut self, iv: InferenceVar, kind: TyVariableKind) { | 
|  | self.diverging_tys.insert(TyKind::InferenceVar(iv, kind).intern(Interner)); | 
|  | } | 
|  |  | 
|  | fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty { | 
|  | let is_diverging = | 
|  | self.diverging_tys.contains(&TyKind::InferenceVar(iv, kind).intern(Interner)); | 
|  | if is_diverging { | 
|  | return TyKind::Never.intern(Interner); | 
|  | } | 
|  | match kind { | 
|  | TyVariableKind::General => TyKind::Error, | 
|  | TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)), | 
|  | TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)), | 
|  | } | 
|  | .intern(Interner) | 
|  | } | 
|  |  | 
|  | pub(crate) fn canonicalize<T>(&mut self, t: T) -> rustc_type_ir::Canonical<DbInterner<'db>, T> | 
|  | where | 
|  | T: rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | // try to resolve obligations before canonicalizing, since this might | 
|  | // result in new knowledge about variables | 
|  | self.select_obligations_where_possible(); | 
|  | self.infer_ctxt.canonicalize_response(t) | 
|  | } | 
|  |  | 
|  | /// Recurses through the given type, normalizing associated types mentioned | 
|  | /// in it by replacing them by type variables and registering obligations to | 
|  | /// resolve later. This should be done once for every type we get from some | 
|  | /// type annotation (e.g. from a let type annotation, field type or function | 
|  | /// call). `make_ty` handles this already, but e.g. for field types we need | 
|  | /// to do it as well. | 
|  | pub(crate) fn normalize_associated_types_in<T, U>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: ChalkToNextSolver<'db, U>, | 
|  | U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | self.normalize_associated_types_in_ns(ty.to_nextsolver(self.interner)) | 
|  | .to_chalk(self.interner) | 
|  | } | 
|  |  | 
|  | // FIXME: We should get rid of this method. We cannot deeply normalize during inference, only when finishing. | 
|  | // Inference should use shallow normalization (`try_structurally_resolve_type()`) only, when needed. | 
|  | pub(crate) fn normalize_associated_types_in_ns<T>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: rustc_type_ir::TypeFoldable<DbInterner<'db>> + Clone, | 
|  | { | 
|  | let ty = self.resolve_vars_with_obligations(ty); | 
|  | self.infer_ctxt | 
|  | .at(&ObligationCause::new(), self.trait_env.env) | 
|  | .deeply_normalize(ty.clone()) | 
|  | .unwrap_or(ty) | 
|  | } | 
|  |  | 
|  | /// Works almost same as [`Self::normalize_associated_types_in`], but this also resolves shallow | 
|  | /// the inference variables | 
|  | pub(crate) fn eagerly_normalize_and_resolve_shallow_in<T>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, | 
|  | { | 
|  | fn eagerly_resolve_ty<const N: usize>( | 
|  | table: &mut InferenceTable<'_>, | 
|  | ty: Ty, | 
|  | mut tys: SmallVec<[Ty; N]>, | 
|  | ) -> Ty { | 
|  | if tys.contains(&ty) { | 
|  | return ty; | 
|  | } | 
|  | tys.push(ty.clone()); | 
|  |  | 
|  | match ty.kind(Interner) { | 
|  | TyKind::Alias(AliasTy::Projection(proj_ty)) => { | 
|  | let ty = table.normalize_projection_ty(proj_ty.clone()); | 
|  | eagerly_resolve_ty(table, ty, tys) | 
|  | } | 
|  | TyKind::InferenceVar(..) => { | 
|  | let ty = table.resolve_ty_shallow(&ty); | 
|  | eagerly_resolve_ty(table, ty, tys) | 
|  | } | 
|  | _ => ty, | 
|  | } | 
|  | } | 
|  |  | 
|  | fold_tys_and_consts( | 
|  | ty, | 
|  | |e, _| match e { | 
|  | Either::Left(ty) => { | 
|  | Either::Left(eagerly_resolve_ty::<8>(self, ty, SmallVec::new())) | 
|  | } | 
|  | Either::Right(c) => Either::Right(match &c.data(Interner).value { | 
|  | chalk_ir::ConstValue::Concrete(cc) => match &cc.interned { | 
|  | crate::ConstScalar::UnevaluatedConst(c_id, subst) => { | 
|  | // FIXME: same as `normalize_associated_types_in` | 
|  | if subst.len(Interner) == 0 { | 
|  | if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) { | 
|  | eval | 
|  | } else { | 
|  | unknown_const(c.data(Interner).ty.clone()) | 
|  | } | 
|  | } else { | 
|  | unknown_const(c.data(Interner).ty.clone()) | 
|  | } | 
|  | } | 
|  | _ => c, | 
|  | }, | 
|  | _ => c, | 
|  | }), | 
|  | }, | 
|  | DebruijnIndex::INNERMOST, | 
|  | ) | 
|  | } | 
|  |  | 
|  | pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty { | 
|  | let ty = TyKind::Alias(chalk_ir::AliasTy::Projection(proj_ty)) | 
|  | .intern(Interner) | 
|  | .to_nextsolver(self.interner); | 
