blob: f2f27517fd66f7cf11cef2dd74389b840d5f4824 [file] [log] [blame]
//! Lookup hir elements using positions in the source code. This is a lossy
//! transformation: in general, a single source might correspond to several
//! modules, functions, etc, due to macros, cfgs and `#[path=]` attributes on
//! modules.
//!
//! So, this modules should not be used during hir construction, it exists
//! purely for "IDE needs".
use std::iter::{self, once};
use either::Either;
use hir_def::{
body::{
scope::{ExprScopes, ScopeId},
Body, BodySourceMap,
},
hir::{BindingId, ExprId, ExprOrPatId, Pat, PatId},
lang_item::LangItem,
lower::LowerCtx,
nameres::MacroSubNs,
path::{ModPath, Path, PathKind},
resolver::{resolver_for_scope, Resolver, TypeNs, ValueNs},
type_ref::Mutability,
AsMacroCall, AssocItemId, ConstId, DefWithBodyId, FieldId, FunctionId, ItemContainerId,
LocalFieldId, Lookup, ModuleDefId, TraitId, VariantId,
};
use hir_expand::{
mod_path::path,
name::{AsName, Name},
HirFileId, InFile, InMacroFile, MacroFileId, MacroFileIdExt,
};
use hir_ty::{
diagnostics::{
record_literal_missing_fields, record_pattern_missing_fields, unsafe_expressions,
UnsafeExpr,
},
lang_items::lang_items_for_bin_op,
method_resolution, Adjustment, InferenceResult, Interner, Substitution, Ty, TyExt, TyKind,
TyLoweringContext,
};
use intern::sym;
use itertools::Itertools;
use smallvec::SmallVec;
use syntax::{
ast::{self, AstNode},
SyntaxKind, SyntaxNode, TextRange, TextSize,
};
use triomphe::Arc;
use crate::{
db::HirDatabase, semantics::PathResolution, Adt, AssocItem, BindingMode, BuiltinAttr,
BuiltinType, Callable, Const, DeriveHelper, Field, Function, Local, Macro, ModuleDef, Static,
Struct, ToolModule, Trait, TraitAlias, TupleField, Type, TypeAlias, Variant,
};
/// `SourceAnalyzer` is a convenience wrapper which exposes HIR API in terms of
/// original source files. It should not be used inside the HIR itself.
#[derive(Debug)]
pub(crate) struct SourceAnalyzer {
pub(crate) file_id: HirFileId,
pub(crate) resolver: Resolver,
def: Option<(DefWithBodyId, Arc<Body>, Arc<BodySourceMap>)>,
infer: Option<Arc<InferenceResult>>,
}
impl SourceAnalyzer {
pub(crate) fn new_for_body(
db: &dyn HirDatabase,
def: DefWithBodyId,
node: InFile<&SyntaxNode>,
offset: Option<TextSize>,
) -> SourceAnalyzer {
Self::new_for_body_(db, def, node, offset, Some(db.infer(def)))
}
pub(crate) fn new_for_body_no_infer(
db: &dyn HirDatabase,
def: DefWithBodyId,
node: InFile<&SyntaxNode>,
offset: Option<TextSize>,
) -> SourceAnalyzer {
Self::new_for_body_(db, def, node, offset, None)
}
pub(crate) fn new_for_body_(
db: &dyn HirDatabase,
def: DefWithBodyId,
node @ InFile { file_id, .. }: InFile<&SyntaxNode>,
offset: Option<TextSize>,
infer: Option<Arc<InferenceResult>>,
) -> SourceAnalyzer {
let (body, source_map) = db.body_with_source_map(def);
let scopes = db.expr_scopes(def);
let scope = match offset {
None => scope_for(db, &scopes, &source_map, node),
Some(offset) => {
debug_assert!(
node.text_range().contains_inclusive(offset),
"{:?} not in {:?}",
offset,
node.text_range()
);
scope_for_offset(db, &scopes, &source_map, node.file_id, offset)
}
};
let resolver = resolver_for_scope(db.upcast(), def, scope);
SourceAnalyzer { resolver, def: Some((def, body, source_map)), infer, file_id }
}
pub(crate) fn new_for_resolver(
resolver: Resolver,
node: InFile<&SyntaxNode>,
) -> SourceAnalyzer {
SourceAnalyzer { resolver, def: None, infer: None, file_id: node.file_id }
}
fn body_source_map(&self) -> Option<&BodySourceMap> {
self.def.as_ref().map(|(.., source_map)| &**source_map)
}
fn body(&self) -> Option<&Body> {
self.def.as_ref().map(|(_, body, _)| &**body)
}
fn expr_id(&self, db: &dyn HirDatabase, expr: &ast::Expr) -> Option<ExprOrPatId> {
let src = match expr {
ast::Expr::MacroExpr(expr) => {
self.expand_expr(db, InFile::new(self.file_id, expr.macro_call()?))?.into()
}
_ => InFile::new(self.file_id, expr.clone()),
};
let sm = self.body_source_map()?;
sm.node_expr(src.as_ref())
}
fn pat_id(&self, pat: &ast::Pat) -> Option<PatId> {
// FIXME: macros, see `expr_id`
let src = InFile { file_id: self.file_id, value: pat };
self.body_source_map()?.node_pat(src)
}
fn binding_id_of_pat(&self, pat: &ast::IdentPat) -> Option<BindingId> {
let pat_id = self.pat_id(&pat.clone().into())?;
if let Pat::Bind { id, .. } = self.body()?.pats[pat_id] {
Some(id)
} else {
None
}
}
fn expand_expr(
&self,
db: &dyn HirDatabase,
expr: InFile<ast::MacroCall>,
) -> Option<InMacroFile<ast::Expr>> {
let macro_file = self.body_source_map()?.node_macro_file(expr.as_ref())?;
let expanded = db.parse_macro_expansion(macro_file).value.0.syntax_node();
let res = if let Some(stmts) = ast::MacroStmts::cast(expanded.clone()) {
match stmts.expr()? {
ast::Expr::MacroExpr(mac) => {
self.expand_expr(db, InFile::new(macro_file.into(), mac.macro_call()?))?
