| //! Disjunctive Normal Form construction. |
| //! |
| //! Algorithm from <https://www.cs.drexel.edu/~jjohnson/2015-16/fall/CS270/Lectures/3/dnf.pdf>, |
| //! which would have been much easier to read if it used pattern matching. It's also missing the |
| //! entire "distribute ANDs over ORs" part, which is not trivial. Oh well. |
| //! |
| //! This is currently both messy and inefficient. Feel free to improve, there are unit tests. |
| |
| use std::fmt::{self, Write}; |
| |
| use rustc_hash::FxHashSet; |
| |
| use crate::{CfgAtom, CfgDiff, CfgExpr, CfgOptions, InactiveReason}; |
| |
| /// A `#[cfg]` directive in Disjunctive Normal Form (DNF). |
| pub struct DnfExpr { |
| conjunctions: Vec<Conjunction>, |
| } |
| |
| struct Conjunction { |
| literals: Vec<Literal>, |
| } |
| |
| struct Literal { |
| negate: bool, |
| var: Option<CfgAtom>, // None = Invalid |
| } |
| |
| impl DnfExpr { |
| pub fn new(expr: &CfgExpr) -> Self { |
| let builder = Builder { expr: DnfExpr { conjunctions: Vec::new() } }; |
| |
| builder.lower(expr) |
| } |
| |
| /// Computes a list of present or absent atoms in `opts` that cause this expression to evaluate |
| /// to `false`. |
| /// |
| /// Note that flipping a subset of these atoms might be sufficient to make the whole expression |
| /// evaluate to `true`. For that, see `compute_enable_hints`. |
| /// |
| /// Returns `None` when `self` is already true, or contains errors. |
| pub fn why_inactive(&self, opts: &CfgOptions) -> Option<InactiveReason> { |
| let mut res = InactiveReason { enabled: Vec::new(), disabled: Vec::new() }; |
| |
| for conj in &self.conjunctions { |
| let mut conj_is_true = true; |
| for lit in &conj.literals { |
| let atom = lit.var.as_ref()?; |
| let enabled = opts.enabled.contains(atom); |
| if lit.negate == enabled { |
| // Literal is false, but needs to be true for this conjunction. |
| conj_is_true = false; |
| |
| if enabled { |
| res.enabled.push(atom.clone()); |
| } else { |
| res.disabled.push(atom.clone()); |
| } |
| } |
| } |
| |
| if conj_is_true { |
| // This expression is not actually inactive. |
| return None; |
| } |
| } |
| |
| res.enabled.sort_unstable(); |
| res.enabled.dedup(); |
| res.disabled.sort_unstable(); |
| res.disabled.dedup(); |
| Some(res) |
| } |
| |
| /// Returns `CfgDiff` objects that would enable this directive if applied to `opts`. |
| pub fn compute_enable_hints<'a>( |
| &'a self, |
| opts: &'a CfgOptions, |
| ) -> impl Iterator<Item = CfgDiff> + 'a { |
| // A cfg is enabled if any of `self.conjunctions` evaluate to `true`. |
| |
| self.conjunctions.iter().filter_map(move |conj| { |
| let mut enable = FxHashSet::default(); |
| let mut disable = FxHashSet::default(); |
| for lit in &conj.literals { |
| let atom = lit.var.as_ref()?; |
| let enabled = opts.enabled.contains(atom); |
| if lit.negate && enabled { |
| disable.insert(atom.clone()); |
| } |
| if !lit.negate && !enabled { |
| enable.insert(atom.clone()); |
| } |
| } |
| |
| // Check that this actually makes `conj` true. |
| for lit in &conj.literals { |
| let atom = lit.var.as_ref()?; |
| let enabled = enable.contains(atom) |