|  | self.normalize_alias_ty(ty).to_chalk(self.interner) | 
|  | } | 
|  |  | 
|  | pub(crate) fn normalize_alias_ty( | 
|  | &mut self, | 
|  | alias: crate::next_solver::Ty<'db>, | 
|  | ) -> crate::next_solver::Ty<'db> { | 
|  | let infer_term = self.infer_ctxt.next_ty_var(); | 
|  | let obligation = crate::next_solver::Predicate::new( | 
|  | self.interner, | 
|  | crate::next_solver::Binder::dummy(crate::next_solver::PredicateKind::AliasRelate( | 
|  | alias.into(), | 
|  | infer_term.into(), | 
|  | rustc_type_ir::AliasRelationDirection::Equate, | 
|  | )), | 
|  | ); | 
|  | self.register_obligation(obligation); | 
|  | self.resolve_vars_with_obligations(infer_term) | 
|  | } | 
|  |  | 
|  | fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty { | 
|  | let var = match kind { | 
|  | TyVariableKind::General => { | 
|  | let var = self.infer_ctxt.next_ty_vid(); | 
|  | InferenceVar::from(var.as_u32()) | 
|  | } | 
|  | TyVariableKind::Integer => { | 
|  | let var = self.infer_ctxt.next_int_vid(); | 
|  | InferenceVar::from(var.as_u32()) | 
|  | } | 
|  | TyVariableKind::Float => { | 
|  | let var = self.infer_ctxt.next_float_vid(); | 
|  | InferenceVar::from(var.as_u32()) | 
|  | } | 
|  | }; | 
|  |  | 
|  | let ty = var.to_ty(Interner, kind); | 
|  | if diverging { | 
|  | self.diverging_tys.insert(ty.clone()); | 
|  | } | 
|  | ty | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_type_var(&mut self) -> Ty { | 
|  | self.new_var(TyVariableKind::General, false) | 
|  | } | 
|  |  | 
|  | pub(crate) fn next_ty_var(&mut self) -> crate::next_solver::Ty<'db> { | 
|  | self.infer_ctxt.next_ty_var() | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_integer_var(&mut self) -> Ty { | 
|  | self.new_var(TyVariableKind::Integer, false) | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_float_var(&mut self) -> Ty { | 
|  | self.new_var(TyVariableKind::Float, false) | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_maybe_never_var(&mut self) -> Ty { | 
|  | self.new_var(TyVariableKind::General, true) | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const { | 
|  | let var = self.infer_ctxt.next_const_vid(); | 
|  | let var = InferenceVar::from(var.as_u32()); | 
|  | var.to_const(Interner, ty) | 
|  | } | 
|  |  | 
|  | pub(crate) fn new_lifetime_var(&mut self) -> Lifetime { | 
|  | let var = self.infer_ctxt.next_region_vid(); | 
|  | let var = InferenceVar::from(var.as_u32()); | 
|  | var.to_lifetime(Interner) | 
|  | } | 
|  |  | 
|  | pub(crate) fn next_region_var(&mut self) -> crate::next_solver::Region<'db> { | 
|  | self.infer_ctxt.next_region_var() | 
|  | } | 
|  |  | 
|  | pub(crate) fn resolve_with_fallback<T>( | 
|  | &mut self, | 
|  | t: T, | 
|  | fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, | 
|  | ) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, | 
|  | { | 
|  | self.resolve_with_fallback_inner(t, &fallback) | 
|  | } | 
|  |  | 
|  | pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind<Interner>]) -> Substitution { | 
|  | Substitution::from_iter( | 
|  | Interner, | 
|  | binders.iter().map(|kind| match &kind.kind { | 
|  | chalk_ir::VariableKind::Ty(ty_variable_kind) => { | 
|  | self.new_var(*ty_variable_kind, false).cast(Interner) | 
|  | } | 
|  | chalk_ir::VariableKind::Lifetime => self.new_lifetime_var().cast(Interner), | 
|  | chalk_ir::VariableKind::Const(ty) => self.new_const_var(ty.clone()).cast(Interner), | 
|  | }), | 
|  | ) | 
|  | } | 
|  |  | 
|  | pub(crate) fn instantiate_canonical<T>(&mut self, canonical: Canonical<T>) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + std::fmt::Debug, | 
|  | { | 
|  | let subst = self.fresh_subst(canonical.binders.as_slice(Interner)); | 
|  | subst.apply(canonical.value, Interner) | 
|  | } | 
|  |  | 
|  | pub(crate) fn instantiate_canonical_ns<T>( | 
|  | &mut self, | 
|  | canonical: rustc_type_ir::Canonical<DbInterner<'db>, T>, | 
|  | ) -> T | 
|  | where | 
|  | T: rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | self.infer_ctxt.instantiate_canonical(&canonical).0 | 
|  | } | 
|  |  | 
|  | fn resolve_with_fallback_inner<T>( | 
|  | &mut self, | 
|  | t: T, | 
|  | fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, | 
|  | ) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, | 
|  | { | 
|  | let var_stack = &mut vec![]; | 
|  | t.fold_with( | 
|  | &mut resolve::Resolver { table: self, var_stack, fallback }, | 
|  | DebruijnIndex::INNERMOST, | 