}
expr => InMacroFile::new(macro_file, expr),
}
} else if let Some(call) = ast::MacroCall::cast(expanded.clone()) {
self.expand_expr(db, InFile::new(macro_file.into(), call))?
} else {
InMacroFile::new(macro_file, ast::Expr::cast(expanded)?)
};
Some(res)
}
pub(crate) fn expr_adjustments(
&self,
db: &dyn HirDatabase,
expr: &ast::Expr,
) -> Option<&[Adjustment]> {
// It is safe to omit destructuring assignments here because they have no adjustments (neither
// expressions nor patterns).
let expr_id = self.expr_id(db, expr)?.as_expr()?;
let infer = self.infer.as_ref()?;
infer.expr_adjustments.get(&expr_id).map(|v| &**v)
}
pub(crate) fn type_of_expr(
&self,
db: &dyn HirDatabase,
expr: &ast::Expr,
) -> Option<(Type, Option<Type>)> {
let expr_id = self.expr_id(db, expr)?;
let infer = self.infer.as_ref()?;
let coerced = expr_id
.as_expr()
.and_then(|expr_id| infer.expr_adjustments.get(&expr_id))
.and_then(|adjusts| adjusts.last().map(|adjust| adjust.target.clone()));
let ty = infer[expr_id].clone();
let mk_ty = |ty| Type::new_with_resolver(db, &self.resolver, ty);
Some((mk_ty(ty), coerced.map(mk_ty)))
}
pub(crate) fn type_of_pat(
&self,
db: &dyn HirDatabase,
pat: &ast::Pat,
) -> Option<(Type, Option<Type>)> {
let pat_id = self.pat_id(pat)?;
let infer = self.infer.as_ref()?;
let coerced =
infer.pat_adjustments.get(&pat_id).and_then(|adjusts| adjusts.last().cloned());
let ty = infer[pat_id].clone();
let mk_ty = |ty| Type::new_with_resolver(db, &self.resolver, ty);
Some((mk_ty(ty), coerced.map(mk_ty)))
}
pub(crate) fn type_of_binding_in_pat(
&self,
db: &dyn HirDatabase,
pat: &ast::IdentPat,
) -> Option<Type> {
let binding_id = self.binding_id_of_pat(pat)?;
let infer = self.infer.as_ref()?;
let ty = infer[binding_id].clone();
let mk_ty = |ty| Type::new_with_resolver(db, &self.resolver, ty);
Some(mk_ty(ty))
}
pub(crate) fn type_of_self(
&self,
db: &dyn HirDatabase,
_param: &ast::SelfParam,
) -> Option<Type> {
let binding = self.body()?.self_param?;
let ty = self.infer.as_ref()?[binding].clone();
Some(Type::new_with_resolver(db, &self.resolver, ty))
}
pub(crate) fn binding_mode_of_pat(
&self,
_db: &dyn HirDatabase,
pat: &ast::IdentPat,
) -> Option<BindingMode> {
let id = self.pat_id(&pat.clone().into())?;
let infer = self.infer.as_ref()?;
infer.binding_modes.get(id).map(|bm| match bm {
hir_ty::BindingMode::Move => BindingMode::Move,
hir_ty::BindingMode::Ref(hir_ty::Mutability::Mut) => BindingMode::Ref(Mutability::Mut),
hir_ty::BindingMode::Ref(hir_ty::Mutability::Not) => {
BindingMode::Ref(Mutability::Shared)
}
})
}
pub(crate) fn pattern_adjustments(
&self,
db: &dyn HirDatabase,
pat: &ast::Pat,
) -> Option<SmallVec<[Type; 1]>> {
let pat_id = self.pat_id(pat)?;
let infer = self.infer.as_ref()?;
Some(
infer
.pat_adjustments
.get(&pat_id)?
.iter()
.map(|ty| Type::new_with_resolver(db, &self.resolver, ty.clone()))
.collect(),
)
}
pub(crate) fn resolve_method_call_as_callable(
&self,
db: &dyn HirDatabase,
call: &ast::MethodCallExpr,
) -> Option<Callable> {
let expr_id = self.expr_id(db, &call.clone().into())?.as_expr()?;
let (func, substs) = self.infer.as_ref()?.method_resolution(expr_id)?;
let ty = db.value_ty(func.into())?.substitute(Interner, &substs);
let ty = Type::new_with_resolver(db, &self.resolver, ty);
let mut res = ty.as_callable(db)?;
res.is_bound_method = true;
Some(res)
}
pub(crate) fn resolve_method_call(
&self,
db: &dyn HirDatabase,
call: &ast::MethodCallExpr,
) -> Option<Function> {
let expr_id = self.expr_id(db, &call.clone().into())?.as_expr()?;
let (f_in_trait, substs) = self.infer.as_ref()?.method_resolution(expr_id)?;
Some(self.resolve_impl_method_or_trait_def(db, f_in_trait, substs).into())
}
pub(crate) fn resolve_method_call_fallback(
&self,
db: &dyn HirDatabase,
call: &ast::MethodCallExpr,
) -> Option<Either<Function, Field>> {
let expr_id = self.expr_id(db, &call.clone().into())?.as_expr()?;
let inference_result = self.infer.as_ref()?;
match inference_result.method_resolution(expr_id) {
Some((f_in_trait, substs)) => Some(Either::Left(
self.resolve_impl_method_or_trait_def(db, f_in_trait, substs).into(),
)),
None => inference_result
.field_resolution(expr_id)
.and_then(Either::left)
.map(Into::into)
.map(Either::Right),
}
}
pub(crate) fn resolve_expr_as_callable(
&self,
db: &dyn HirDatabase,
call: &ast::Expr,
) -> Option<Callable> {
let (orig, adjusted) = self.type_of_expr(db, &call.clone())?;
adjusted.unwrap_or(orig).as_callable(db)
}
pub(crate) fn resolve_field(
&self,
db: &dyn HirDatabase,
field: &ast::FieldExpr,
) -> Option<Either<Field, TupleField>> {
let &(def, ..) = self.def.as_ref()?;
let expr_id = self.expr_id(db, &field.clone().into())?.as_expr()?;