| || (opts.enabled.contains(atom) && !disable.contains(atom)); |
| if enabled == lit.negate { |
| return None; |
| } |
| } |
| |
| if enable.is_empty() && disable.is_empty() { |
| return None; |
| } |
| |
| let mut diff = CfgDiff { |
| enable: enable.into_iter().collect(), |
| disable: disable.into_iter().collect(), |
| }; |
| |
| // Undo the FxHashMap randomization for consistent output. |
| diff.enable.sort_unstable(); |
| diff.disable.sort_unstable(); |
| |
| Some(diff) |
| }) |
| } |
| } |
| |
| impl fmt::Display for DnfExpr { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if self.conjunctions.len() != 1 { |
| f.write_str("any(")?; |
| } |
| for (i, conj) in self.conjunctions.iter().enumerate() { |
| if i != 0 { |
| f.write_str(", ")?; |
| } |
| |
| conj.fmt(f)?; |
| } |
| if self.conjunctions.len() != 1 { |
| f.write_char(')')?; |
| } |
| |
| Ok(()) |
| } |
| } |
| |
| impl Conjunction { |
| fn new(parts: Box<[CfgExpr]>) -> Self { |
| let mut literals = Vec::new(); |
| for part in parts.into_vec() { |
| match part { |
| CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => { |
| literals.push(Literal::new(part)); |
| } |
| CfgExpr::All(conj) => { |
| // Flatten. |
| literals.extend(Conjunction::new(conj).literals); |
| } |
| CfgExpr::Any(_) => unreachable!("disjunction in conjunction"), |
| } |
| } |
| |
| Self { literals } |
| } |
| } |
| |
| impl fmt::Display for Conjunction { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if self.literals.len() != 1 { |
| f.write_str("all(")?; |
| } |
| for (i, lit) in self.literals.iter().enumerate() { |
| if i != 0 { |
| f.write_str(", ")?; |
| } |
| |
| lit.fmt(f)?; |
| } |
| if self.literals.len() != 1 { |
| f.write_str(")")?; |
| } |
| |
| Ok(()) |
| } |
| } |
| |
| impl Literal { |
| fn new(expr: CfgExpr) -> Self { |
| match expr { |
| CfgExpr::Invalid => Self { negate: false, var: None }, |
| CfgExpr::Atom(atom) => Self { negate: false, var: Some(atom) }, |
| CfgExpr::Not(expr) => match *expr { |
| CfgExpr::Invalid => Self { negate: true, var: None }, |
| CfgExpr::Atom(atom) => Self { negate: true, var: Some(atom) }, |
| _ => unreachable!("non-atom {:?}", expr), |
| }, |
| CfgExpr::Any(_) | CfgExpr::All(_) => unreachable!("non-literal {:?}", expr), |
| } |
| } |
| } |
| |
| impl fmt::Display for Literal { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if self.negate { |
| write!(f, "not(")?; |
| } |
| |
| match &self.var { |
| Some(var) => var.fmt(f)?, |
| None => f.write_str("<invalid>")?, |
| } |
| |
| if self.negate { |
| f.write_char(')')?; |
| } |
| |
| Ok(()) |
| } |
| } |
| |
| struct Builder { |
| expr: DnfExpr, |
| } |
| |
| impl Builder { |
| fn lower(mut self, expr: &CfgExpr) -> DnfExpr { |
| let expr = make_nnf(expr); |
| let expr = make_dnf(expr); |
| |
| match expr { |
| CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => { |
| self.expr.conjunctions.push(Conjunction::new(Box::new([expr]))); |
| } |
| CfgExpr::All(conj) => { |
| self.expr.conjunctions.push(Conjunction::new(conj)); |
| } |
| CfgExpr::Any(disj) => { |
| let mut disj = disj.into_vec(); |
| disj.reverse(); |
| while let Some(conj) = disj.pop() { |
| match conj { |
| CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::All(_) | CfgExpr::Not(_) => { |
| self.expr.conjunctions.push(Conjunction::new(Box::new([conj]))); |
| } |
| CfgExpr::Any(inner_disj) => { |
| // Flatten. |
| disj.extend(inner_disj.into_vec().into_iter().rev()); |
| } |
| } |
| } |
| } |
| } |
| |
| self.expr |
| } |
| } |
| |
| fn make_dnf(expr: CfgExpr) -> CfgExpr { |
| match expr { |
| CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => expr, |
| CfgExpr::Any(e) => flatten(CfgExpr::Any(e.into_vec().into_iter().map(make_dnf).collect())), |
| CfgExpr::All(e) => { |
| let e = e.into_vec().into_iter().map(make_dnf).collect::<Vec<_>>(); |
| |
| flatten(CfgExpr::Any(distribute_conj(&e).into_boxed_slice())) |
| } |
| } |
| } |
| |
| /// Turns a conjunction of expressions into a disjunction of expressions. |
| fn distribute_conj(conj: &[CfgExpr]) -> Vec<CfgExpr> { |
| fn go(out: &mut Vec<CfgExpr>, with: &mut Vec<CfgExpr>, rest: &[CfgExpr]) { |
| match rest { |
| [head, tail @ ..] => match head { |
| CfgExpr::Any(disj) => { |
| for part in disj.iter() { |
| with.push(part.clone()); |
| go(out, with, tail); |
| with.pop(); |
| } |
| } |
| _ => { |
| with.push(head.clone()); |
| go(out, with, tail); |
| with.pop(); |
| } |
| }, |
| _ => { |
| // Turn accumulated parts into a new conjunction. |
| out.push(CfgExpr::All(with.clone().into_boxed_slice())); |
| } |
| } |
| } |
| |
| let mut out = Vec::new(); // contains only `all()` |
| let mut with = Vec::new(); |
| |
| go(&mut out, &mut with, conj); |
| |
| out |
| } |
| |
| fn make_nnf(expr: &CfgExpr) -> CfgExpr { |
| match expr { |
| CfgExpr::Invalid | CfgExpr::Atom(_) => expr.clone(), |
| CfgExpr::Any(expr) => CfgExpr::Any(expr.iter().map(make_nnf).collect()), |
| CfgExpr::All(expr) => CfgExpr::All(expr.iter().map(make_nnf).collect()), |
| CfgExpr::Not(operand) => make_nnf_neg(operand), |
| } |
| } |
| |
| fn make_nnf_neg(operand: &CfgExpr) -> CfgExpr { |
| match operand { |
| // Original negated expr |
| CfgExpr::Invalid => CfgExpr::Not(Box::new(CfgExpr::Invalid)), // Original negated expr |
| // Original negated expr |
| CfgExpr::Atom(atom) => CfgExpr::Not(Box::new(CfgExpr::Atom(atom.clone()))), |
| // Remove double negation. |
| CfgExpr::Not(expr) => make_nnf(expr), |
| // Convert negated conjunction/disjunction using DeMorgan's Law. |
| CfgExpr::Any(inner) => CfgExpr::All(inner.iter().map(make_nnf_neg).collect()), |
| // Convert negated conjunction/disjunction using DeMorgan's Law. |
| CfgExpr::All(inner) => CfgExpr::Any(inner.iter().map(make_nnf_neg).collect()), |
| } |
| } |
| |
| /// Collapses nested `any()` and `all()` predicates. |
| fn flatten(expr: CfgExpr) -> CfgExpr { |
| match expr { |
| CfgExpr::All(inner) => CfgExpr::All( |
| inner |
| .iter() |
| .flat_map(|e| match e { |
| CfgExpr::All(inner) => inner.as_ref(), |
| _ => std::slice::from_ref(e), |
| }) |
| .cloned() |
| .collect(), |
| ), |
| CfgExpr::Any(inner) => CfgExpr::Any( |
| inner |
| .iter() |
| .flat_map(|e| match e { |
| CfgExpr::Any(inner) => inner.as_ref(), |
| _ => std::slice::from_ref(e), |
| }) |
| .cloned() |
| .collect(), |
| ), |
| _ => expr, |
| } |
| } |