|  | ) | 
|  | } | 
|  |  | 
|  | pub(crate) fn resolve_completely<T, U>(&mut self, t: T) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>, | 
|  | U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | let t = self.resolve_with_fallback(t, &|_, _, d, _| d); | 
|  | let t = self.normalize_associated_types_in(t); | 
|  | // let t = self.resolve_opaque_tys_in(t); | 
|  | // Resolve again, because maybe normalization inserted infer vars. | 
|  | self.resolve_with_fallback(t, &|_, _, d, _| d) | 
|  | } | 
|  |  | 
|  | /// Apply a fallback to unresolved scalar types. Integer type variables and float type | 
|  | /// variables are replaced with i32 and f64, respectively. | 
|  | /// | 
|  | /// This method is only intended to be called just before returning inference results (i.e. in | 
|  | /// `InferenceContext::resolve_all()`). | 
|  | /// | 
|  | /// FIXME: This method currently doesn't apply fallback to unconstrained general type variables | 
|  | /// whereas rustc replaces them with `()` or `!`. | 
|  | pub(super) fn fallback_if_possible(&mut self) { | 
|  | let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner); | 
|  | let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner); | 
|  |  | 
|  | let int_vars = self.infer_ctxt.inner.borrow_mut().int_unification_table().len(); | 
|  | for v in 0..int_vars { | 
|  | let var = InferenceVar::from(v as u32).to_ty(Interner, TyVariableKind::Integer); | 
|  | let maybe_resolved = self.resolve_ty_shallow(&var); | 
|  | if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) { | 
|  | // I don't think we can ever unify these vars with float vars, but keep this here for now | 
|  | let fallback = match kind { | 
|  | TyVariableKind::Integer => &int_fallback, | 
|  | TyVariableKind::Float => &float_fallback, | 
|  | TyVariableKind::General => unreachable!(), | 
|  | }; | 
|  | self.unify(&var, fallback); | 
|  | } | 
|  | } | 
|  | let float_vars = self.infer_ctxt.inner.borrow_mut().float_unification_table().len(); | 
|  | for v in 0..float_vars { | 
|  | let var = InferenceVar::from(v as u32).to_ty(Interner, TyVariableKind::Float); | 
|  | let maybe_resolved = self.resolve_ty_shallow(&var); | 
|  | if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) { | 
|  | // I don't think we can ever unify these vars with float vars, but keep this here for now | 
|  | let fallback = match kind { | 
|  | TyVariableKind::Integer => &int_fallback, | 
|  | TyVariableKind::Float => &float_fallback, | 
|  | TyVariableKind::General => unreachable!(), | 
|  | }; | 
|  | self.unify(&var, fallback); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that. | 
|  | pub(crate) fn unify<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>( | 
|  | &mut self, | 
|  | ty1: &T, | 
|  | ty2: &T, | 
|  | ) -> bool { | 
|  | let result = match self.try_unify(ty1, ty2) { | 
|  | Ok(r) => r, | 
|  | Err(_) => return false, | 
|  | }; | 
|  | self.register_obligations(result.goals); | 
|  | true | 
|  | } | 
|  |  | 
|  | pub(crate) fn unify_ns<T: Relate<DbInterner<'db>>>(&mut self, lhs: T, rhs: T) -> bool { | 
|  | let Ok(infer_ok) = self.try_unify_ns(lhs, rhs) else { | 
|  | return false; | 
|  | }; | 
|  | self.register_obligations(infer_ok.goals); | 
|  | true | 
|  | } | 
|  |  | 
|  | /// Unify two relatable values (e.g. `Ty`) and check whether trait goals which arise from that could be fulfilled | 
|  | pub(crate) fn unify_deeply<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>( | 
|  | &mut self, | 
|  | ty1: &T, | 
|  | ty2: &T, | 
|  | ) -> bool { | 
|  | let result = match self.try_unify(ty1, ty2) { | 
|  | Ok(r) => r, | 
|  | Err(_) => return false, | 
|  | }; | 
|  | result.goals.into_iter().all(|goal| { | 
|  | matches!(next_trait_solve_in_ctxt(&self.infer_ctxt, goal), Ok((_, Certainty::Yes))) | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the | 
|  | /// caller needs to deal with them. | 
|  | pub(crate) fn try_unify<T: ChalkToNextSolver<'db, U>, U: Relate<DbInterner<'db>>>( | 
|  | &mut self, | 
|  | t1: &T, | 
|  | t2: &T, | 
|  | ) -> InferResult<'db, ()> { | 
|  | let lhs = t1.to_nextsolver(self.interner); | 
|  | let rhs = t2.to_nextsolver(self.interner); | 
|  | self.try_unify_ns(lhs, rhs) | 
|  | } | 
|  |  | 
|  | /// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the | 
|  | /// caller needs to deal with them. | 
|  | pub(crate) fn try_unify_ns<T: Relate<DbInterner<'db>>>( | 
|  | &mut self, | 
|  | lhs: T, | 