self.infer.as_ref()?.field_resolution(expr_id).map(|it| {
it.map_either(Into::into, |f| TupleField { owner: def, tuple: f.tuple, index: f.index })
})
}
pub(crate) fn resolve_field_fallback(
&self,
db: &dyn HirDatabase,
field: &ast::FieldExpr,
) -> Option<Either<Either<Field, TupleField>, Function>> {
let &(def, ..) = self.def.as_ref()?;
let expr_id = self.expr_id(db, &field.clone().into())?.as_expr()?;
let inference_result = self.infer.as_ref()?;
match inference_result.field_resolution(expr_id) {
Some(field) => Some(Either::Left(field.map_either(Into::into, |f| TupleField {
owner: def,
tuple: f.tuple,
index: f.index,
}))),
None => inference_result.method_resolution(expr_id).map(|(f, substs)| {
Either::Right(self.resolve_impl_method_or_trait_def(db, f, substs).into())
}),
}
}
pub(crate) fn resolve_await_to_poll(
&self,
db: &dyn HirDatabase,
await_expr: &ast::AwaitExpr,
) -> Option<FunctionId> {
let mut ty = self.ty_of_expr(db, &await_expr.expr()?)?.clone();
let into_future_trait = self
.resolver
.resolve_known_trait(db.upcast(), &path![core::future::IntoFuture])
.map(Trait::from);
if let Some(into_future_trait) = into_future_trait {
let type_ = Type::new_with_resolver(db, &self.resolver, ty.clone());
if type_.impls_trait(db, into_future_trait, &[]) {
let items = into_future_trait.items(db);
let into_future_type = items.into_iter().find_map(|item| match item {
AssocItem::TypeAlias(alias)
if alias.name(db) == Name::new_symbol_root(sym::IntoFuture.clone()) =>
{
Some(alias)
}
_ => None,
})?;
let future_trait = type_.normalize_trait_assoc_type(db, &[], into_future_type)?;
ty = future_trait.ty;
}
}
let future_trait = db.lang_item(self.resolver.krate(), LangItem::Future)?.as_trait()?;
let poll_fn = db.lang_item(self.resolver.krate(), LangItem::FuturePoll)?.as_function()?;
// HACK: subst for `poll()` coincides with that for `Future` because `poll()` itself
// doesn't have any generic parameters, so we skip building another subst for `poll()`.
let substs = hir_ty::TyBuilder::subst_for_def(db, future_trait, None).push(ty).build();
Some(self.resolve_impl_method_or_trait_def(db, poll_fn, substs))
}
pub(crate) fn resolve_prefix_expr(
&self,
db: &dyn HirDatabase,
prefix_expr: &ast::PrefixExpr,
) -> Option<FunctionId> {
let (op_trait, op_fn) = match prefix_expr.op_kind()? {
ast::UnaryOp::Deref => {
// This can be either `Deref::deref` or `DerefMut::deref_mut`.
// Since deref kind is inferenced and stored in `InferenceResult.method_resolution`,
// use that result to find out which one it is.
let (deref_trait, deref) = self.lang_trait_fn(
db,
LangItem::Deref,
&Name::new_symbol_root(sym::deref.clone()),
)?;
self.infer
.as_ref()
.and_then(|infer| {
let expr = self.expr_id(db, &prefix_expr.clone().into())?.as_expr()?;
let (func, _) = infer.method_resolution(expr)?;
let (deref_mut_trait, deref_mut) = self.lang_trait_fn(
db,
LangItem::DerefMut,
&Name::new_symbol_root(sym::deref_mut.clone()),
)?;
if func == deref_mut {
Some((deref_mut_trait, deref_mut))
} else {
None
}
})
.unwrap_or((deref_trait, deref))
}
ast::UnaryOp::Not => {
self.lang_trait_fn(db, LangItem::Not, &Name::new_symbol_root(sym::not.clone()))?
}
ast::UnaryOp::Neg => {
self.lang_trait_fn(db, LangItem::Neg, &Name::new_symbol_root(sym::neg.clone()))?
}
};
let ty = self.ty_of_expr(db, &prefix_expr.expr()?)?;
// HACK: subst for all methods coincides with that for their trait because the methods
// don't have any generic parameters, so we skip building another subst for the methods.
let substs = hir_ty::TyBuilder::subst_for_def(db, op_trait, None).push(ty.clone()).build();
Some(self.resolve_impl_method_or_trait_def(db, op_fn, substs))
}
pub(crate) fn resolve_index_expr(
&self,
db: &dyn HirDatabase,
index_expr: &ast::IndexExpr,
) -> Option<FunctionId> {
let base_ty = self.ty_of_expr(db, &index_expr.base()?)?;
let index_ty = self.ty_of_expr(db, &index_expr.index()?)?;
let (index_trait, index_fn) =
self.lang_trait_fn(db, LangItem::Index, &Name::new_symbol_root(sym::index.clone()))?;
let (op_trait, op_fn) = self
.infer
.as_ref()
.and_then(|infer| {
let expr = self.expr_id(db, &index_expr.clone().into())?.as_expr()?;
let (func, _) = infer.method_resolution(expr)?;
let (index_mut_trait, index_mut_fn) = self.lang_trait_fn(
db,
LangItem::IndexMut,
&Name::new_symbol_root(sym::index_mut.clone()),
)?;
if func == index_mut_fn {
Some((index_mut_trait, index_mut_fn))
} else {
None
}
})
.unwrap_or((index_trait, index_fn));
// HACK: subst for all methods coincides with that for their trait because the methods
// don't have any generic parameters, so we skip building another subst for the methods.