|  | rhs: T, | 
|  | ) -> InferResult<'db, ()> { | 
|  | let variance = rustc_type_ir::Variance::Invariant; | 
|  | let span = crate::next_solver::Span::dummy(); | 
|  | match self.infer_ctxt.relate(self.trait_env.env, lhs, variance, rhs, span) { | 
|  | Ok(goals) => Ok(crate::infer::InferOk { goals, value: () }), | 
|  | Err(_) => Err(TypeError), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If `ty` is a type variable with known type, returns that type; | 
|  | /// otherwise, return ty. | 
|  | #[tracing::instrument(skip(self))] | 
|  | pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty { | 
|  | self.shallow_resolve(ty.to_nextsolver(self.interner)).to_chalk(self.interner) | 
|  | } | 
|  |  | 
|  | pub(crate) fn shallow_resolve( | 
|  | &self, | 
|  | ty: crate::next_solver::Ty<'db>, | 
|  | ) -> crate::next_solver::Ty<'db> { | 
|  | self.infer_ctxt.shallow_resolve(ty) | 
|  | } | 
|  |  | 
|  | pub(crate) fn resolve_vars_with_obligations<T>(&mut self, t: T) -> T | 
|  | where | 
|  | T: rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | use rustc_type_ir::TypeVisitableExt; | 
|  |  | 
|  | if !t.has_non_region_infer() { | 
|  | return t; | 
|  | } | 
|  |  | 
|  | let t = self.infer_ctxt.resolve_vars_if_possible(t); | 
|  |  | 
|  | if !t.has_non_region_infer() { | 
|  | return t; | 
|  | } | 
|  |  | 
|  | self.select_obligations_where_possible(); | 
|  | self.infer_ctxt.resolve_vars_if_possible(t) | 
|  | } | 
|  |  | 
|  | pub(crate) fn structurally_resolve_type(&mut self, ty: &Ty) -> Ty { | 
|  | if let TyKind::Alias(..) = ty.kind(Interner) { | 
|  | self.structurally_normalize_ty(ty) | 
|  | } else { | 
|  | self.resolve_vars_with_obligations(ty.to_nextsolver(self.interner)) | 
|  | .to_chalk(self.interner) | 
|  | } | 
|  | } | 
|  |  | 
|  | fn structurally_normalize_ty(&mut self, ty: &Ty) -> Ty { | 
|  | self.structurally_normalize_term(ty.to_nextsolver(self.interner).into()) | 
|  | .expect_ty() | 
|  | .to_chalk(self.interner) | 
|  | } | 
|  |  | 
|  | fn structurally_normalize_term(&mut self, term: Term<'db>) -> Term<'db> { | 
|  | self.infer_ctxt | 
|  | .at(&ObligationCause::new(), self.trait_env.env) | 
|  | .structurally_normalize_term(term, &mut self.fulfillment_cx) | 
|  | .unwrap_or(term) | 
|  | } | 
|  |  | 
|  | /// Try to resolve `ty` to a structural type, normalizing aliases. | 
|  | /// | 
|  | /// In case there is still ambiguity, the returned type may be an inference | 
|  | /// variable. This is different from `structurally_resolve_type` which errors | 
|  | /// in this case. | 
|  | pub(crate) fn try_structurally_resolve_type( | 
|  | &mut self, | 
|  | ty: crate::next_solver::Ty<'db>, | 
|  | ) -> crate::next_solver::Ty<'db> { | 
|  | if let crate::next_solver::TyKind::Alias(..) = ty.kind() { | 
|  | // We need to use a separate variable here as otherwise the temporary for | 
|  | // `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting | 
|  | // in a reentrant borrow, causing an ICE. | 
|  | let result = self | 
|  | .infer_ctxt | 
|  | .at(&ObligationCause::misc(), self.trait_env.env) | 
|  | .structurally_normalize_ty(ty, &mut self.fulfillment_cx); | 
|  | match result { | 
|  | Ok(normalized_ty) => normalized_ty, | 
|  | Err(_errors) => crate::next_solver::Ty::new_error(self.interner, ErrorGuaranteed), | 
|  | } | 
|  | } else { | 
|  | self.resolve_vars_with_obligations(ty) | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot<'db> { | 
|  | let ctxt_snapshot = self.infer_ctxt.start_snapshot(); | 
|  | let diverging_tys = self.diverging_tys.clone(); | 
|  | let obligations = self.fulfillment_cx.clone(); | 
|  | InferenceTableSnapshot { ctxt_snapshot, diverging_tys, obligations } | 
|  | } | 
|  |  | 
|  | #[tracing::instrument(skip_all)] | 
|  | pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot<'db>) { | 
|  | self.infer_ctxt.rollback_to(snapshot.ctxt_snapshot); | 
|  | self.diverging_tys = snapshot.diverging_tys; | 
|  | self.fulfillment_cx = snapshot.obligations; | 
|  | } | 
|  |  | 
|  | #[tracing::instrument(skip_all)] | 
|  | pub(crate) fn run_in_snapshot<T>( | 
|  | &mut self, | 
|  | f: impl FnOnce(&mut InferenceTable<'db>) -> T, | 
|  | ) -> T { | 
|  | let snapshot = self.snapshot(); | 
|  | let result = f(self); | 
|  | self.rollback_to(snapshot); | 
|  | result | 
|  | } | 
|  |  | 
|  | pub(crate) fn commit_if_ok<T, E>( | 
|  | &mut self, | 
|  | f: impl FnOnce(&mut InferenceTable<'db>) -> Result<T, E>, | 