let substs = hir_ty::TyBuilder::subst_for_def(db, op_trait, None)
.push(base_ty.clone())
.push(index_ty.clone())
.build();
Some(self.resolve_impl_method_or_trait_def(db, op_fn, substs))
}
pub(crate) fn resolve_bin_expr(
&self,
db: &dyn HirDatabase,
binop_expr: &ast::BinExpr,
) -> Option<FunctionId> {
let op = binop_expr.op_kind()?;
let lhs = self.ty_of_expr(db, &binop_expr.lhs()?)?;
let rhs = self.ty_of_expr(db, &binop_expr.rhs()?)?;
let (op_trait, op_fn) = lang_items_for_bin_op(op)
.and_then(|(name, lang_item)| self.lang_trait_fn(db, lang_item, &name))?;
// HACK: subst for `index()` coincides with that for `Index` because `index()` itself
// doesn't have any generic parameters, so we skip building another subst for `index()`.
let substs = hir_ty::TyBuilder::subst_for_def(db, op_trait, None)
.push(lhs.clone())
.push(rhs.clone())
.build();
Some(self.resolve_impl_method_or_trait_def(db, op_fn, substs))
}
pub(crate) fn resolve_try_expr(
&self,
db: &dyn HirDatabase,
try_expr: &ast::TryExpr,
) -> Option<FunctionId> {
let ty = self.ty_of_expr(db, &try_expr.expr()?)?;
let op_fn = db.lang_item(self.resolver.krate(), LangItem::TryTraitBranch)?.as_function()?;
let op_trait = match op_fn.lookup(db.upcast()).container {
ItemContainerId::TraitId(id) => id,
_ => return None,
};
// HACK: subst for `branch()` coincides with that for `Try` because `branch()` itself
// doesn't have any generic parameters, so we skip building another subst for `branch()`.
let substs = hir_ty::TyBuilder::subst_for_def(db, op_trait, None).push(ty.clone()).build();
Some(self.resolve_impl_method_or_trait_def(db, op_fn, substs))
}
pub(crate) fn resolve_record_field(
&self,
db: &dyn HirDatabase,
field: &ast::RecordExprField,
) -> Option<(Field, Option<Local>, Type)> {
let record_expr = ast::RecordExpr::cast(field.syntax().parent().and_then(|p| p.parent())?)?;
let expr = ast::Expr::from(record_expr);
let expr_id = self.body_source_map()?.node_expr(InFile::new(self.file_id, &expr))?;
let local_name = field.field_name()?.as_name();
let local = if field.name_ref().is_some() {
None
} else {
// Shorthand syntax, resolve to the local
let path = Path::from_known_path_with_no_generic(ModPath::from_segments(
PathKind::Plain,
once(local_name.clone()),
));
match self.resolver.resolve_path_in_value_ns_fully(db.upcast(), &path) {
Some(ValueNs::LocalBinding(binding_id)) => {
Some(Local { binding_id, parent: self.resolver.body_owner()? })
}
_ => None,
}
};
let (_, subst) = self.infer.as_ref()?.type_of_expr_or_pat(expr_id)?.as_adt()?;
let variant = self.infer.as_ref()?.variant_resolution_for_expr_or_pat(expr_id)?;
let variant_data = variant.variant_data(db.upcast());
let field = FieldId { parent: variant, local_id: variant_data.field(&local_name)? };
let field_ty =
db.field_types(variant).get(field.local_id)?.clone().substitute(Interner, subst);
Some((field.into(), local, Type::new_with_resolver(db, &self.resolver, field_ty)))
}
pub(crate) fn resolve_record_pat_field(
&self,
db: &dyn HirDatabase,
field: &ast::RecordPatField,
) -> Option<(Field, Type)> {
let field_name = field.field_name()?.as_name();
let record_pat = ast::RecordPat::cast(field.syntax().parent().and_then(|p| p.parent())?)?;
let pat_id = self.pat_id(&record_pat.into())?;
let variant = self.infer.as_ref()?.variant_resolution_for_pat(pat_id)?;
let variant_data = variant.variant_data(db.upcast());
let field = FieldId { parent: variant, local_id: variant_data.field(&field_name)? };
let (_, subst) = self.infer.as_ref()?.type_of_pat.get(pat_id)?.as_adt()?;
let field_ty =
db.field_types(variant).get(field.local_id)?.clone().substitute(Interner, subst);
Some((field.into(), Type::new_with_resolver(db, &self.resolver, field_ty)))
}
pub(crate) fn resolve_macro_call(
&self,
db: &dyn HirDatabase,
macro_call: InFile<&ast::MacroCall>,
) -> Option<Macro> {
let ctx = LowerCtx::new(db.upcast(), macro_call.file_id);
let path = macro_call.value.path().and_then(|ast| Path::from_src(&ctx, ast))?;
self.resolver
.resolve_path_as_macro(db.upcast(), path.mod_path()?, Some(MacroSubNs::Bang))
.map(|(it, _)| it.into())
}
pub(crate) fn resolve_bind_pat_to_const(
&self,
db: &dyn HirDatabase,
pat: &ast::IdentPat,
) -> Option<ModuleDef> {
let pat_id = self.pat_id(&pat.clone().into())?;
let body = self.body()?;
let path = match &body[pat_id] {
Pat::Path(path) => path,
_ => return None,
};
let res = resolve_hir_path(db, &self.resolver, path)?;
match res {
PathResolution::Def(def) => Some(def),
_ => None,
}
}
pub(crate) fn resolve_path(
&self,
db: &dyn HirDatabase,
path: &ast::Path,
) -> Option<PathResolution> {
let parent = path.syntax().parent();
let parent = || parent.clone();
let mut prefer_value_ns = false;
let resolved = (|| {
let infer = self.infer.as_deref()?;
if let Some(path_expr) = parent().and_then(ast::PathExpr::cast) {
let expr_id = self.expr_id(db, &path_expr.into())?;
if let Some((assoc, subs)) = infer.assoc_resolutions_for_expr_or_pat(expr_id) {
let assoc = match assoc {
AssocItemId::FunctionId(f_in_trait) => {
match infer.type_of_expr_or_pat(expr_id) {
None => assoc,
Some(func_ty) => {
if let TyKind::FnDef(_fn_def, subs) = func_ty.kind(Interner) {
self.resolve_impl_method_or_trait_def(
db,
f_in_trait,
subs.clone(),
)
.into()
} else {
assoc
}
}
}
}
AssocItemId::ConstId(const_id) => {
self.resolve_impl_const_or_trait_def(db, const_id, subs).into()
}
assoc => assoc,
};