|  | ) -> Result<T, E> { | 
|  | let snapshot = self.snapshot(); | 
|  | let result = f(self); | 
|  | match result { | 
|  | Ok(_) => {} | 
|  | Err(_) => { | 
|  | self.rollback_to(snapshot); | 
|  | } | 
|  | } | 
|  | result | 
|  | } | 
|  |  | 
|  | /// Checks an obligation without registering it. Useful mostly to check | 
|  | /// whether a trait *might* be implemented before deciding to 'lock in' the | 
|  | /// choice (during e.g. method resolution or deref). | 
|  | #[tracing::instrument(level = "debug", skip(self))] | 
|  | pub(crate) fn try_obligation(&mut self, predicate: Predicate<'db>) -> NextTraitSolveResult { | 
|  | let goal = next_solver::Goal { param_env: self.trait_env.env, predicate }; | 
|  | let canonicalized = self.canonicalize(goal); | 
|  |  | 
|  | next_trait_solve_canonical_in_ctxt(&self.infer_ctxt, canonicalized) | 
|  | } | 
|  |  | 
|  | pub(crate) fn register_obligation(&mut self, predicate: Predicate<'db>) { | 
|  | let goal = next_solver::Goal { param_env: self.trait_env.env, predicate }; | 
|  | self.register_obligation_in_env(goal) | 
|  | } | 
|  |  | 
|  | #[tracing::instrument(level = "debug", skip(self))] | 
|  | fn register_obligation_in_env( | 
|  | &mut self, | 
|  | goal: next_solver::Goal<'db, next_solver::Predicate<'db>>, | 
|  | ) { | 
|  | let result = next_trait_solve_in_ctxt(&self.infer_ctxt, goal); | 
|  | tracing::debug!(?result); | 
|  | match result { | 
|  | Ok((_, Certainty::Yes)) => {} | 
|  | Err(rustc_type_ir::solve::NoSolution) => {} | 
|  | Ok((_, Certainty::Maybe { .. })) => { | 
|  | self.fulfillment_cx.register_predicate_obligation( | 
|  | &self.infer_ctxt, | 
|  | Obligation::new( | 
|  | self.interner, | 
|  | ObligationCause::new(), | 
|  | goal.param_env, | 
|  | goal.predicate, | 
|  | ), | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn register_infer_ok<T>(&mut self, infer_ok: InferOk<'db, T>) -> T { | 
|  | let InferOk { value, obligations } = infer_ok; | 
|  | self.register_predicates(obligations); | 
|  | value | 
|  | } | 
|  |  | 
|  | pub(crate) fn register_obligations( | 
|  | &mut self, | 
|  | obligations: Vec<crate::next_solver::Goal<'db, crate::next_solver::Predicate<'db>>>, | 
|  | ) { | 
|  | obligations.into_iter().for_each(|goal| self.register_obligation_in_env(goal)); | 
|  | } | 
|  |  | 
|  | pub(crate) fn select_obligations_where_possible(&mut self) { | 
|  | self.fulfillment_cx.select_where_possible(&self.infer_ctxt); | 
|  | } | 
|  |  | 
|  | pub(super) fn register_predicate( | 
|  | &mut self, | 
|  | obligation: crate::next_solver::infer::traits::PredicateObligation<'db>, | 
|  | ) { | 
|  | if obligation.has_escaping_bound_vars() { | 
|  | panic!("escaping bound vars in predicate {:?}", obligation); | 
|  | } | 
|  |  | 
|  | self.fulfillment_cx.register_predicate_obligation(&self.infer_ctxt, obligation); | 
|  | } | 
|  |  | 
|  | pub(super) fn register_predicates<I>(&mut self, obligations: I) | 
|  | where | 
|  | I: IntoIterator<Item = crate::next_solver::infer::traits::PredicateObligation<'db>>, | 
|  | { | 
|  | obligations.into_iter().for_each(|obligation| { | 
|  | self.register_predicate(obligation); | 
|  | }); | 
|  | } | 
|  |  | 
|  | pub(crate) fn callable_sig( | 
|  | &mut self, | 
|  | ty: &Ty, | 
|  | num_args: usize, | 
|  | ) -> Option<(Option<FnTrait>, Vec<crate::next_solver::Ty<'db>>, crate::next_solver::Ty<'db>)> | 
|  | { | 
|  | match ty.callable_sig(self.db) { | 
|  | Some(sig) => Some(( | 
|  | None, | 
|  | sig.params().iter().map(|param| param.to_nextsolver(self.interner)).collect(), | 
|  | sig.ret().to_nextsolver(self.interner), | 
|  | )), | 
|  | None => { | 
|  | let (f, args_ty, return_ty) = self.callable_sig_from_fn_trait(ty, num_args)?; | 
|  | Some((Some(f), args_ty, return_ty)) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn callable_sig_from_fn_trait( | 
|  | &mut self, | 
|  | ty: &Ty, | 
|  | num_args: usize, | 
|  | ) -> Option<(FnTrait, Vec<next_solver::Ty<'db>>, next_solver::Ty<'db>)> { | 
|  | for (fn_trait_name, output_assoc_name, subtraits) in [ | 
|  | (FnTrait::FnOnce, sym::Output, &[FnTrait::Fn, FnTrait::FnMut][..]), | 
|  | (FnTrait::AsyncFnMut, sym::CallRefFuture, &[FnTrait::AsyncFn]), | 
|  | (FnTrait::AsyncFnOnce, sym::CallOnceFuture, &[]), | 
|  | ] { | 
|  | let krate = self.trait_env.krate; | 
|  | let fn_trait = fn_trait_name.get_id(self.db, krate)?; | 
|  | let trait_data = fn_trait.trait_items(self.db); | 