return Some(PathResolution::Def(AssocItem::from(assoc).into()));
}
if let Some(VariantId::EnumVariantId(variant)) =
infer.variant_resolution_for_expr_or_pat(expr_id)
{
return Some(PathResolution::Def(ModuleDef::Variant(variant.into())));
}
prefer_value_ns = true;
} else if let Some(path_pat) = parent().and_then(ast::PathPat::cast) {
let pat_id = self.pat_id(&path_pat.into())?;
if let Some((assoc, subs)) = infer.assoc_resolutions_for_pat(pat_id) {
let assoc = match assoc {
AssocItemId::ConstId(const_id) => {
self.resolve_impl_const_or_trait_def(db, const_id, subs).into()
}
assoc => assoc,
};
return Some(PathResolution::Def(AssocItem::from(assoc).into()));
}
if let Some(VariantId::EnumVariantId(variant)) =
infer.variant_resolution_for_pat(pat_id)
{
return Some(PathResolution::Def(ModuleDef::Variant(variant.into())));
}
} else if let Some(rec_lit) = parent().and_then(ast::RecordExpr::cast) {
let expr_id = self.expr_id(db, &rec_lit.into())?;
if let Some(VariantId::EnumVariantId(variant)) =
infer.variant_resolution_for_expr_or_pat(expr_id)
{
return Some(PathResolution::Def(ModuleDef::Variant(variant.into())));
}
} else {
let record_pat = parent().and_then(ast::RecordPat::cast).map(ast::Pat::from);
let tuple_struct_pat =
|| parent().and_then(ast::TupleStructPat::cast).map(ast::Pat::from);
if let Some(pat) = record_pat.or_else(tuple_struct_pat) {
let pat_id = self.pat_id(&pat)?;
let variant_res_for_pat = infer.variant_resolution_for_pat(pat_id);
if let Some(VariantId::EnumVariantId(variant)) = variant_res_for_pat {
return Some(PathResolution::Def(ModuleDef::Variant(variant.into())));
}
}
}
None
})();
if resolved.is_some() {
return resolved;
}
let ctx = LowerCtx::new(db.upcast(), self.file_id);
let hir_path = Path::from_src(&ctx, path.clone())?;
// Case where path is a qualifier of a use tree, e.g. foo::bar::{Baz, Qux} where we are
// trying to resolve foo::bar.
if let Some(use_tree) = parent().and_then(ast::UseTree::cast) {
if use_tree.coloncolon_token().is_some() {
return resolve_hir_path_qualifier(db, &self.resolver, &hir_path);
}
}
let meta_path = path
.syntax()
.ancestors()
.take_while(|it| {
let kind = it.kind();
ast::Path::can_cast(kind) || ast::Meta::can_cast(kind)
})
.last()
.and_then(ast::Meta::cast);
// Case where path is a qualifier of another path, e.g. foo::bar::Baz where we are
// trying to resolve foo::bar.
if path.parent_path().is_some() {
return match resolve_hir_path_qualifier(db, &self.resolver, &hir_path) {
None if meta_path.is_some() => {
path.first_segment().and_then(|it| it.name_ref()).and_then(|name_ref| {
ToolModule::by_name(db, self.resolver.krate().into(), &name_ref.text())
.map(PathResolution::ToolModule)
})
}
res => res,
};
} else if let Some(meta_path) = meta_path {
// Case where we are resolving the final path segment of a path in an attribute
// in this case we have to check for inert/builtin attributes and tools and prioritize
// resolution of attributes over other namespaces
if let Some(name_ref) = path.as_single_name_ref() {
let builtin =
BuiltinAttr::by_name(db, self.resolver.krate().into(), &name_ref.text());
if builtin.is_some() {
return builtin.map(PathResolution::BuiltinAttr);
}
if let Some(attr) = meta_path.parent_attr() {
let adt = if let Some(field) =
attr.syntax().parent().and_then(ast::RecordField::cast)
{
field.syntax().ancestors().take(4).find_map(ast::Adt::cast)
} else if let Some(field) =
attr.syntax().parent().and_then(ast::TupleField::cast)
{
field.syntax().ancestors().take(4).find_map(ast::Adt::cast)
} else if let Some(variant) =
attr.syntax().parent().and_then(ast::Variant::cast)
{
variant.syntax().ancestors().nth(2).and_then(ast::Adt::cast)
} else {
None
};
if let Some(adt) = adt {
let ast_id = db.ast_id_map(self.file_id).ast_id(&adt);
if let Some(helpers) = self
.resolver
.def_map()
.derive_helpers_in_scope(InFile::new(self.file_id, ast_id))
{
// FIXME: Multiple derives can have the same helper
let name_ref = name_ref.as_name();
for (macro_id, mut helpers) in
helpers.iter().group_by(|(_, macro_id, ..)| macro_id).into_iter()
{
if let Some(idx) = helpers.position(|(name, ..)| *name == name_ref)
{
return Some(PathResolution::DeriveHelper(DeriveHelper {
derive: *macro_id,
idx: idx as u32,
}));
}
}
}
}
}
}
return match resolve_hir_path_as_attr_macro(db, &self.resolver, &hir_path) {
Some(m) => Some(PathResolution::Def(ModuleDef::Macro(m))),
// this labels any path that starts with a tool module as the tool itself, this is technically wrong
// but there is no benefit in differentiating these two cases for the time being
None => path.first_segment().and_then(|it| it.name_ref()).and_then(|name_ref| {
ToolModule::by_name(db, self.resolver.krate().into(), &name_ref.text())
.map(PathResolution::ToolModule)
}),
};
}
if parent().map_or(false, |it| ast::Visibility::can_cast(it.kind())) {
resolve_hir_path_qualifier(db, &self.resolver, &hir_path)
} else {
resolve_hir_path_(db, &self.resolver, &hir_path, prefer_value_ns)
}
}
pub(crate) fn record_literal_missing_fields(
&self,
db: &dyn HirDatabase,
literal: &ast::RecordExpr,
) -> Option<Vec<(Field, Type)>> {
let body = self.body()?;
let infer = self.infer.as_ref()?;
let expr_id = self.expr_id(db, &literal.clone().into())?;
let substs = infer[expr_id].as_adt()?.1;
let (variant, missing_fields, _exhaustive) = match expr_id {
ExprOrPatId::ExprId(expr_id) => {
record_literal_missing_fields(db, infer, expr_id, &body[expr_id])?
}
ExprOrPatId::PatId(pat_id) => {
record_pattern_missing_fields(db, infer, pat_id, &body[pat_id])?
}
};
let res = self.missing_fields(db, substs, variant, missing_fields);
Some(res)
}
pub(crate) fn record_pattern_missing_fields(
&self,
db: &dyn HirDatabase,
pattern: &ast::RecordPat,
) -> Option<Vec<(Field, Type)>> {
let body = self.body()?;
let infer = self.infer.as_ref()?;
let pat_id = self.pat_id(&pattern.clone().into())?;
let substs = infer.type_of_pat[pat_id].as_adt()?.1;
let (variant, missing_fields, _exhaustive) =
record_pattern_missing_fields(db, infer, pat_id, &body[pat_id])?;
let res = self.missing_fields(db, substs, variant, missing_fields);
Some(res)
}
fn missing_fields(
&self,
db: &dyn HirDatabase,
substs: &Substitution,
variant: VariantId,
missing_fields: Vec<LocalFieldId>,
) -> Vec<(Field, Type)> {
let field_types = db.field_types(variant);
missing_fields
.into_iter()
.map(|local_id| {
let field = FieldId { parent: variant, local_id };
let ty = field_types[local_id].clone().substitute(Interner, substs);
(field.into(), Type::new_with_resolver_inner(db, &self.resolver, ty))
})
.collect()
}
pub(crate) fn expand(
&self,
db: &dyn HirDatabase,
macro_call: InFile<&ast::MacroCall>,
) -> Option<MacroFileId> {
let krate = self.resolver.krate();
// FIXME: This causes us to parse, generally this is the wrong approach for resolving a
// macro call to a macro call id!
let macro_call_id = macro_call.as_call_id(db.upcast(), krate, |path| {
self.resolver.resolve_path_as_macro_def(db.upcast(), path, Some(MacroSubNs::Bang))
})?;
// why the 64?
Some(macro_call_id.as_macro_file()).filter(|it| it.expansion_level(db.upcast()) < 64)
}
pub(crate) fn resolve_variant(
&self,
db: &dyn HirDatabase,
record_lit: ast::RecordExpr,
) -> Option<VariantId> {
let infer = self.infer.as_ref()?;
let expr_id = self.expr_id(db, &record_lit.into())?;
infer.variant_resolution_for_expr_or_pat(expr_id)
}
pub(crate) fn is_unsafe_macro_call_expr(
&self,
db: &dyn HirDatabase,
macro_expr: InFile<&ast::MacroExpr>,
) -> bool {
if let (Some((def, body, sm)), Some(infer)) = (&self.def, &self.infer) {
if let Some(expanded_expr) = sm.macro_expansion_expr(macro_expr) {
let mut is_unsafe = false;
let mut walk_expr = |expr_id| {
unsafe_expressions(
db,
infer,
*def,
body,
expr_id,
&mut |UnsafeExpr { inside_unsafe_block, .. }| {
is_unsafe |= !inside_unsafe_block
},
)
};
match expanded_expr {
ExprOrPatId::ExprId(expanded_expr) => walk_expr(expanded_expr),
ExprOrPatId::PatId(expanded_pat) => {
body.walk_exprs_in_pat(expanded_pat, &mut walk_expr)
}
}
return is_unsafe;
}
}
false
}
pub(crate) fn resolve_offset_in_format_args(
&self,
db: &dyn HirDatabase,
format_args: InFile<&ast::FormatArgsExpr>,
offset: TextSize,
) -> Option<(TextRange, Option<PathResolution>)> {
let implicits = self.body_source_map()?.implicit_format_args(format_args)?;
implicits.iter().find(|(range, _)| range.contains_inclusive(offset)).map(|(range, name)| {
(
*range,
resolve_hir_value_path(
db,
&self.resolver,
self.resolver.body_owner(),
&Path::from_known_path_with_no_generic(ModPath::from_segments(
PathKind::Plain,
Some(name.clone()),
)),
),
)
})
}
pub(crate) fn resolve_offset_in_asm_template(
&self,
asm: InFile<&ast::AsmExpr>,
line: usize,
offset: TextSize,
) -> Option<(DefWithBodyId, (ExprId, TextRange, usize))> {
let (def, _, body_source_map) = self.def.as_ref()?;
let (expr, args) = body_source_map.asm_template_args(asm)?;
Some(*def).zip(
args.get(line)?