|  | let output_assoc_type = | 
|  | trait_data.associated_type_by_name(&Name::new_symbol_root(output_assoc_name))?; | 
|  |  | 
|  | let mut arg_tys = Vec::with_capacity(num_args); | 
|  | let arg_ty = next_solver::Ty::new_tup_from_iter( | 
|  | self.interner, | 
|  | std::iter::repeat_with(|| { | 
|  | let ty = self.next_ty_var(); | 
|  | arg_tys.push(ty); | 
|  | ty | 
|  | }) | 
|  | .take(num_args), | 
|  | ); | 
|  | let args = [ty.to_nextsolver(self.interner), arg_ty]; | 
|  | let trait_ref = crate::next_solver::TraitRef::new(self.interner, fn_trait.into(), args); | 
|  |  | 
|  | let projection = crate::next_solver::Ty::new_alias( | 
|  | self.interner, | 
|  | rustc_type_ir::AliasTyKind::Projection, | 
|  | crate::next_solver::AliasTy::new(self.interner, output_assoc_type.into(), args), | 
|  | ); | 
|  |  | 
|  | let pred = crate::next_solver::Predicate::upcast_from(trait_ref, self.interner); | 
|  | if !self.try_obligation(pred).no_solution() { | 
|  | self.register_obligation(pred); | 
|  | let return_ty = self.normalize_alias_ty(projection); | 
|  | for &fn_x in subtraits { | 
|  | let fn_x_trait = fn_x.get_id(self.db, krate)?; | 
|  | let trait_ref = | 
|  | crate::next_solver::TraitRef::new(self.interner, fn_x_trait.into(), args); | 
|  | let pred = crate::next_solver::Predicate::upcast_from(trait_ref, self.interner); | 
|  | if !self.try_obligation(pred).no_solution() { | 
|  | return Some((fn_x, arg_tys, return_ty)); | 
|  | } | 
|  | } | 
|  | return Some((fn_trait_name, arg_tys, return_ty)); | 
|  | } | 
|  | } | 
|  | None | 
|  | } | 
|  |  | 
|  | pub(super) fn insert_type_vars<T>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner>, | 
|  | { | 
|  | fold_generic_args( | 
|  | ty, | 
|  | |arg, _| match arg { | 
|  | GenericArgData::Ty(ty) => GenericArgData::Ty(self.insert_type_vars_shallow(ty)), | 
|  | // FIXME: insert lifetime vars once LifetimeData::InferenceVar | 
|  | // and specific error variant for lifetimes start being constructed | 
|  | GenericArgData::Lifetime(lt) => GenericArgData::Lifetime(lt), | 
|  | GenericArgData::Const(c) => { | 
|  | GenericArgData::Const(self.insert_const_vars_shallow(c)) | 
|  | } | 
|  | }, | 
|  | DebruijnIndex::INNERMOST, | 
|  | ) | 
|  | } | 
|  |  | 
|  | /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it. | 
|  | pub(super) fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { | 
|  | match ty.kind(Interner) { | 
|  | TyKind::Error => self.new_type_var(), | 
|  | TyKind::InferenceVar(..) => { | 
|  | let ty_resolved = self.structurally_resolve_type(&ty); | 
|  | if ty_resolved.is_unknown() { self.new_type_var() } else { ty } | 
|  | } | 
|  | _ => ty, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Whenever you lower a user-written type, you should call this. | 
|  | pub(crate) fn process_user_written_ty<T, U>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>, | 
|  | U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | self.process_remote_user_written_ty(ty) | 
|  | // FIXME: Register a well-formed obligation. | 
|  | } | 
|  |  | 
|  | /// The difference of this method from `process_user_written_ty()` is that this method doesn't register a well-formed obligation, | 
|  | /// while `process_user_written_ty()` should (but doesn't currently). | 
|  | pub(crate) fn process_remote_user_written_ty<T, U>(&mut self, ty: T) -> T | 
|  | where | 
|  | T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + ChalkToNextSolver<'db, U>, | 
|  | U: NextSolverToChalk<'db, T> + rustc_type_ir::TypeFoldable<DbInterner<'db>>, | 
|  | { | 
|  | let ty = self.insert_type_vars(ty); | 
|  | // See https://github.com/rust-lang/rust/blob/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs#L487-L495: | 
|  | // Even though the new solver only lazily normalizes usually, here we eagerly normalize so that not everything needs | 
|  | // to normalize before inspecting the `TyKind`. | 
|  | // FIXME(next-solver): We should not deeply normalize here, only shallowly. | 
|  | self.normalize_associated_types_in(ty) | 
|  | } | 
|  |  | 
|  | /// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it. | 
|  | pub(super) fn insert_const_vars_shallow(&mut self, c: Const) -> Const { | 
|  | let data = c.data(Interner); | 
|  | match &data.value { | 
|  | ConstValue::Concrete(cc) => match &cc.interned { | 
|  | crate::ConstScalar::Unknown => self.new_const_var(data.ty.clone()), | 
|  | // try to evaluate unevaluated const. Replace with new var if const eval failed. | 