.iter()
.find(|(range, _)| range.contains_inclusive(offset))
.map(|(range, idx)| (expr, *range, *idx)),
)
}
pub(crate) fn as_format_args_parts<'a>(
&'a self,
db: &'a dyn HirDatabase,
format_args: InFile<&ast::FormatArgsExpr>,
) -> Option<impl Iterator<Item = (TextRange, Option<PathResolution>)> + 'a> {
Some(self.body_source_map()?.implicit_format_args(format_args)?.iter().map(
move |(range, name)| {
(
*range,
resolve_hir_value_path(
db,
&self.resolver,
self.resolver.body_owner(),
&Path::from_known_path_with_no_generic(ModPath::from_segments(
PathKind::Plain,
Some(name.clone()),
)),
),
)
},
))
}
pub(crate) fn as_asm_parts(
&self,
asm: InFile<&ast::AsmExpr>,
) -> Option<(DefWithBodyId, (ExprId, &[Vec<(TextRange, usize)>]))> {
let (def, _, body_source_map) = self.def.as_ref()?;
Some(*def).zip(body_source_map.asm_template_args(asm))
}
fn resolve_impl_method_or_trait_def(
&self,
db: &dyn HirDatabase,
func: FunctionId,
substs: Substitution,
) -> FunctionId {
let owner = match self.resolver.body_owner() {
Some(it) => it,
None => return func,
};
let env = db.trait_environment_for_body(owner);
db.lookup_impl_method(env, func, substs).0
}
fn resolve_impl_const_or_trait_def(
&self,
db: &dyn HirDatabase,
const_id: ConstId,
subs: Substitution,
) -> ConstId {
let owner = match self.resolver.body_owner() {
Some(it) => it,
None => return const_id,
};
let env = db.trait_environment_for_body(owner);
method_resolution::lookup_impl_const(db, env, const_id, subs).0
}
fn lang_trait_fn(
&self,
db: &dyn HirDatabase,
lang_trait: LangItem,
method_name: &Name,
) -> Option<(TraitId, FunctionId)> {
let trait_id = db.lang_item(self.resolver.krate(), lang_trait)?.as_trait()?;
let fn_id = db.trait_data(trait_id).method_by_name(method_name)?;
Some((trait_id, fn_id))
}
fn ty_of_expr(&self, db: &dyn HirDatabase, expr: &ast::Expr) -> Option<&Ty> {
self.infer.as_ref()?.type_of_expr_or_pat(self.expr_id(db, expr)?)
}
}
fn scope_for(
db: &dyn HirDatabase,
scopes: &ExprScopes,
source_map: &BodySourceMap,
node: InFile<&SyntaxNode>,
) -> Option<ScopeId> {
node.ancestors_with_macros(db.upcast())
.take_while(|it| !ast::Item::can_cast(it.kind()) || ast::MacroCall::can_cast(it.kind()))
.filter_map(|it| it.map(ast::Expr::cast).transpose())
.filter_map(|it| source_map.node_expr(it.as_ref())?.as_expr())
.find_map(|it| scopes.scope_for(it))
}
fn scope_for_offset(
db: &dyn HirDatabase,
scopes: &ExprScopes,
source_map: &BodySourceMap,
from_file: HirFileId,
offset: TextSize,
) -> Option<ScopeId> {
scopes
.scope_by_expr()
.iter()
.filter_map(|(id, scope)| {
let InFile { file_id, value } = source_map.expr_syntax(id).ok()?;
if from_file == file_id {
return Some((value.text_range(), scope));
}
// FIXME handle attribute expansion
let source =
iter::successors(file_id.macro_file().map(|it| it.call_node(db.upcast())), |it| {
Some(it.file_id.macro_file()?.call_node(db.upcast()))
})
.find(|it| it.file_id == from_file)
.filter(|it| it.kind() == SyntaxKind::MACRO_CALL)?;
Some((source.text_range(), scope))
})
.filter(|(expr_range, _scope)| expr_range.start() <= offset && offset <= expr_range.end())
// find containing scope
.min_by_key(|(expr_range, _scope)| expr_range.len())
.map(|(expr_range, scope)| {
adjust(db, scopes, source_map, expr_range, from_file, offset).unwrap_or(*scope)
})
}
// XXX: during completion, cursor might be outside of any particular
// expression. Try to figure out the correct scope...
fn adjust(
db: &dyn HirDatabase,
scopes: &ExprScopes,
source_map: &BodySourceMap,
expr_range: TextRange,
from_file: HirFileId,
offset: TextSize,
) -> Option<ScopeId> {
let child_scopes = scopes
.scope_by_expr()
.iter()
.filter_map(|(id, scope)| {
let source = source_map.expr_syntax(id).ok()?;
// FIXME: correctly handle macro expansion
if source.file_id != from_file {
return None;
}
let root = source.file_syntax(db.upcast());
let node = source.value.to_node(&root);
Some((node.syntax().text_range(), scope))
})
.filter(|&(range, _)| {
range.start() <= offset && expr_range.contains_range(range) && range != expr_range
});
child_scopes
.max_by(|&(r1, _), &(r2, _)| {
if r1.contains_range(r2) {
std::cmp::Ordering::Greater
} else if r2.contains_range(r1) {
std::cmp::Ordering::Less
} else {
r1.start().cmp(&r2.start())
}
})
.map(|(_ptr, scope)| *scope)
}
#[inline]
pub(crate) fn resolve_hir_path(
db: &dyn HirDatabase,
resolver: &Resolver,
path: &Path,
) -> Option<PathResolution> {
resolve_hir_path_(db, resolver, path, false)
}
#[inline]
pub(crate) fn resolve_hir_path_as_attr_macro(
db: &dyn HirDatabase,
resolver: &Resolver,
path: &Path,
) -> Option<Macro> {
resolver
.resolve_path_as_macro(db.upcast(), path.mod_path()?, Some(MacroSubNs::Attr))
.map(|(it, _)| it)
.map(Into::into)
}
fn resolve_hir_path_(
db: &dyn HirDatabase,
resolver: &Resolver,
path: &Path,
prefer_value_ns: bool,
) -> Option<PathResolution> {
let types = || {
let (ty, unresolved) = match path.type_anchor() {
Some(type_ref) => {
let (_, res) =
TyLoweringContext::new_maybe_unowned(db, resolver, resolver.type_owner())
.lower_ty_ext(type_ref);
res.map(|ty_ns| (ty_ns, path.segments().first()))
}
None => {
let (ty, remaining_idx, _) = resolver.resolve_path_in_type_ns(db.upcast(), path)?;
match remaining_idx {
Some(remaining_idx) => {
if remaining_idx + 1 == path.segments().len() {
Some((ty, path.segments().last()))
} else {
None
}
}
None => Some((ty, None)),
}
}
}?;
// If we are in a TypeNs for a Trait, and we have an unresolved name, try to resolve it as a type
// within the trait's associated types.