|  | crate::ConstScalar::UnevaluatedConst(id, subst) => { | 
|  | if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) { | 
|  | eval | 
|  | } else { | 
|  | self.new_const_var(data.ty.clone()) | 
|  | } | 
|  | } | 
|  | _ => c, | 
|  | }, | 
|  | _ => c, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if given type is `Sized` or not | 
|  | pub(crate) fn is_sized(&mut self, ty: &Ty) -> bool { | 
|  | fn short_circuit_trivial_tys(ty: &Ty) -> Option<bool> { | 
|  | match ty.kind(Interner) { | 
|  | TyKind::Scalar(..) | 
|  | | TyKind::Ref(..) | 
|  | | TyKind::Raw(..) | 
|  | | TyKind::Never | 
|  | | TyKind::FnDef(..) | 
|  | | TyKind::Array(..) | 
|  | | TyKind::Function(..) => Some(true), | 
|  | TyKind::Slice(..) | TyKind::Str | TyKind::Dyn(..) => Some(false), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | let mut ty = ty.clone(); | 
|  | ty = self.eagerly_normalize_and_resolve_shallow_in(ty); | 
|  | if let Some(sized) = short_circuit_trivial_tys(&ty) { | 
|  | return sized; | 
|  | } | 
|  |  | 
|  | { | 
|  | let mut structs = SmallVec::<[_; 8]>::new(); | 
|  | // Must use a loop here and not recursion because otherwise users will conduct completely | 
|  | // artificial examples of structs that have themselves as the tail field and complain r-a crashes. | 
|  | while let Some((AdtId::StructId(id), subst)) = ty.as_adt() { | 
|  | let struct_data = id.fields(self.db); | 
|  | if let Some((last_field, _)) = struct_data.fields().iter().next_back() { | 
|  | let last_field_ty = self.db.field_types(id.into())[last_field] | 
|  | .clone() | 
|  | .substitute(Interner, subst); | 
|  | if structs.contains(&ty) { | 
|  | // A struct recursively contains itself as a tail field somewhere. | 
|  | return true; // Don't overload the users with too many errors. | 
|  | } | 
|  | structs.push(ty); | 
|  | // Structs can have DST as its last field and such cases are not handled | 
|  | // as unsized by the chalk, so we do this manually. | 
|  | ty = last_field_ty; | 
|  | ty = self.eagerly_normalize_and_resolve_shallow_in(ty); | 
|  | if let Some(sized) = short_circuit_trivial_tys(&ty) { | 
|  | return sized; | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | let Some(sized) = LangItem::Sized.resolve_trait(self.db, self.trait_env.krate) else { | 
|  | return false; | 
|  | }; | 
|  | let sized_pred = Predicate::upcast_from( | 
|  | TraitRef::new(self.interner, sized.into(), [ty.to_nextsolver(self.interner)]), | 
|  | self.interner, | 
|  | ); | 
|  | self.try_obligation(sized_pred).certain() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl fmt::Debug for InferenceTable<'_> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | f.debug_struct("InferenceTable") | 
|  | .field("name", &self.infer_ctxt.inner.borrow().type_variable_storage) | 
|  | .field("fulfillment_cx", &self.fulfillment_cx) | 
|  | .finish() | 
|  | } | 
|  | } | 
|  |  | 
|  | mod resolve { | 
|  | use super::InferenceTable; | 
|  | use crate::{ | 
|  | ConcreteConst, Const, ConstData, ConstScalar, ConstValue, DebruijnIndex, GenericArg, | 
|  | InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind, | 
|  | next_solver::mapping::NextSolverToChalk, | 
|  | }; | 
|  | use chalk_ir::{ | 
|  | cast::Cast, | 
|  | fold::{TypeFoldable, TypeFolder}, | 
|  | }; | 
|  | use rustc_type_ir::{FloatVid, IntVid, TyVid}; | 
|  |  | 
|  | #[derive(Debug, Copy, Clone, PartialEq, Eq)] | 
|  | pub(super) enum VarKind { | 
|  | Ty(TyVariableKind), | 
|  | Const, | 
|  | } | 
|  |  | 
|  | #[derive(chalk_derive::FallibleTypeFolder)] | 
|  | #[has_interner(Interner)] | 
|  | pub(super) struct Resolver< | 
|  | 'a, | 
|  | 'b, | 
|  | F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, | 
|  | > { | 
|  | pub(super) table: &'a mut InferenceTable<'b>, | 
|  | pub(super) var_stack: &'a mut Vec<(InferenceVar, VarKind)>, | 
|  | pub(super) fallback: F, | 
|  | } | 
|  | impl<F> TypeFolder<Interner> for Resolver<'_, '_, F> | 
|  | where | 
|  | F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, | 
|  | { | 
|  | fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> { | 
|  | self | 
|  | } | 
|  |  | 
|  | fn interner(&self) -> Interner { | 
|  | Interner | 
|  | } | 
|  |  | 
|  | fn fold_inference_ty( | 
|  | &mut self, | 
|  | var: InferenceVar, | 
|  | kind: TyVariableKind, | 
|  | outer_binder: DebruijnIndex, | 
|  | ) -> Ty { | 
|  | match kind { | 
|  | TyVariableKind::General => { | 
|  | let vid = self.table.infer_ctxt.root_var(TyVid::from(var.index())); | 
|  | let var = InferenceVar::from(vid.as_u32()); | 
|  | if self.var_stack.contains(&(var, VarKind::Ty(kind))) { | 
|  | // recursive type | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone(); | 
|  | } | 
|  | if let Ok(known_ty) = self.table.infer_ctxt.probe_ty_var(vid) { | 
|  | let known_ty: Ty = known_ty.to_chalk(self.table.interner); | 
|  | // known_ty may contain other variables that are known by now | 
|  | self.var_stack.push((var, VarKind::Ty(kind))); | 
|  | let result = known_ty.fold_with(self, outer_binder); | 
|  | self.var_stack.pop(); | 
|  | result | 
|  | } else { | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone() | 
|  | } | 
|  | } | 
|  | TyVariableKind::Integer => { | 
|  | let vid = self | 
|  | .table | 
|  | .infer_ctxt | 
|  | .inner | 
|  | .borrow_mut() | 
|  | .int_unification_table() | 
|  | .find(IntVid::from(var.index())); | 
|  | let var = InferenceVar::from(vid.as_u32()); | 
|  | if self.var_stack.contains(&(var, VarKind::Ty(kind))) { | 
|  | // recursive type | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone(); | 
|  | } | 
|  | if let Some(known_ty) = self.table.infer_ctxt.resolve_int_var(vid) { | 
|  | let known_ty: Ty = known_ty.to_chalk(self.table.interner); | 
|  | // known_ty may contain other variables that are known by now | 
|  | self.var_stack.push((var, VarKind::Ty(kind))); | 
|  | let result = known_ty.fold_with(self, outer_binder); | 
|  | self.var_stack.pop(); | 
|  | result | 
|  | } else { | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone() | 
|  | } | 
|  | } | 
|  | TyVariableKind::Float => { | 
|  | let vid = self | 
|  | .table | 
|  | .infer_ctxt | 
|  | .inner | 
|  | .borrow_mut() | 
|  | .float_unification_table() | 
|  | .find(FloatVid::from(var.index())); | 
|  | let var = InferenceVar::from(vid.as_u32()); | 
|  | if self.var_stack.contains(&(var, VarKind::Ty(kind))) { | 
|  | // recursive type | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone(); | 
|  | } | 
|  | if let Some(known_ty) = self.table.infer_ctxt.resolve_float_var(vid) { | 
|  | let known_ty: Ty = known_ty.to_chalk(self.table.interner); | 
|  | // known_ty may contain other variables that are known by now | 
|  | self.var_stack.push((var, VarKind::Ty(kind))); | 
|  | let result = known_ty.fold_with(self, outer_binder); | 
|  | self.var_stack.pop(); | 
|  | result | 
|  | } else { | 
|  | let default = self.table.fallback_value(var, kind).cast(Interner); | 
|  | (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) | 
|  | .assert_ty_ref(Interner) | 
|  | .clone() | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn fold_inference_const( | 
|  | &mut self, | 
|  | ty: Ty, | 
|  | var: InferenceVar, | 
|  | outer_binder: DebruijnIndex, | 
|  | ) -> Const { | 
|  | let vid = self | 
|  | .table | 
|  | .infer_ctxt | 
|  | .root_const_var(rustc_type_ir::ConstVid::from_u32(var.index())); | 
|  | let var = InferenceVar::from(vid.as_u32()); | 
|  | let default = ConstData { | 
|  | ty: ty.clone(), | 
|  | value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }), | 
|  | } | 
|  | .intern(Interner) | 
|  | .cast(Interner); | 
|  | if self.var_stack.contains(&(var, VarKind::Const)) { | 
|  | // recursive | 
|  | return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) | 
|  | .assert_const_ref(Interner) | 
|  | .clone(); | 
|  | } | 
|  | if let Ok(known_const) = self.table.infer_ctxt.probe_const_var(vid) { | 
|  | let known_const: Const = known_const.to_chalk(self.table.interner); | 
|  | // known_ty may contain other variables that are known by now | 
|  | self.var_stack.push((var, VarKind::Const)); | 
|  | let result = known_const.fold_with(self, outer_binder); | 
|  | self.var_stack.pop(); | 
|  | result | 
|  | } else { | 
|  | (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) | 
|  | .assert_const_ref(Interner) | 
|  | .clone() | 
|  | } | 
|  | } | 
|  |  | 
|  | fn fold_inference_lifetime( | 
|  | &mut self, | 
|  | _var: InferenceVar, | 
|  | _outer_binder: DebruijnIndex, | 
|  | ) -> Lifetime { | 
|  | // fall back all lifetimes to 'error -- currently we don't deal | 
|  | // with any lifetimes, but we can sometimes get some lifetime | 
|  | // variables through Chalk's unification, and this at least makes | 
|  | // sure we don't leak them outside of inference | 
|  | crate::error_lifetime() | 
|  | } | 
|  | } | 
|  | } |