if let (Some(unresolved), &TypeNs::TraitId(trait_id)) = (&unresolved, &ty) {
if let Some(type_alias_id) =
db.trait_data(trait_id).associated_type_by_name(unresolved.name)
{
return Some(PathResolution::Def(ModuleDefId::from(type_alias_id).into()));
}
}
let res = match ty {
TypeNs::SelfType(it) => PathResolution::SelfType(it.into()),
TypeNs::GenericParam(id) => PathResolution::TypeParam(id.into()),
TypeNs::AdtSelfType(it) | TypeNs::AdtId(it) => {
PathResolution::Def(Adt::from(it).into())
}
TypeNs::EnumVariantId(it) => PathResolution::Def(Variant::from(it).into()),
TypeNs::TypeAliasId(it) => PathResolution::Def(TypeAlias::from(it).into()),
TypeNs::BuiltinType(it) => PathResolution::Def(BuiltinType::from(it).into()),
TypeNs::TraitId(it) => PathResolution::Def(Trait::from(it).into()),
TypeNs::TraitAliasId(it) => PathResolution::Def(TraitAlias::from(it).into()),
};
match unresolved {
Some(unresolved) => resolver
.generic_def()
.and_then(|def| {
hir_ty::associated_type_shorthand_candidates(
db,
def,
res.in_type_ns()?,
|name, id| (name == unresolved.name).then_some(id),
)
})
.map(TypeAlias::from)
.map(Into::into)
.map(PathResolution::Def),
None => Some(res),
}
};
let body_owner = resolver.body_owner();
let values = || resolve_hir_value_path(db, resolver, body_owner, path);
let items = || {
resolver
.resolve_module_path_in_items(db.upcast(), path.mod_path()?)
.take_types()
.map(|it| PathResolution::Def(it.into()))
};
let macros = || {
resolver
.resolve_path_as_macro(db.upcast(), path.mod_path()?, None)
.map(|(def, _)| PathResolution::Def(ModuleDef::Macro(def.into())))
};
if prefer_value_ns { values().or_else(types) } else { types().or_else(values) }
.or_else(items)
.or_else(macros)
}
fn resolve_hir_value_path(
db: &dyn HirDatabase,
resolver: &Resolver,
body_owner: Option<DefWithBodyId>,
path: &Path,
) -> Option<PathResolution> {
resolver.resolve_path_in_value_ns_fully(db.upcast(), path).and_then(|val| {
let res = match val {
ValueNs::LocalBinding(binding_id) => {
let var = Local { parent: body_owner?, binding_id };
PathResolution::Local(var)
}
ValueNs::FunctionId(it) => PathResolution::Def(Function::from(it).into()),
ValueNs::ConstId(it) => PathResolution::Def(Const::from(it).into()),
ValueNs::StaticId(it) => PathResolution::Def(Static::from(it).into()),
ValueNs::StructId(it) => PathResolution::Def(Struct::from(it).into()),
ValueNs::EnumVariantId(it) => PathResolution::Def(Variant::from(it).into()),
ValueNs::ImplSelf(impl_id) => PathResolution::SelfType(impl_id.into()),
ValueNs::GenericParam(id) => PathResolution::ConstParam(id.into()),
};
Some(res)
})
}
/// Resolves a path where we know it is a qualifier of another path.
///
/// For example, if we have:
/// ```
/// mod my {
/// pub mod foo {
/// struct Bar;
/// }
///
/// pub fn foo() {}
/// }
/// ```
/// then we know that `foo` in `my::foo::Bar` refers to the module, not the function.
fn resolve_hir_path_qualifier(
db: &dyn HirDatabase,
resolver: &Resolver,
path: &Path,
) -> Option<PathResolution> {
(|| {
let (ty, unresolved) = match path.type_anchor() {
Some(type_ref) => {
let (_, res) =
TyLoweringContext::new_maybe_unowned(db, resolver, resolver.type_owner())
.lower_ty_ext(type_ref);
res.map(|ty_ns| (ty_ns, path.segments().first()))
}
None => {
let (ty, remaining_idx, _) = resolver.resolve_path_in_type_ns(db.upcast(), path)?;
match remaining_idx {
Some(remaining_idx) => {
if remaining_idx + 1 == path.segments().len() {
Some((ty, path.segments().last()))
} else {
None
}
}
None => Some((ty, None)),
}
}
}?;
// If we are in a TypeNs for a Trait, and we have an unresolved name, try to resolve it as a type
// within the trait's associated types.
if let (Some(unresolved), &TypeNs::TraitId(trait_id)) = (&unresolved, &ty) {
if let Some(type_alias_id) =
db.trait_data(trait_id).associated_type_by_name(unresolved.name)
{
return Some(PathResolution::Def(ModuleDefId::from(type_alias_id).into()));
}
}
let res = match ty {
TypeNs::SelfType(it) => PathResolution::SelfType(it.into()),
TypeNs::GenericParam(id) => PathResolution::TypeParam(id.into()),
TypeNs::AdtSelfType(it) | TypeNs::AdtId(it) => {
PathResolution::Def(Adt::from(it).into())
}
TypeNs::EnumVariantId(it) => PathResolution::Def(Variant::from(it).into()),
TypeNs::TypeAliasId(it) => PathResolution::Def(TypeAlias::from(it).into()),
TypeNs::BuiltinType(it) => PathResolution::Def(BuiltinType::from(it).into()),
TypeNs::TraitId(it) => PathResolution::Def(Trait::from(it).into()),
TypeNs::TraitAliasId(it) => PathResolution::Def(TraitAlias::from(it).into()),
};
match unresolved {
Some(unresolved) => resolver
.generic_def()
.and_then(|def| {
hir_ty::associated_type_shorthand_candidates(
db,
def,
res.in_type_ns()?,
|name, id| (name == unresolved.name).then_some(id),
)
})
.map(TypeAlias::from)
.map(Into::into)
.map(PathResolution::Def),
None => Some(res),
}
})()
.or_else(|| {
resolver
.resolve_module_path_in_items(db.upcast(), path.mod_path()?)
.take_types()
.map(|it| PathResolution::Def(it.into()))
})
}